000884278 001__ 884278
000884278 005__ 20240712100908.0
000884278 0247_ $$2doi$$a10.5194/acp-2020-40
000884278 0247_ $$2Handle$$a2128/25684
000884278 0247_ $$2altmetric$$aaltmetric:74573122
000884278 037__ $$aFZJ-2020-03170
000884278 082__ $$a550
000884278 1001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b0$$eCorresponding author
000884278 245__ $$aA Microphysics Guide to Cirrus – Part II: Climatologies of Clouds and Humidity from Observations
000884278 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000884278 3367_ $$2DRIVER$$aarticle
000884278 3367_ $$2DataCite$$aOutput Types/Journal article
000884278 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600431589_16444
000884278 3367_ $$2BibTeX$$aARTICLE
000884278 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884278 3367_ $$00$$2EndNote$$aJournal Article
000884278 520__ $$aThis study presents airborne in-situ and satellite remote sensing climatologies of cirrus clouds and humidity. The climatologies serve as a guide to the properties of cirrus clouds, with the new in-situ data base providing detailed insights into boreal mid-latitudes and the tropics, while the satellite-borne data set offers a global overview. To this end, an extensive, quality checked data archive, the Cirrus Guide II in-situ data base, is created from airborne in-situ measurements during 150 flights in 24 campaigns. The archive contains meteorological parameters, IWC, Nice, Rice, RHice and H2O for each of the flights (IWC: ice water content, Nice: number concentration of ice crystals, Rice: ice crystal mean mass radius, RHice: relative humidity with respect to ice, H2O: water vapor mixing ratio). Depending on the specific parameter, the data base has extended by about a factor of 5–10 compared to the previous studies of Schiller et al. (2008), JGR, and Krämer et al. (2009), ACP. One result of our investigations is, that across all latitudes, the thicker liquid origin cirrus predominate at lower altitudes, while at higher altitudes the thinner in-situ cirrus prevail. Further, exemplary investigations of the radiative characteristics of in-situ and liquid origin cirrus show that the in-situ origin cirrus only slightly warm the atmosphere, while liquid origin cirrus have a strong cooling effect. An important step in completing the Cirrus Guide II is the provision of the global cirrus Nice climatology, derived by means of the retrieval algorithm DARDAR-Nice from ten years of cirrus remote sensing observations from satellite. The in-situ data base has been used to evaluate and adjust the satellite observations. We found that the global median Nice from satellite observations is almost two times higher than the in-situ median and increases slightly with decreasing temperature. Nice medians of the most frequentl occuring cirrus sorted by geographical regions are highest in the tropics, followed by austral/boreal mid-latitudes, Antarctica and the Arctic. Since the satellite climatologies enclose the entire spatial and temporal Nice occurrence, we could deduce that half of the cirrus are located in the lowest, warmest cirrus layer and contain a significant amount of liquid origin cirrus. A specific highlight of the study is the in-situ observations of tropical tropopause layer (TTL) cirrus and humidity in the Asian monsoon anticyclone and the comparison to the surrounding tropics. In the convectively very active Asian monsoon, peak values of Nice and IWC of 30 ppmv and 1000 ppmv are detected around the cold point tropopause (CPT). Above the CPT, ice particles that are convectively injected can locally add a significant amount of water available for exchange with the stratosphere. We found IWCs of up to 8 ppmv in the Asian monsoon in comparison to only 2 ppmv in the surrounding tropics. Also, the highest RHice inside of the clouds as well as in clear sky (120–150 %) are observed around and above the CPT. We attribute this to the high amount of H2O (3–5 ppmv) in comparison to 1.5–3 ppmv in other tropical regions. The supersaturations above the CPT suggest that the water exchange with the stratosphere is 10–20 % higher than expected in regions of weak convective activity and up to about 50 % in the Asian monsoon.
000884278 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000884278 588__ $$aDataset connected to CrossRef
000884278 7001_ $$0P:(DE-Juel1)139013$$aRolf, Christian$$b1
000884278 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b2$$ufzj
000884278 7001_ $$0P:(DE-Juel1)129108$$aAfchine, Armin$$b3
000884278 7001_ $$00000-0003-1720-0634$$aFahey, David$$b4
000884278 7001_ $$0P:(DE-HGF)0$$aJensen, Eric$$b5
000884278 7001_ $$0P:(DE-HGF)0$$aKhaykin, Sergey$$b6
000884278 7001_ $$0P:(DE-HGF)0$$aKuhn, Thomas$$b7
000884278 7001_ $$0P:(DE-HGF)0$$aLawson, Paul$$b8
000884278 7001_ $$0P:(DE-HGF)0$$aLykov, Alexey$$b9
000884278 7001_ $$0P:(DE-HGF)0$$aPan, Laura L.$$b10
000884278 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b11
000884278 7001_ $$0P:(DE-HGF)0$$aRollins, Andrew$$b12
000884278 7001_ $$0P:(DE-Juel1)129158$$aStroh, Fred$$b13
000884278 7001_ $$00000-0001-7478-1944$$aThornberry, Troy$$b14
000884278 7001_ $$0P:(DE-HGF)0$$aWolf, Veronika$$b15
000884278 7001_ $$0P:(DE-HGF)0$$aWoods, Sarah$$b16
000884278 7001_ $$00000-0003-4008-4977$$aSpichtinger, Peter$$b17
000884278 7001_ $$00000-0001-7057-194X$$aQuaas, Johannes$$b18
000884278 7001_ $$00000-0002-2822-5303$$aSourdeval, Odran$$b19
000884278 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-40$$p2020-40$$tAtmospheric chemistry and physics / Discussions$$v $$x1680-7367$$y2020
000884278 8564_ $$uhttps://juser.fz-juelich.de/record/884278/files/2020_MKraemer-CirrusGuideII-acp-2020-40-supplement.pdf$$yOpenAccess
000884278 8564_ $$uhttps://juser.fz-juelich.de/record/884278/files/acp-2020-40.pdf$$yOpenAccess
000884278 8564_ $$uhttps://juser.fz-juelich.de/record/884278/files/2020_MKraemer-CirrusGuideII-acp-2020-40-supplement.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884278 8564_ $$uhttps://juser.fz-juelich.de/record/884278/files/acp-2020-40.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884278 909CO $$ooai:juser.fz-juelich.de:884278$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b0$$kFZJ
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)139013$$aForschungszentrum Jülich$$b1$$kFZJ
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b2$$kFZJ
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129108$$aForschungszentrum Jülich$$b3$$kFZJ
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b11$$kFZJ
000884278 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129158$$aForschungszentrum Jülich$$b13$$kFZJ
000884278 9101_ $$0I:(DE-HGF)0$$60000-0001-7478-1944$$aExternal Institute$$b14$$kExtern
000884278 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000884278 9141_ $$y2020
000884278 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000884278 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884278 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000884278 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884278 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000884278 9801_ $$aFullTexts
000884278 980__ $$ajournal
000884278 980__ $$aVDB
000884278 980__ $$aUNRESTRICTED
000884278 980__ $$aI:(DE-Juel1)IEK-7-20101013
000884278 981__ $$aI:(DE-Juel1)ICE-4-20101013