001     884299
005     20230815122838.0
024 7 _ |a 10.1007/978-3-030-50420-5_5
|2 doi
024 7 _ |a 2128/25731
|2 Handle
024 7 _ |a WOS:000841756000005
|2 WOS
037 _ _ |a FZJ-2020-03185
041 _ _ |a English
100 1 _ |a Liu, M.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a International Conference on Computational Science 2020
|g ICCS 2020
|c Amsterdam
|d 2020-06-03 - 2020-06-05
|w The Netherlands
245 _ _ |a High-Resolution Source Estimation of Volcanic Sulfur Dioxide Emissions Using Large-Scale Transport Simulations
260 _ _ |a Cham
|c 2020
|b Springer
295 1 0 |a Computational Science – ICCS 2020
300 _ _ |a 60-73
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1600946561_17524
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
490 0 _ |a Lecture Notes in Computer Science
|v 12139
520 _ _ |a High-resolution reconstruction of emission rates from different sources is essential to achieve accurate simulations of atmospheric transport processes. How to achieve real-time forecasts of atmospheric transport is still a great challenge, in particular due to the large computational demands of this problem. Considering a case study of volcanic sulfur dioxide emissions, the codes of the Lagrangian particle dispersion model MPTRAC and an inversion algorithm for emission rate estimation based on sequential importance resampling are deployed on the Tianhe-2 supercomputer. The high-throughput based parallel computing strategy shows excellent scalability and computational efficiency. Therefore, the spatial-temporal resolution of the emission reconstruction can be improved by increasing the parallel scale. In our study, the largest parallel scale is up to 1.446 million compute processes, which allows us to obtain emission rates with a resolution of 30 min in time and 100 m in altitude. By applying massive-parallel computing systems such as Tianhe-2, real-time source estimation and forecasts of atmospheric transport are becoming feasible.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|x 0
|f POF III
536 _ _ |a DFG project 410579391 - Transportwege für Aerosol und Spurengase im Asiatischen Monsun in der oberen Troposphäre und unteren Stratosphäre
|0 G:(GEPRIS)410579391
|c 410579391
|x 1
700 1 _ |a Huang, Y.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 2
700 1 _ |a Huang, C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Chen, P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Heng, Y.
|0 P:(DE-HGF)0
|b 5
|e Corresponding author
773 _ _ |a 10.1007/978-3-030-50420-5_5
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884299/files/Liu2020_Chapter_High-ResolutionSourceEstimatio.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884299/files/Liu2020_Chapter_High-ResolutionSourceEstimatio.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884299
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129125
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21