000884280 001__ 884280 000884280 005__ 20240712101038.0 000884280 0247_ $$2doi$$a10.5194/acp-20-8157-2020 000884280 0247_ $$2ISSN$$a1680-7316 000884280 0247_ $$2ISSN$$a1680-7324 000884280 0247_ $$2Handle$$a2128/25690 000884280 0247_ $$2altmetric$$aaltmetric:85752963 000884280 0247_ $$2WOS$$aWOS:000550825000001 000884280 037__ $$aFZJ-2020-03172 000884280 082__ $$a550 000884280 1001_ $$0P:(DE-Juel1)136669$$aPetzold, Andreas$$b0$$eCorresponding author 000884280 245__ $$aIce-supersaturated air masses in the northern mid-latitudes from regular in situ observations by passenger aircraft: vertical distribution, seasonality and tropospheric fingerprint 000884280 260__ $$aKatlenburg-Lindau$$bEGU$$c2020 000884280 3367_ $$2DRIVER$$aarticle 000884280 3367_ $$2DataCite$$aOutput Types/Journal article 000884280 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601889356_7720 000884280 3367_ $$2BibTeX$$aARTICLE 000884280 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000884280 3367_ $$00$$2EndNote$$aJournal Article 000884280 520__ $$aThe vertical distribution and seasonal variation of water vapour volume mixing ratio (H2O VMR), of relative humidity with respect to ice (RHice) and particularly of regions with ice-supersaturated air masses (ISSRs) in the extratropical upper troposphere and lowermost stratosphere are investigated at northern mid-latitudes over the eastern North American, North Atlantic and European regions for the period 1995 to 2010. Observation data originate from regular and continuous long-term measurements on board instrumented passenger aircraft in the framework of the European research programme MOZAIC (1994–2010), which continues as the European research infrastructure IAGOS (from 2011). Data used in our study result from collocated observations of O3 VMR, RHice and temperature, as well as H2O VMR deduced from RHice and temperature data. The in situ observations of H2O VMR and RHice with a vertical resolution of 30 hPa (< 750 m at the extratropical tropopause level) and a horizontal resolution of 1 km resolve detailed features of the distribution of water vapour and ice-supersaturated air relative to the thermal tropopause, including their seasonal and regional variability and chemical signatures at various distances from the tropopause layer. Annual cycles of the investigated properties document the highest H2O VMR and temperatures above the thermal tropopause in the summer months, whereas RHice above the thermal tropopause remains almost constant in the course of the year. Over all investigated regions, upper tropospheric air masses close to the tropopause level are nearly saturated with respect to ice and contain a significant fraction of ISSRs with a distinct seasonal cycle of minimum values in summer (30 % over the ocean, 20 %–25 % over land) and maximum values in late winter (35 %–40 % over both land and ocean). Above the thermal tropopause, ISSRs are occasionally observed with an occurrence probability of 1.5 ± 1.1 %, whereas above the dynamical tropopause at 2 PVU (PVU: potential vorticity unit), the occurrence probability increases 4-fold to 8.4 ± 4.4 %. In both coordinate systems related to tropopause height (TPH), the ISSR occurrence probabilities drop to values below 1 % for the next higher air mass layer with pressure levels p < pTPH−15 hPa. For both tropopause definitions, the tropospheric nature or fingerprint, based on O3 VMR, indicates the continuing tropospheric influence on ISSRs inside and above the respective tropopause layer. For the non-ISSRs, however, the stratospheric nature is clearly visible above the thermal tropopause, whereas above the dynamical tropopause the air masses show a still substantial tropospheric influence. For all three regions, seasonal deviations from the long-term annual cycle of ISSR occurrence show no significant trends over the observation period of 15 years, whereas a statistically significant correlation between the North Atlantic Oscillation (NAO) index and the deviation of ISSR occurrence from the long-term average is observed for the North Atlantic region but not for the eastern North American and European regions. 000884280 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0 000884280 536__ $$0G:(DE-HGF)POF3-243$$a243 - Tropospheric trace substances and their transformation processes (POF3-243)$$cPOF3-243$$fPOF III$$x1 000884280 588__ $$aDataset connected to CrossRef 000884280 7001_ $$0P:(DE-Juel1)161340$$aNeis, Patrick$$b1 000884280 7001_ $$0P:(DE-Juel1)176318$$aRütimann, Mihal$$b2$$ufzj 000884280 7001_ $$0P:(DE-Juel1)129146$$aRohs, Susanne$$b3 000884280 7001_ $$0P:(DE-Juel1)166303$$aBerkes, Florian$$b4 000884280 7001_ $$0P:(DE-Juel1)16203$$aSmit, Herman G. J.$$b5$$ufzj 000884280 7001_ $$0P:(DE-Juel1)129131$$aKrämer, Martina$$b6 000884280 7001_ $$0P:(DE-Juel1)129155$$aSpelten, Nicole$$b7$$ufzj 000884280 7001_ $$00000-0003-4008-4977$$aSpichtinger, Peter$$b8 000884280 7001_ $$0P:(DE-HGF)0$$aNédélec, Philippe$$b9 000884280 7001_ $$0P:(DE-Juel1)16324$$aWahner, Andreas$$b10 000884280 773__ $$0PERI:(DE-600)2069847-1$$a10.5194/acp-20-8157-2020$$gVol. 20, no. 13, p. 8157 - 8179$$n13$$p8157 - 8179$$tAtmospheric chemistry and physics$$v20$$x1680-7324$$y2020 000884280 8564_ $$uhttps://juser.fz-juelich.de/record/884280/files/invoice_Helmholtz-PUC-2020-89.pdf 000884280 8564_ $$uhttps://juser.fz-juelich.de/record/884280/files/2020_Petzold_acp-20-8157-2020.pdf$$yOpenAccess 000884280 8564_ $$uhttps://juser.fz-juelich.de/record/884280/files/2020_Petzold_acp-20-8157-2020.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000884280 8564_ $$uhttps://juser.fz-juelich.de/record/884280/files/invoice_Helmholtz-PUC-2020-89.pdf?subformat=pdfa$$xpdfa 000884280 8767_ $$8Helmholtz-PUC-2020-89$$92020-10-01$$d2020-10-15$$eAPC$$jZahlung erfolgt$$pacp-2019-735$$zBelegnr. 1200158044 000884280 909CO $$ooai:juser.fz-juelich.de:884280$$pdnbdelivery$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136669$$aForschungszentrum Jülich$$b0$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176318$$aForschungszentrum Jülich$$b2$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129146$$aForschungszentrum Jülich$$b3$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16203$$aForschungszentrum Jülich$$b5$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129131$$aForschungszentrum Jülich$$b6$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129155$$aForschungszentrum Jülich$$b7$$kFZJ 000884280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)16324$$aForschungszentrum Jülich$$b10$$kFZJ 000884280 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0 000884280 9131_ $$0G:(DE-HGF)POF3-243$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vTropospheric trace substances and their transformation processes$$x1 000884280 9141_ $$y2020 000884280 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18 000884280 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000884280 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS CHEM PHYS : 2018$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bATMOS CHEM PHYS : 2018$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000884280 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18 000884280 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18 000884280 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18 000884280 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000884280 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$kIEK-8$$lTroposphäre$$x1 000884280 9801_ $$aAPC 000884280 9801_ $$aFullTexts 000884280 980__ $$ajournal 000884280 980__ $$aVDB 000884280 980__ $$aI:(DE-Juel1)IEK-7-20101013 000884280 980__ $$aI:(DE-Juel1)IEK-8-20101013 000884280 980__ $$aAPC 000884280 980__ $$aUNRESTRICTED 000884280 981__ $$aI:(DE-Juel1)ICE-4-20101013 000884280 981__ $$aI:(DE-Juel1)ICE-3-20101013 000884280 981__ $$aI:(DE-Juel1)ICE-3-20101013