000884283 001__ 884283
000884283 005__ 20220930130251.0
000884283 0247_ $$2doi$$a10.3390/catal10091072
000884283 0247_ $$2Handle$$a2128/25775
000884283 0247_ $$2altmetric$$aaltmetric:91112251
000884283 0247_ $$2WOS$$aWOS:000580208000001
000884283 037__ $$aFZJ-2020-03175
000884283 082__ $$a540
000884283 1001_ $$0P:(DE-HGF)0$$aAleksenko, Vladimir A.$$b0
000884283 245__ $$aPhylogeny and Structure of Fatty Acid Photodecarboxylases and Glucose-Methanol-Choline Oxidoreductases
000884283 260__ $$aBasel$$bMDPI$$c2020
000884283 3367_ $$2DRIVER$$aarticle
000884283 3367_ $$2DataCite$$aOutput Types/Journal article
000884283 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1610982715_12015
000884283 3367_ $$2BibTeX$$aARTICLE
000884283 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884283 3367_ $$00$$2EndNote$$aJournal Article
000884283 520__ $$aGlucose-methanol-choline (GMC) oxidoreductases are a large and diverse family of flavin-binding enzymes found in all kingdoms of life. Recently, a new related family of proteins has been discovered in algae named fatty acid photodecarboxylases (FAPs). These enzymes use the energy of light to convert fatty acids to the corresponding Cn-1 alkanes or alkenes, and hold great potential for biotechnological application. In this work, we aimed at uncovering the natural diversity of FAPs and their relations with other GMC oxidoreductases. We reviewed the available GMC structures, assembled a large dataset of GMC sequences, and found that one active site amino acid, a histidine, is extremely well conserved among the GMC proteins but not among FAPs, where it is replaced with alanine. Using this criterion, we found several new potential FAP genes, both in genomic and metagenomic databases, and showed that related bacterial, archaeal and fungal genes are unlikely to be FAPs. We also identified several uncharacterized clusters of GMC-like proteins as well as subfamilies of proteins that lack the conserved histidine but are not FAPs. Finally, the analysis of the collected dataset of potential photodecarboxylase sequences revealed the key active site residues that are strictly conserved, whereas other residues in the vicinity of the flavin adenine dinucleotide (FAD) cofactor and in the fatty acid-binding pocket are more variable. The identified variants may have different FAP activity and selectivity and consequently may prove useful for new biotechnological applications, thereby fostering the transition from a fossil carbon-based economy to a bio-economy by enabling the sustainable production of hydrocarbon fuels.
000884283 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000884283 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x1
000884283 588__ $$aDataset connected to CrossRef
000884283 7001_ $$0P:(DE-Juel1)175116$$aAnand, Deepak$$b1$$ufzj
000884283 7001_ $$0P:(DE-HGF)0$$aRemeeva, Alina$$b2
000884283 7001_ $$0P:(DE-HGF)0$$aNazarenko, Vera V.$$b3
000884283 7001_ $$0P:(DE-Juel1)131964$$aGordeliy, Valentin$$b4$$ufzj
000884283 7001_ $$0P:(DE-Juel1)131457$$aJaeger, Karl-Erich$$b5
000884283 7001_ $$0P:(DE-Juel1)131482$$aKrauss, Ulrich$$b6$$ufzj
000884283 7001_ $$0P:(DE-Juel1)165798$$aGushchin, Ivan$$b7$$eCorresponding author
000884283 773__ $$0PERI:(DE-600)2662126-5$$a10.3390/catal10091072$$gVol. 10, no. 9, p. 1072 -$$n9$$p1072 -$$tCatalysts$$v10$$x2073-4344$$y2020
000884283 8564_ $$uhttps://juser.fz-juelich.de/record/884283/files/Invoice_MDPI_catalysts-923799_1530.00CHF.pdf
000884283 8564_ $$uhttps://juser.fz-juelich.de/record/884283/files/Invoice_MDPI_catalysts-923799_1530.00CHF.pdf?subformat=pdfa$$xpdfa
000884283 8564_ $$uhttps://juser.fz-juelich.de/record/884283/files/catalysts-10-01072.pdf$$yOpenAccess
000884283 8564_ $$uhttps://juser.fz-juelich.de/record/884283/files/catalysts-10-01072.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884283 8767_ $$8catalysts-923799$$92020-09-15$$d2020-09-23$$eAPC$$jZahlung erfolgt$$z1530 CHF Belegnr.: 1200157462
000884283 909CO $$ooai:juser.fz-juelich.de:884283$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)175116$$aForschungszentrum Jülich$$b1$$kFZJ
000884283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131964$$aForschungszentrum Jülich$$b4$$kFZJ
000884283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131457$$aForschungszentrum Jülich$$b5$$kFZJ
000884283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131482$$aForschungszentrum Jülich$$b6$$kFZJ
000884283 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165798$$aForschungszentrum Jülich$$b7$$kFZJ
000884283 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000884283 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x1
000884283 9141_ $$y2020
000884283 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000884283 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884283 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCATALYSTS : 2018$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884283 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-10
000884283 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000884283 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000884283 920__ $$lyes
000884283 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000884283 9201_ $$0I:(DE-Juel1)IBI-7-20200312$$kIBI-7$$lStrukturbiochemie$$x1
000884283 9201_ $$0I:(DE-Juel1)IMET-20090612$$kIMET$$lInstitut für Molekulare Enzymtechnologie (HHUD)$$x2
000884283 980__ $$ajournal
000884283 980__ $$aVDB
000884283 980__ $$aI:(DE-Juel1)IBG-1-20101118
000884283 980__ $$aI:(DE-Juel1)IBI-7-20200312
000884283 980__ $$aI:(DE-Juel1)IMET-20090612
000884283 980__ $$aAPC
000884283 980__ $$aUNRESTRICTED
000884283 9801_ $$aAPC
000884283 9801_ $$aFullTexts