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Hybrid Molecular Mechanics/Coarse-Grained (MM/CG) simulations help predict ligand

poses in human G protein-coupled receptors (hGPCRs), the most important protein

superfamily for pharmacological applications. This approach allows the description

of the ligand, the binding cavity, and the surrounding water molecules at atomistic

resolution, while coarse-graining the rest of the receptor. Here, we present the Hybrid

MM/CG Webserver (mmcg.grs.kfa-juelich.de) that automatizes and speeds up the

MM/CG simulation setup of hGPCR/ligand complexes. Initial structures for such

complexes can be easily and efficiently generated with other webservers. The Hybrid

MM/CG server also allows for equilibration of the systems, either fully automatically or

interactively. The results are visualized online (using both interactive 3D visualizations and

analysis plots), helping the user identify possible issues and modify the setup parameters

accordingly. Furthermore, the prepared system can be downloaded and the simulation

continued locally.

Keywords: MM/CG, molecular mechanics, coarse-grained, hybrid methods, webserver, G protein-coupled

receptor, ligand, molecular dynamics simulation

INTRODUCTION

Human G protein-coupled receptors (hGPCRs) are the largest drug target superfamily (Hauser
et al., 2017). One third of FDA-approved drugs target ∼14% hGPCRs (Hauser et al., 2018)
and this protein class has a further, untapped pharmacological potential. Unfortunately,
rational drug design is hampered by the lack of experimental structures for more than 90%

Abbreviations: AA, all-atom; CFF, caffeine; CG, coarse-grained; FDA, United States Food andDrug Administration; hA2AR,
human adenosine 2A receptor; hGPCRs, human G protein-coupled receptors; MD, molecular dynamics; MM, molecular
mechanics; MM/CG, molecular mechanics/coarse-grained.
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hGPCRs1 (Munk et al., 2019; Qu et al., 2020). Structural
insights into ligand poses for these cases can be obtained by
computational modeling. Reliable predictions can be made by
docking approaches on homology models, based on templates
sharing overall sequence identity >35–40% and/or high
conservation of binding site residues (Beuming and Sherman,
2012; Kufareva et al., 2014). For lower resolution models,
however, the uncertainty in the structure (and particularly in
the orientation of side chains) decreases the accuracy of the
docking predictions and, thus, follow-up molecular dynamics
(MD) simulations are recommended (Kufareva et al., 2014;
Cavasotto and Palomba, 2015; Esguerra et al., 2016; Heifetz
et al., 2016; Fierro et al., 2017; Lupala et al., 2018; Rodríguez-
Espigares et al., 2020). In an effort at addressing this issue, we
have developed a Hybrid Molecular Mechanics/Coarse-Grained
(MM/CG) simulation approach (Neri et al., 2005, 2008; Leguèbe
et al., 2012; Marchiori et al., 2013; Sandal et al., 2015; Capaldi
et al., 2018; Alfonso-Prieto et al., 2019; Fierro et al., 2019).
The receptor/ligand interactions are described in atomistic
detail, including explicit water molecules in the binding site
(MM region), while the rest of the receptor is coarse-grained
(CG region) (Schneider et al., 2018). The all-atom force fields
used (Schneider et al., 2020) for the MM part of the protein
and water are the Amber14SB (Maier et al., 2015) and TIP3P
(Jorgensen et al., 1983), respectively, whereas the ligand can
be described using either GAFF or GAFF2 (Wang et al., 2004;
Case et al., 2020). The CG region is described by a Gō-like (Gō
and Abe, 1981) potential. A region at the interface between
the MM and CG parts couples the two levels of resolution
(Figure 1). The membrane is described implicitly by introducing
five potential walls (Leguèbe et al., 2012; Schneider et al.,
2018). Two planar walls coincide with the height of the head
groups of the membrane lipids, two hemispheric walls cap the
extracellular and intracellular ends of the protein and prevent
water evaporation, and the last wall follows the initial shape
of the interface between protein and membrane, mimicking
the effect of the lipid acyl tails (Figure 1). The scheme can
be used also for GPCRs other than those from Homo sapiens.
This approach turned out to be able to reproduce the ligand
poses for four different hGPCRs (Schneider et al., 2020). These
include the adenosine 2A receptor in complex with caffeine
(i.e., the example case of the webserver), the human bitter
receptor 16 in complex with phenyl-β-D-glucopyranoside, the
β2-adrenergic receptor with adrenaline, and the dopamine D3
receptor with eticlopride. The structures of these hGPCR/ligand
complexes were either experimentally determined, taken from
all-atom MD trajectories or predicted based on templates with
decreasing resolution, up to extremely low sequence identity
(<15%) (Schneider et al., 2020). Retrospective validation against
available X-ray structures and mutagenesis data confirmed that
the MM/CG approach can predict correct ligand poses and
identify experimentally determined binding residues2 (Schneider
et al., 2020), regardless of the model resolution. In addition, the
MM/CG simulations can provide insights into the flexibility

1https://gpcrdb.org/structure/statistics as of June 2020.
2the residues whose mutation is known experimentally to affect binding

of receptor–ligand interactions and hydration of the binding
cavity, at a lower computational cost than all-atom molecular
dynamics simulations.

The increasing number of applications and requests to
use the MM/CG approach has prompted us to develop the
Hybrid MM/CG webserver, a publicly accessible web interface
aimed at preparing and running short MM/CG simulations
of hGPCR/ligand complexes (available since December 2019).
To the best of our knowledge, this is the only webserver
dedicated to this task. It complements other excellent online
resources (Table 1) aimed at preparing all-atom or coarse-
grained molecular dynamics (MD) simulations of GPCRs and
GPCR/ligand complexes (or in general membrane proteins).

The Hybrid MM/CG webserver requires only the coordinates
of the receptor/ligand complex (as PDB file). These may
come from experimental structures, simulation snapshots, or
computational models generated with other webservers, such as
the ones listed in the “Input” section. Furthermore, we have
linked our GOMoDo webserver3 for modeling and docking of
GPCRs to the Hybrid MM/CG webserver, so that the complexes
generated with GOMoDo can be directly transferred. The user
is first guided through a set of user-friendly forms for preparing
the setup files. The procedure requires only a few minutes. Then,
the user runs the initial MM/CG simulation steps (up to 10 ns)
directly on the server. The resulting files can be downloaded and
the MM/CG simulation can be continued using local resources.

MATERIALS AND METHODS

Input
The input PDB file can be obtained from experimental databases,
such as the Protein Data Bank (Berman et al., 2000; Rose
et al., 2016), GPCRdb (Pándy-Szekeres et al., 2018) or GPCRmd
(Rodríguez-Espigares et al., 2020), as well as computational
services like GOMoDo (Sandal et al., 2013), GPCR-ModSim
(Esguerra et al., 2016), GPCR-SSFE (Worth et al., 2017),
GPCRM (Miszta et al., 2018), Galaxy7TM (Lee and Seok, 2016),
GPCRautomodel (Launay et al., 2012), @TOME (Pons and
Labesse, 2009) and others (reviewed in Busato and Giorgetti,
2016). The GOMoDo webserver (Sandal et al., 2013), which can
be used for homology modeling of hGPCRs and subsequent
docking of ligands, is linked directly with the Hybrid MM/CG
webserver. Several structures of the same hGPCR/ligand complex
obtained under different membrane compositions and/or in
different activation states can be funneled into the webserver to
indirectly (and very approximately) account for the influence
of explicit lipids and of large conformational changes of the
receptor, respectively.

Setup Modes
The Hybrid MM/CG webserver offers two system setup modes:

Automatic Preparation

Here, the user just needs to upload a PDB file of the hGPCR in
complex with its ligand or transfer it directly from the GOMoDo

3gomodo.grs.kfa-juelich.de
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FIGURE 1 | Hybrid MM/CG scheme. The three regions (MM, I, and CG) are framed with different background colors and the five potential walls (upper and lower

hemispheres, upper and lower membrane planes, and membrane surface) are indicated with black lines.

webserver3 (Sandal et al., 2013). All simulation parameters
are set according to default values that are defined in the
documentation4.

Interactive Preparation

Using the interactive preparation method, the same steps
as in the automatic preparation are carried out to set up
the system. The advantage is that several parameters, such
as the position of the interface between MM and CG
regions and the size of the hemispheric potential walls
(see Figure 1), can be adjusted. Furthermore, intermediate
results can be visualized, such as the input structure,
aligned orientation in membrane, solvation (water drop),
level of coarse-graining, and position of the wall potentials.
More details about the individual preparation steps and
parameters are explained in the Documentation section of the
webserver4.

4mmcg.grs.kfa-juelich.de/documentation

Workflow
The steps carried out by the webserver for MM/CG system
preparation and short simulation (Figure 2) are the following:

• File upload. The preparation starts with a PDB file of the
hGPCR/ligand complex. This file can be obtained from one
of the databases and webservers mentioned in the “Input”
section and uploaded by the user into the Hybrid MM/CG
webserver. Alternatively, it can be transferred directly from
GOMoDo (Sandal et al., 2013).

• Check Input. The input PDB file is checked for missing
residues and the numbering is corrected if possible (i.e., no
residues are missing). The ligand name is determined by
comparing the list of residue names in the input PDB file
and in the Amber14SB force field. Known amino acids and
capping groups are discarded and the remaining residue
name is considered to be the ligand.

• Alignment. The orientation and position of the receptor
with respect to the hydrophobic core of the lipid bilayer
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TABLE 1 | Available online resources for MD simulations of GPCRs.

Name Functionality System Setup MD simulations

Structural

modeling

Membrane

inclusion

Ligand

inclusion

Force field

used

GPCR-ModSim

(Esguerra et al., 2016)

Web-interactive system setup/simulation Xa X ∼
b MM X (AA, 5ns)

CHARMM-GUI

(Jo et al., 2008;

Lee et al., 2016)

Web-interactive system setup × X ∼
c MM, CG ×

MERMAID

(Damre et al., 2019)

Web-interactive system setup/simulation × X × CG X (CG, 100ns)

Hybrid MM/CG

(This work)

Web-interactive system setup/simulation ∼
d X (implicit) X MM/CG X (MM/CG, 10ns)

PACKMOL-Memgen

(Schott-Verdugo and

Gohlke, 2019)

Local command line system setup × X ∼
e MM ×

GPCRmd

(Rodríguez-Espigares

et al., 2020)

Database of precomputed MD simulations × X X MM X (AA)f

MemProtMD

(Newport et al., 2019)

Database of precomputed MD simulations × X X MM, CG ∼ (CG; AA)g

AA, all-atom; CG, coarse-grained; MM, molecular mechanics. aHomology modeling of GPCRs only; docking must be performed externally. bLigands should already be

included in the OPLS-AA force field or parameterized externally. cAlthough the Membrane Builder tool does not offer the option to include ligands, ligand parameterization

can be accomplished using the Ligand Reader and Modeler tool also available in the CHARMM-GUI webserver. dHomology modeling and ligand docking can be performed

with other available webservers, including the linked GOMoDo webserver. ePackmol-Memgen allows to keep ligands of interest but they have to be parameterized externally

using other AmberTools. f All set up and trajectory files can be downloaded. Simulations of the GPCRmd dataset typically include three replicas, 0.5 µs each, whereas

simulations of the so-called “Individual contributions” section can vary in the number of replicas and simulation length. gTrajectory files of the 1 µs CG assembly simulations

cannot be downloaded. However, an equilibrated CG snapshot and the corresponding backmapped AA structure, together with the files needed to run subsequent CG

or AA simulations, respectively, are available for download.

are determined using the PPM tool (Lomize et al., 2012).
The initial PDB file of the hGPCR/ligand complex is then
superimposed to the PPM-aligned structure of the receptor
using lovoalign (Martínez et al., 2007).

• Build topology: Protein. The program pdb2gmx (Berendsen
et al., 1995; Hess et al., 2008) is used to build the
receptor topology using the Amber14SB force field (Maier
et al., 2015). Protonation states of receptor titratable
residues are determined automatically by pdb2gmx. In
case the user wants to bypass the automatic assignment,
different protonation states can be enforced with minimal
manual editing of the input PDB file by changing the
corresponding residue name (e.g., from “HIS” to “HIP” for
a doubly protonated histidine).

• Build topology: Ligand. Protonation of the ligand at pH = 7
is determined using OpenBabel (O’Boyle et al., 2011). The
ligand topology is built with ACPYPE (Sousa da Silva and
Vranken, 2012) and Antechamber (Wang et al., 2001),
using AM1-BCC charges (Jakalian et al., 2004) and the
general Amber force field. GAFF (Wang et al., 2004) is
used in the automatic preparation, but the user can choose
between GAFF and GAFF2 (Case et al., 2020) in the
interactive preparation mode.

• Solvation. The simulation box is created and the system
is solvated using the TIP3P (Jorgensen et al., 1983) force
field. Water molecules below the upper membrane plane
are deleted. Hemisphere sizes are defined (default radii:

50 Å) and water outside the upper hemisphere is deleted,
so that only a water “drop” solvating the extracellular part
of the receptor is kept (see Figure 1).

• Coarse-graining. The regions of different resolutions are
defined by two cutoff values, one defining the boundary
between the MM and interface regions (default is centered
between the two membrane planes) and the other between
the interface and CG regions (6 Å below the first cutoff).
Coarse-graining is performed on residues below the second
cutoff level using a Gō-like (Gō and Abe, 1981) model.

• Minimization. A simple minimization of the system is done
using the steepest descent method until a maximum force
of 1,000 kJ mol−1 nm−1 is reached.

• Add wall potentials. Wall potentials are added to the
system according to the aforementioned heights
and radii. Wall grid points that are too close to
the ligand are deleted according to the chosen
cutoff (default 7 Å).

• Visualization. The user is redirected to the “Results”
section where preparation results can be inspected using
interactive 3D visualizations and graphs.

• Equilibration. An optional short equilibration (2 ns) and
short MD simulation (2 ns) can be started from the
“Results” section as well.

• MD. The simulation can be extended up to 10 ns, in 2 ns
increments, in order to offer the possibility to check the
intermediate results.

Frontiers in Molecular Biosciences | www.frontiersin.org 4 September 2020 | Volume 7 | Article 576689



Schneider et al. Hybrid MM/CG Webserver

FIGURE 2 | Webserver workflow. Interactive mode with manual intervention is presented on the left and fast automatic mode on the right.

• Visualization. The minimization, equilibration, and MD
are analyzed automatically in terms of potential energy
and temperature after completion of the individual
step (see Supporting Information). Interactive 3D
visualizations are available for the results of the
preparation, equilibration, and MD (see Figure 3).

Output
Results can be viewed and downloaded for 2 weeks (renewal
possible) by bookmarking the link or alternatively by using
the corresponding ID5. The full output of the preparation
can be downloaded as a compressed archive file including
the input, output, and log files of all preparation and
simulation steps. The downloaded files can be used to
continue the MM/CG simulations locally. Experienced
users have the possibility to download the prepared
system and tune the partial charges, as well as other
parameters, before running the simulation on their local
computer. The Download Code section of the server
provides an installation script, which contains the links
to the source code for both GROMACS 4.5.1 (from the
GROMACS website) and the Hybrid MM/CG patch (from our
server website).

5mmcg.grs.kfa-juelich.de/results/+ID

Server Architecture
Front-End

The web interface was developed with the DJANGO 3.0
Web framework6 and designed with the Bootstrap 4 front-
end open-source toolkit7. Interactive 3D visualizations were
implemented with the NGL library for molecular visualization
(Rose and Hildebrand, 2015) and the interactive graphs
were created using the Highcharts SVG-based JavaScript
charting library8.

Back-End

For historical reasons, different programming and scripting
languages are used for the workflow such as Bash, Python,
Perl, Tcl, AWK, and JavaScript. Furthermore, different software
packages are used in the preparation: a patched GROMACS
4.5.1 version (Berendsen et al., 1995; Hess et al., 2008), VMD
1.9.3 (Humphrey et al., 1996), PPM (Lomize et al., 2012),
lovoalign (Martínez et al., 2007), ACPYPE Rev: 10101 (Sousa
da Silva and Vranken, 2012), Antechamber (Wang et al.,
2001) from AmberTools16 and OpenBabel 2.3.2 (O’Boyle et al.,
2011). All parts were combined using the DJANGO 3.0 Web
framework6.

6djangoproject.com
7getbootstrap.com
8highcharts.com
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FIGURE 3 | Sample 3D visualizations created by the webserver using as example the hA2AR/CFF complex. (A–C) Full view of the hGPCR/ligand complex and (D–F)

close-up view of the ligand and its interactions with protein and water molecules. Images were generated with the screenshot tool in the NGL viewer (Jakalian et al.,

2004) used in the “Results” section of the webserver. Atoms are colored using the default NGL color code and ligand interactions are determined using the default

NGL definition.

RESULTS

As an application case, we considered the human adenosine
2A receptor (hA2AR) in complex with its antagonist
caffeine (CFF). CFF was proposed to have a protective and
therapeutic effect against Parkinson’s disease (Chen et al.,
2001; Sonsalla et al., 2012; Petzer and Petzer, 2015; Nazario
et al., 2017). The input PDB file of the hA2AR/CFF complex
used for the Example can be downloaded from the same
page. The demonstration can be run by simply starting
the preparation workflow9 without uploading any PDB file.
Precomputed results for this example case can be found on
the server10 and selected parts of these results can be seen
in Figure 3. Figures 3A–C show the whole hA2A receptor
in complex with CFF, with and without water solvating the
binding site and the extracellular loops, as well as the walls
mimicking the membrane and preventing water evaporation.

9https://mmcg.grs.kfa-juelich.de/
10mmcg.grs.kfa-juelich.de/example_results/

Figures 3D–F show the ligand and its direct and water-
mediated interactions with residues in the binding cavity,
as determined by the NGL viewer (Jakalian et al., 2004).
The system can be inspected in 3D after the preparation,
short equilibration, and production runs. In addition, plots
showing the time evolution of the potential energy and
temperature during the different simulation steps are generated
(see Supplementary Figures 1–3).

CONCLUSION

The hybrid MM/CG protocol has been successfully
used to predict ligand poses in a variety of hGPCRs
(Leguèbe et al., 2012; Marchiori et al., 2013; Sandal et al.,
2015; Fierro et al., 2017; Capaldi et al., 2018; Fierro
et al., 2019). Moreover, the Amber-based MM/CG poses
improved significantly relative to those obtained by simple
docking, especially for low resolution starting models
(Schneider et al., 2020). However, the setup of such
simulations has been time-consuming and system-dependent.
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The webserver presented here automatically prepares all files
needed to start the equilibration, in a short time: the hA2AR/CFF
example requires only 6 min. An additional advantage of
the Hybrid MM/CG webserver over most of the online
services for simulation of GPCRs (Table 1) is the automatic
ligand parameterization. Although other webservers can also
include ligands (see Table 1), their parameterization usually
has to be done externally. The results of the preparation
steps can be checked on-the-fly (e.g., ligand structure and
full solvation of extracellular loops). No additional software
(except the patch for the GROMACS code, which is available
for download11) is needed to extend the simulations locally.
This makes the method useful for people acquainted with
MD simulations and not necessarily familiar with every single
MM/CG preparation step.

The server could prospectively be used for setting up
MM/CG simulations of different ligands in complex with
the same hGPCR. Capitalizing on the limited computational
cost of the MM/CG approach, this could pave the way
for low-throughput virtual screening efforts. Furthermore,
comparative studies of hGPCRs in multiple states, e.g.,
active/inactive, can be accomplished by setting up several
simulations starting from different initial structures. Modeling
of allosteric effects is currently not possible, because of the
use of the Gō-like model for the part of the receptor pointing
toward the intracellular side. We also plan to integrate the
Amber-based MM/CG approach used by the webserver with
the recently developed open boundary MM/CG for grand
canonical simulations (Tarenzi et al., 2017, 2019), aiming
at calculating ligand binding free energies. Further planned
developments include the extension to other MD codes, the
implementation of the CHARMM36m force field (Huang
et al., 2017) for the MM/I regions, as well as the adaptation
of the scheme to other membrane protein families, such
as ion channels.

11 mmcg.grs.kfa-juelich.de/download/install
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