000884299 001__ 884299
000884299 005__ 20230815122838.0
000884299 0247_ $$2doi$$a10.1007/978-3-030-50420-5_5
000884299 0247_ $$2Handle$$a2128/25731
000884299 0247_ $$2WOS$$aWOS:000841756000005
000884299 037__ $$aFZJ-2020-03185
000884299 041__ $$aEnglish
000884299 1001_ $$0P:(DE-HGF)0$$aLiu, M.$$b0
000884299 1112_ $$aInternational Conference on Computational Science 2020$$cAmsterdam$$d2020-06-03 - 2020-06-05$$gICCS 2020$$wThe Netherlands
000884299 245__ $$aHigh-Resolution Source Estimation of Volcanic Sulfur Dioxide Emissions Using Large-Scale Transport Simulations
000884299 260__ $$aCham$$bSpringer$$c2020
000884299 29510 $$aComputational Science – ICCS 2020
000884299 300__ $$a60-73
000884299 3367_ $$2ORCID$$aCONFERENCE_PAPER
000884299 3367_ $$033$$2EndNote$$aConference Paper
000884299 3367_ $$2BibTeX$$aINPROCEEDINGS
000884299 3367_ $$2DRIVER$$aconferenceObject
000884299 3367_ $$2DataCite$$aOutput Types/Conference Paper
000884299 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1600946561_17524
000884299 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000884299 4900_ $$aLecture Notes in Computer Science$$v12139
000884299 520__ $$aHigh-resolution reconstruction of emission rates from different sources is essential to achieve accurate simulations of atmospheric transport processes. How to achieve real-time forecasts of atmospheric transport is still a great challenge, in particular due to the large computational demands of this problem. Considering a case study of volcanic sulfur dioxide emissions, the codes of the Lagrangian particle dispersion model MPTRAC and an inversion algorithm for emission rate estimation based on sequential importance resampling are deployed on the Tianhe-2 supercomputer. The high-throughput based parallel computing strategy shows excellent scalability and computational efficiency. Therefore, the spatial-temporal resolution of the emission reconstruction can be improved by increasing the parallel scale. In our study, the largest parallel scale is up to 1.446 million compute processes, which allows us to obtain emission rates with a resolution of 30 min in time and 100 m in altitude. By applying massive-parallel computing systems such as Tianhe-2, real-time source estimation and forecasts of atmospheric transport are becoming feasible.
000884299 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000884299 536__ $$0G:(GEPRIS)410579391$$aDFG project 410579391 - Transportwege für Aerosol und Spurengase im Asiatischen Monsun in der oberen Troposphäre und unteren Stratosphäre $$c410579391$$x1
000884299 7001_ $$0P:(DE-HGF)0$$aHuang, Y.$$b1
000884299 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000884299 7001_ $$0P:(DE-HGF)0$$aHuang, C.$$b3
000884299 7001_ $$0P:(DE-HGF)0$$aChen, P.$$b4
000884299 7001_ $$0P:(DE-HGF)0$$aHeng, Y.$$b5$$eCorresponding author
000884299 773__ $$a10.1007/978-3-030-50420-5_5
000884299 8564_ $$uhttps://juser.fz-juelich.de/record/884299/files/Liu2020_Chapter_High-ResolutionSourceEstimatio.pdf$$yOpenAccess
000884299 8564_ $$uhttps://juser.fz-juelich.de/record/884299/files/Liu2020_Chapter_High-ResolutionSourceEstimatio.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884299 909CO $$ooai:juser.fz-juelich.de:884299$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884299 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000884299 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000884299 9141_ $$y2020
000884299 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884299 920__ $$lyes
000884299 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000884299 980__ $$acontrib
000884299 980__ $$aVDB
000884299 980__ $$aUNRESTRICTED
000884299 980__ $$acontb
000884299 980__ $$aI:(DE-Juel1)JSC-20090406
000884299 9801_ $$aFullTexts