001     884257
005     20220930130251.0
024 7 _ |a 10.1074/jbc.RA120.013704
|2 doi
024 7 _ |a 0021-9258
|2 ISSN
024 7 _ |a 1067-8816
|2 ISSN
024 7 _ |a 1083-351X
|2 ISSN
024 7 _ |a 2128/27135
|2 Handle
024 7 _ |a 32820048
|2 pmid
024 7 _ |a WOS:000588414100012
|2 WOS
037 _ _ |a FZJ-2020-03152
082 _ _ |a 540
100 1 _ |a Kolen, Bettina
|0 P:(DE-Juel1)169471
|b 0
245 _ _ |a An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates
260 _ _ |a Bethesda, Md.
|c 2020
|b Soc.72889
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1612871611_17542
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kortzak, Daniel
|0 P:(DE-Juel1)157846
|b 1
700 1 _ |a Franzen, Arne
|0 P:(DE-Juel1)131923
|b 2
700 1 _ |a Fahlke, Christoph
|0 P:(DE-Juel1)136837
|b 3
|e Corresponding author
773 _ _ |a 10.1074/jbc.RA120.013704
|g p. jbc.RA120.013704 -
|0 PERI:(DE-600)1474604-9
|n 44
|p 14936-14947
|t The journal of biological chemistry
|v 295
|y 2020
|x 1083-351X
856 4 _ |u https://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Order%20Digital%20Reprints%20Online.pdf
856 4 _ |u https://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Status%20Digital%20Reprints%20Online.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884257/files/1-s2.0-S0021925817489022-main.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Order%20Digital%20Reprints%20Online.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884257/files/Journal%20of%20Biological%20Chemistry%20-%20Status%20Digital%20Reprints%20Online.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884257/files/Kolenetal.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884257/files/Kolenetal.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884257
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169471
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131923
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)136837
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|9 G:(DE-HGF)POF4-5244
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-03
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J BIOL CHEM : 2018
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-01-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-03
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21