000884274 001__ 884274
000884274 005__ 20240711092259.0
000884274 0247_ $$2doi$$a10.3390/app10186461
000884274 0247_ $$2datacite_doi$$a10.34734/FZJ-2020-03169
000884274 0247_ $$2WOS$$aWOS:000580510700001
000884274 037__ $$aFZJ-2020-03169
000884274 082__ $$a600
000884274 1001_ $$00000-0002-1822-549X$$aBlinn, Bastian$$b0$$eCorresponding author
000884274 245__ $$aAnalysis of the Thermomechanical Fatigue Behavior of Fully Ferritic High Chromium Steel Crofer®22 H with Cyclic Indentation Testing
000884274 260__ $$aBasel$$bMDPI$$c2020
000884274 3367_ $$2DRIVER$$aarticle
000884274 3367_ $$2DataCite$$aOutput Types/Journal article
000884274 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1714659300_24819
000884274 3367_ $$2BibTeX$$aARTICLE
000884274 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884274 3367_ $$00$$2EndNote$$aJournal Article
000884274 520__ $$aThe 22 wt.% Cr, fully ferritic stainless steel Crofer®22 H has higher thermomechanical fatigue (TMF)- lifetime compared to advanced ferritic-martensitic P91, which is assumed to be caused by different damage tolerance, leading to differences in crack propagation and failure mechanisms. To analyze this, instrumented cyclic indentation tests (CITs) were used because the material’s cyclic hardening potential—which strongly correlates with damage tolerance, can be determined by analyzing the deformation behavior in CITs. In the presented work, CITs were performed for both materials at specimens loaded for different numbers of TMF-cycles. These investigations show higher damage tolerance for Crofer®22 H and demonstrate changes in damage tolerance during TMF-loading for both materials, which correlates with the cyclic deformation behavior observed in TMF-tests. Furthermore, the results obtained at Crofer®22 H indicate an increase of damage tolerance in the second half of TMF-lifetime, which cannot be observed for P91. Moreover, CITs were performed at Crofer®22 H in the vicinity of a fatigue crack, enabling to locally analyze the damage tolerance. These CITs show differences between crack edges and the crack tip. Conclusively, the presented results demonstrate that CITs can be utilized to analyze TMF-induced changes in damage tolerance.
000884274 536__ $$0G:(DE-HGF)POF4-1243$$a1243 - Thermal Energy Storage (POF4-124)$$cPOF4-124$$fPOF IV$$x0
000884274 588__ $$aDataset connected to CrossRef
000884274 7001_ $$0P:(DE-HGF)0$$aGörzen, David$$b1
000884274 7001_ $$0P:(DE-Juel1)161596$$aFischer, Torsten$$b2
000884274 7001_ $$0P:(DE-Juel1)129742$$aKuhn, Bernd$$b3
000884274 7001_ $$0P:(DE-Juel1)129685$$aBeck, Tilmann$$b4
000884274 773__ $$0PERI:(DE-600)2704225-X$$a10.3390/app10186461$$gVol. 10, no. 18, p. 6461 -$$n18$$p6461 -$$tApplied Sciences$$v10$$x2076-3417$$y2020
000884274 8564_ $$uhttps://juser.fz-juelich.de/record/884274/files/applsci-10-06461.pdf$$yOpenAccess
000884274 8564_ $$uhttps://juser.fz-juelich.de/record/884274/files/applsci-10-06461.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884274 909CO $$ooai:juser.fz-juelich.de:884274$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161596$$aForschungszentrum Jülich$$b2$$kFZJ
000884274 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129742$$aForschungszentrum Jülich$$b3$$kFZJ
000884274 9131_ $$0G:(DE-HGF)POF4-124$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1243$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vHochtemperaturtechnologien$$x0
000884274 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2019-12-20
000884274 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884274 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL SCI-BASEL : 2018$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884274 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2019-12-20
000884274 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000884274 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000884274 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000884274 9801_ $$aFullTexts
000884274 980__ $$ajournal
000884274 980__ $$aVDB
000884274 980__ $$aUNRESTRICTED
000884274 980__ $$aI:(DE-Juel1)IEK-2-20101013
000884274 981__ $$aI:(DE-Juel1)IMD-1-20101013