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Abstract. High-resolution reconstruction of emission rates fromdifferent sources
is essential to achieve accurate simulations of atmospheric transport processes.
How to achieve real-time forecasts of atmospheric transport is still a great chal-
lenge, in particular due to the large computational demands of this problem.
Considering a case study of volcanic sulfur dioxide emissions, the codes of the
Lagrangian particle dispersion model MPTRAC and an inversion algorithm for
emission rate estimation based on sequential importance resampling are deployed
on the Tianhe-2 supercomputer. The high-throughput based parallel computing
strategy shows excellent scalability and computational efficiency. Therefore, the
spatial-temporal resolution of the emission reconstruction can be improved by
increasing the parallel scale. In our study, the largest parallel scale is up to 1.446
million compute processes, which allows us to obtain emission rates with a res-
olution of 30 min in time and 100 m in altitude. By applying massive-parallel
computing systems such as Tianhe-2, real-time source estimation and forecasts of
atmospheric transport are becoming feasible.

Keywords: Source estimation · High-throughput computing · Transport
simulations · Volcanic emissions

1 Introduction

Model simulations and forecasts of volcanic aerosol transport are of great importance in
many fields, e.g., aviation safety [1], studies of global climate change [2, 3] and atmo-
spheric dynamics [4]. However, existing observation techniques, e.g., satellite measure-
ments, cannot provide detailed and complete spatial-temporal information due to their
own limitations. With appropriate initial conditions, numerical simulations can provide
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relatively complete and high-resolution information in time and space. Model predic-
tions can help to provide early warning information for air traffic control or input to
studies of complex global or regional atmospheric transport processes.

In order to achieve accurate atmospheric transport simulations, it is necessary to
first combine a series of numerical techniques with limited observational data to achieve
high-resolution estimates of the emission sources. These techniques include backward-
trajectory methods [5], empirical estimates [6] and inverse approaches. Among them,
the inverse approaches are universal and systematic in the identification of atmospheric
emission sources due to their mathematical rigor.

For instance, Stohl et al. [7] used an inversion scheme to estimate the volcanic ash
emissions related to the volcanic eruptions of Eyjafjallajökull in 2010 and Kelut in 2014.
They utilized Tikhonov regularization to deal with the ill-posedness of the inverse prob-
lem. Flemming and Inness [8] applied the Monitoring Atmospheric Composition and
Climate (MACC) system to estimate sulfur dioxide (SO2) emissions by Eyjafjallajökull
in 2010 and Grimsvötn in 2011, in which the resolution of the emission rates is about
2–3 km in altitude and more than 6 h in time. Due to limitations in computational power
and algorithms, the spatial-temporal resolution of the reconstructed source obtained in
previous studies is relatively low.

The main limitations of real-time atmospheric transport forecasts are the great com-
putational effort and data I/O issues. Some researchers tried to employ graphics process-
ing units to reduce the computational time and got impressive results [9–11]. Lagrangian
particle dispersionmodels are particularly well suited to distributed-memory paralleliza-
tion, as each trajectory is calculated independently of each other. To reduce the compu-
tational cost, Larson et al. [12] applied a shared- and distributed-memory parallelization
to a Lagrangian particle dispersion model and achieved nearly linear scaling in execu-
tion time with the distributed-memory version and a speed-up factor of about 1.4 with
the shared-memory version. In the study of Müller et al. [11], the parallelization of the
Lagrangian particle model was implemented in the OpenMP shared memory framework
and good strong scalability up to 12 cores was achieved.

In this work, we implement the Lagrangian particle dispersion model Massive-
Parallel Trajectory Calculations (MPTRAC) [5] on the Tianhe-2 supercomputer, along
with an inversemodeling algorithmbased on the concept of sequential importance resam-
pling [13] to estimate time- and altitude-dependent volcanic emission rates. In order to
realize large-scale SO2 transport simulations on a global scale, high-resolution emission
reconstructions and real-time forecasts, the implementation is based on state-of-the-art
techniques of supercomputing and big-data processing. The computing performance is
assessed in the form of strong and weak scalability tests. Good scalability and com-
putational efficiency of our codes make it possible to reconstruct emission rates with
unprecedented resolution both in time and altitude and enable real-time forecasts.

The remainder of this manuscript is organized as follows: Sect. 2 introduces the for-
ward model, the inverse modeling algorithm and the parallelization strategies. Section 3
presents the parallel performance of the forward and inverse code on the Tianhe-2 super-
computer. In Sect. 4, the results of the emission reconstruction and forward simulation
are presented for a case study. Discussions and conclusions are provided in Sect. 5.
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2 Data and Methods

2.1 Lagrangian Particle Dispersion Model

In this work, the forward simulations are conducted with the Lagrangian particle dis-
persion model MPTRAC, which has been successfully applied for volcanic eruption
cases of Grímsvötn, Puyehue-Cordón Caulle and Nabro [5]. Meteorological fields of
the ERA-Interim reanalysis [14] provided by the European Centre for Medium-Range
Weather Forecasts (ECMWF) are used as input data for the transport simulations. The
trajectory of an individual air parcel is calculated by

dx(t)
dt

= v(x(t), t), (1)

where x = (x, y, z) denotes the spatial position and v = (u, v,w) denotes the velocity of
the air parcel at time t.Here, x and y coordinates refer to latitude and longitudewhereas the
z coordinate refers to pressure. The horizontal wind components u and v and the vertical
velocity w = dp/dt are obtained by 4-D linear interpolation from the meteorology data,
which is common in Lagrangian particle dispersion models [15]. Small-scale diffusion
and subgrid-scale wind fluctuations are simulated based on a Markov model following
Stohl et al. [16].

In our previous work [17], truncation errors of different numerical integration
schemes of MPTRAC have been analyzed in order to obtain an optimal numerical solu-
tion strategy with accurate results and minimum computational cost. The accuracy of
the MPTRAC trajectory calculations has been analyzed in different studies, including
[18], which compared trajectory calculations to superpressure balloon tracks.

2.2 Evaluation of Goodness-of-Fit of Forward Simulation Results

Atmospheric InfraRed Sounder (AIRS) satellite observations are used to detect volcanic
SO2 based on a brightness temperature differences (BTD) algorithm [19]. To evaluate
the goodness-of-fit of the forward simulation results obtained by MPTRAC, the critical
success index (CSI) [20] is calculated by

CSI = Cx
/(

Cx + Cy + Cz
)
. (2)

Here, the number of positive forecasts with positive observations is Cx, the number of
negative forecasts with positive observations is Cy, and the number of positive forecasts
with negative observations is Cz. The CSI, representing the ratio of successful predicts
to the total number of predicts that were either made (Cx+ Cz) or needed (Cy), is com-
monly used for the assessment of the simulation results of volcanic eruptions and other
large-scale SO2 transport problems. Basically, it provides a measure of the overlap of a
simulated volcanic SO2 plume from the model with the real plume as found in the satel-
lite observations. CSI time series are calculated using the AIRS satellite observations
and MPTRAC simulation results mapped on a discrete grid, which are essential to the
inverse modeling algorithm presented in the next section.
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2.3 Inverse Source Estimation Algorithm

The strategy for the inverse estimation of time- and altitude-dependent emission rates
is shown in Fig. 1 and Algorithm 1. The time- and altitude-dependent emissions are
considered for the domain E := [

t0, tf
]×Ω , which is discretized with nt and nh uniform

intervals into N = nt · nh subdomains. For each subdomain, a forward calculation of a
set of air parcel trajectories is conducted with MPTRAC, which is referred to here as
‘unit simulation’ for a given time and altitude. Each unit simulation is assigned a certain
amount of SO2, where we assume that the total SO2 mass over all unit simulations
is known a-priori. During the inversion, a set of importance weights wi(i = 1, · · · ,N ),
which satisfy

∑N
i=1 wi = 1, are estimated to represent the relative posterior probabilities

of the occurrence of SO2 emission mass.
At first, the subdomains are populated with SO2 emissions (air parcels) according

to an equal-probability strategy. N parallel unit simulations with a certain amount of air
parcels are performed in an iterative process and the corresponding time series

(
CSIik

)

with k = 1, · · · , nk at different times tk and i = 1, · · · ,N are calculated to evaluate
the agreement of the simulations with the satellite observations. Then, the importance
weights are updated according to the following formulas:

wi = mi

/
N∑

a=1

ma, (3)

mi =
( nk∑

1

CSIik

)/

nk . (4)

During the iteration, themi represents the probability of emitted source air parcels that fall
in the ith temporal and spatial subdomain. Finally, after the termination criterion is satis-
fied, the emission source is obtained based on the final importance weight distribution.
To define the stopping criterion, we calculate the relative difference d by

d
(
Wr+1,Wr

)
=

∥∥Wr+1 − Wr
∥∥

max
(∥∥Wr+1

∥∥, ‖Wr‖) , r ≥ 1, (5)

where r denotes the iterative step and the norm is defined by

∥∥Wr
∥∥ =

√√√√
N∑

i=1

∣∣wr
i

∣∣2,Wr=(
wr
i

)
i=1···N . (6)

As a stopping criterion, threshold of the relative difference d is chosen to be 1%.
In practice, in order to deal with the complexity of the SO2 air parcel transport, a

so-called “product rule” is utilized in the resampling process, in which the average CSI
time series is replaced by the product of two average CSI time series in subsequent and
separate time periods:

mi =
⎛

⎝
n′
k∑

k=1

CSIik

/

n′
k

⎞

⎠ ·
⎛

⎝
nk∑

k=n′
k+1

CSIik

/
(
nk − n′

k

)
⎞

⎠, 1 ≤ n′
k < nk , (7)
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where n′
k is a “split point” of the time series. This strategy can better eliminate some low-

probability local emissions when reconstructing source terms, thus leading to accurate
final forward simulation results locally and globally. A detailed description of the inverse
algorithm and the improvements due to applying the product rule can be found in [21].

Fig. 1. Flow chart of the inverse modeling strategy
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2.4 Parallel Implementation

The Tianhe-2 supercomputer at the National Supercomputing Center of Guangzhou
(NSCC-GZ) consists of 16000 compute nodes, with each node containing two 12-core
Intel Xeon E5-2692 CPUs with 64 GB memory [22]. The advanced computing perfor-
mance and massive computing resources of Tianhe-2 provide the possibility to conduct
more complexmathematical research and simulations onmuch larger scales than before.
Based on off-line simulations in previous work, we expect that Tianhe-2 will facili-
tate applications of real-time forecasts for larger-scale problems. The computational
efficiency of the high-precision inverse reconstruction of emission source will directly
determine whether the atmospheric SO2 transport process can be predicted in real time.

To our best knowledge, few studies focus on both, direct inverse source estimation
and forecasts, at near-real-time. Fu et al. [23] conducted a near-real-time prediction study
on volcanic eruptions based on the LOTOS-EUROSmodel and an ensemble Kalman fil-
ter. Santos et al. [10] developed aGPU-based code to process the calculations in near real
time. In this work, we attempt to further develop the parallel inverse algorithm for recon-
struction of volcanic SO2 emission rates based on sequential importance resampling
methods, utilizing the computational power of the Tianhe-2 supercomputer to achieve
large-scale SO2 transport simulations and real-time or near-real-time predictions.

The parallelization of MPTRAC and the inverse algorithm is realized by means of a
hybrid schemebasedon theMessagePassing Interface (MPI) andOpenMulti-Processing
(OpenMP). Since each trajectory can be computed independently, the ensembles of unit
simulations are distributed to different compute nodes using theMPI distributedmemory
parallelization. On a particular compute node, the trajectory calculations of the individ-
ual unit simulations are distributed using the OpenMP shared memory parallelization.
Theoretically, the calculation time will decrease near linearly with an increasing num-
ber of compute processes. Therefore, sufficient computational performance can greatly
reduce the computational costs and enable simulations of hundreds of millions of air
parcels on the supercomputer system.

The implementation of the inverse algorithm is designed based on a high-throughput
computing strategy. At each iterative step, the time- and altitude-dependent domain
E := [

t0, tf
] × Ω is discretized with nt and nh uniform intervals N = nt · nh, which

leads to N = nt · nh unit simulations that are calculated in parallel as shown in Fig. 1.
Theoretically, the high-throughput parallel computing strategy can greatly improve the
resolution of the inversion in time and altitude through increasing the value ofN. Only lit-
tle communication overhead is needed to distribute the tasks and gather the results. With
more computing resources, it is possible to operate on more detailed spatial-temporal
grids and to obtain more accurate results. In this work, we have achieved a resolution of
30 min in time and 100 m in altitude for the first time with our modeling system.

In summary, the goal of this work is to develop an inverse modeling system using
parallel computing on a scale of millions of cores, including high-throughput submis-
sion, monitoring, error tolerance management and analysis of results. A multi-level task
scheduling strategy has been employed, i.e., the computational performance of each
sub-task was analyzed to maximize load balancing. During the calculation, every task
is monitored by a daemon with an error tolerance mechanism being established to avoid
accidental interruptions and invalid calculations.
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3 Parallel Performance Analysis

In this section, we evaluate the model parallel performance on the Tianhe-2 supercom-
puter based on the single-node performance of MPTRAC for the unit simulations and
the multi-node performance of the sequential importance resampling algorithm.

Since our parallel strategy is based on high-throughput computing to avoid commu-
nication across the compute nodes, the single-node computing performance is essential
in determining the global computing efficiency. To test the single-node computing per-
formance, we employ the Paratune Application Runtime Characterization Analyzer to
measure the floating-point speed. An ensemble of 100 million air parcels was simulated
on a single node and the gigaflops per second (Gflops) turned out to be 13.16. The strong
scalability test on a single node is conducted by simulating an ensemble of 1 million air
parcels. The results on strong scaling are listed in Table 1 and the results on weak scaling
are listed in Table 2. Referred to a single process calculation, the strong and weak scaling
efficiency using 16 computing processes reach 84.25% and 85.63%, respectively.

Table 1. Strong scaling of a single-node MPTRAC simulation

Problem size Number of
processes Nprocess

Clock time/s Strong speed-up
ratio Rs

Efficiency
(Rs/Nprocess)

1 million parcels 1 1496 1x 100%

4 399 3.75x 93.75%

16 111 13.48x 84.25%

Table 2. Weak scaling of a single-node MPTRAC simulation

Problem size Number of
processes Nprocess

Clock time/s Weak speed-up
ratio Rw

Efficiency
(Rw/Nprocess)

1 million parcels 1 1496 1x 100%

4 million parcels 4 1597 3.75x 93.75%

16 million parcels 16 1753 13.7x 85.63%

Since the ensemble simulations with MPTRAC covering multiple unit simulations
are conducted independently on each node, the scaling efficiency of the MPI paral-
lelization is mostly limited by I/O issues rather than communication or computation.
Nevertheless, we tested the strong and weak scalability of the high-throughput based
inverse calculation process, with a maximum computing scale of up to 38400 comput-
ing processes. The results are shown in Tables 3 and 4. The scaling is nearly linear with
respect to the number of compute nodes. Especially for weak scaling, the efficiency is
close to ideal conditions, except for little extra costs related to the calculation of the CSI
and I/O issues.
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Table 3. Strong scaling of the multi-node inverse algorithm (Each unit simulation cover 1 million
air parcels. The same goes for Table 4)

Problem size Number of processes
Nprocess

Clock time/s Strong speed-up
ratio Rs

Efficiency
(Rs/Nprocess)

1600 unit
simulations

2400 16775 1x 100%

9600 4452 3.77x 94.25%

38400 1138 14.74x 92.13%

Table 4. Weak scaling of multi-node inverse algorithm

Problem size Number of processes
Nprocess

Clock time/s Weak speed-up
ratio Rw

Efficiency
(Rw/Nprocess)

100 unit
simulations

2400 1123 1x 100%

400 unit
simulations

9600 1132 3.97x 99.25%

1600 unit
simulations

38400 1138 15.79x 98.69%

In summary, the high-throughput based hybrid MPI/OpenMP parallel strategy of
MPTRAC and the inverse algorithm show good strong and excellent weak scalability on
the Tianhe-2 supercomputer. That means the inverse modeling system has high potential
in massive parallel applications, meeting the requirements of real-time forecasts. How-
ever, the forward calculation still has some potential for optimization. In future work, we
will investigate the possibility of cross-node computing with MPTRAC and try to fur-
ther improve the single-node computing performance by using hyper threading. Besides,
some further improvements may also be possible for the multi-node parallelization, in
particular for the I/O issues and the efficiency of temporary file storage.

4 Case Study of the Nabro Volcanic Eruption

Following Heng et al. [21], we choose an eruption of the Nabro volcano, Eritrea, as
a case study to test the inverse modeling system on the Tianhe-2 supercomputer. The
Nabro volcano erupted at about 20:30 UTC on 12 June 2011, causing a release of about
1.5 × 109 kg of volcanic SO2 into the troposphere and lower stratosphere. The volcanic
activity lasted over 5 days with varying plume altitudes. The simulation results obtained
for theNabro volcanic eruption are of particular interest for studies of theAsianmonsoon
circulation [4, 24].
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4.1 Reconstructed Emission Results with Different Resolutions

In general, with increasing resolution of the initial emissions, the forward simulation
results are expected to become more accurate, but the calculation cost will also be
much larger. In this work, the resolution of the volcanic SO2 emission rates has been
raised to 30 min of time and 100 m of altitude for the first time. The largest computing
scale employs 60250 compute nodes on Tianhe-2 simultaneously. Each node calculated
the kinematic trajectories of 1 million air parcels using a total of 24 cores. On such
a computing scale, the inverse reconstruction and final forward simulation take about
22 min and require about 530,000 core hours in total.

Based on the inverse algorithm and parallel strategy described in Sects. 2 and 3, the
SO2 emission rates are reconstructed at different temporal and spatial resolutions, as
shown in Fig. 2. The resolutions are (a) 6 h of time, 2.5 km of altitude, (b) 3 h of time,
1 km of altitude, (c) 1 h of time, 250 m of altitude, and (d) 30 min of time, 100 m of
altitude. More fine structures in the emission rates become visible at higher resolution
in Figs. 2a to 2c. However, the overall result in Fig. 2d at the highest resolution appears
to be unstable with oscillations occurring between 12 to 16 km of altitude. The reason
of this is not clear and will require further study, e.g., in terms of regularization of the
inverse problem. For the time being, we employ the results in the Fig. 2c for the final
forward simulation.

Compared with our previous work performed on the JuRoPA supercomputer at the
Jülich Supercomputing Centre [21], the simulation results of this work performed on
Tianhe-2 are rather similar. The reconstructed emissions show that theNabro volcano had
three strong eruptions on June 13, 14 and 16. For validation, Table 5 compares altitude
and time of the major eruptions obtained with observations from different satellite sen-
sors, which shows that the emission data constructed by the inverse modeling approach
qualitatively agree with the measurements. Here, we also refer to the time series of the
2011 Nabro eruption based on Meteosat Visible and InfraRed Imager (MVIRI) infrared
imagery (IR) and water-vapor (WV) measurements, which were used as validation data
sets in [21] as shown in Fig. 3.

Table 5. Major eruption altitudes of the Nabro volcano on different days

June 13 June 14 June 16

CALIOP and MIPAS data 19 km 9–13 km –

Fromm et al. (2013) [25] 15–19 km – –

Fromm et al. (2014) [26] – – 17.4 km

Result from this work 15–17 km 9–13 km 17 km
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(a) Simulation on 210 compute nodes (5040 processes)

(b) Simulation on 1025 compute nodes (24600 processes)

(c) Simulation on 12100 compute nodes (290,400 processes)

(d) Simulation on 60250 compute nodes (1,446,000 processes)

Fig. 2. Reconstructed volcanic SO2 emission rates of the Nabro eruption in June 2011. The x-
axis refers to time, the y-axis refers to altitude (km), and the color bar refers to the emission rate
(kg m−1 s−1). (Color figure online)
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Fig. 3. Time line of the 2011 Nabro eruption based on MVIRI IR and WV measurements. Here
white is none, light blue is low level, blue is medium level, dark blue is high level [21] (Color
figure online)

4.2 Final Forward Simulation Results

Based on the reconstructed emission data with 1 h in time and 250 m in altitude res-
olution, the final simulation applying the product rule was conducted on the Tianhe-2
supercomputer for further evaluation. Figure 5 illustrates the simulated SO2 transport,
providing information on both, altitude and concentration, which are comparable to the
AIRS observation maps shown in Fig. 4, suggesting the results are stable and accurate.

Fig. 4. The AIRS satellite observations on 14, 16, 18, 20 June 2011, 06:00 UTC (SO2 index is
a function of column density obtained from radiative transfer calculations. Here we refer to [19]
for more detailed description of detection of volcanic emissions based on brightness temperature
differences (BTDs) technique.)
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(a) Simulation results for 14 June: air parcels altitude distribution (left), SO2 vertical col-
umn density (right).

(b) Same as (a), but for 16 June.

(c) Same as (a), but for 18 June.

(d) Same as (a), but for 20 June.

Fig. 5. Final forward simulation results of volcanic SO2 released by the Nabro eruption. The
black square indicates the location of the Nabro volcano.

5 Conclusions and Outlook

The high-resolution reconstruction of source information is critical to obtain precise
atmospheric aerosol and trace gas transport simulations. The work we present in this
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paper has potential applications for studying the effects of large-scale industrial emis-
sions, nuclear leaks and other pollutions of the atmosphere and environment. The com-
putational costs and efficiency of the inverse model will directly determine whether the
atmospheric pollutant transport process can be predicted in real time or near real time.
For this purpose, we implemented and assessed a high-throughput based inverse algo-
rithm using the MPTRAC model on the Tianhe-2 supercomputer. The good scalability
demonstrates that the algorithm is well suited for large-scale parallel computing. In
our case study, the computational costs for the inverse reconstruction and final forward
simulation at unprecedented resolution satisfy the requirements of real-time forecasts.

In the future work, we will study further improvements of the computational effi-
ciency, e.g., multi-node parallel usage of MPTRAC, mitigation of remaining I/O issues,
post-processing overhead, efficient storage of temporary files, etc. Also, some stability
problems at the highest resolution problems need to be addressed, e.g., by means of
regularization techniques. Nevertheless, we think that the inverse modeling system in
its present form is ready to be tested in further applications.

Acknowledgements. The corresponding author Yi Heng acknowledges support provided by the
“Young overseas high-level talents introduction plan” funding of China, Zhujiang Talent Program
of Guangdong Province (No.2017GC010576) and the Natural Science Foundation of Guangdong
(China) under grant no. 2018A030313288. Chunyan Huang is supported by the National Natural
Science Foundation of China (No. 11971503), the Young Talents Program (No. QYP1809) and the
disciplinary funding of Central University of Finance and Economics. Pin Chen is supported by
the Key-Area Research and Development Program of Guangdong Province (2019B010940001).
Part of this work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – Projektnummer 410579391.

References

1. Brenot, H., Theys, N., Clarisse, L., et al.: Support to Aviation Control Service (SACS): an
online service for near-real-time satellite monitoring of volcanic plumes. Nat. Hazards Earth
Syst. Sci. 14(5), 1099–1123 (2014)

2. Sigl, M., Winstrup, M., McConnell, J.R., et al.: Timing and climate forcing of volcanic
eruptions for the past 2,500 years. Nature 523(7562), 543–549 (2015)

3. Solomon, S., Daniel, J.S., Neely, R.R., et al.: The persistently variable “background”
stratospheric aerosol layer and global climate change. Science 333(6044), 866–870 (2011)

4. Bourassa,A.E.,Robock,A.,Randel,W.J., et al.: Large volcanic aerosol load in the stratosphere
linked to Asian monsoon transport. Science 337(6090), 78–81 (2012)

5. Hoffmann, L., Rößler, T., Griessbach, S., et al.: Lagrangian transport simulations of volcanic
sulfur dioxide emissions: impact of meteorological data products. J. Geophys. Res.-Atmos.
121(9), 4651–4673 (2016)

6. Lacasse, C., Karlsdottir, S., Larsen, G., et al.: Weather radar observations of the Hekla 2000
eruption cloud, Iceland. Bull. Volcanol. 66(5), 457–473 (2004). https://doi.org/10.1007/s00
445-003-0329-3

7. Stohl, A., Prata, A.J., Eckhardt, S., et al.: Determination of time- and height-resolved volcanic
ash emissions and their use for quantitative ash dispersionmodeling: the 2010 Eyjafjallajokull
eruption. Atmos. Chem. Phys. 11(9), 4333–4351 (2011)

https://doi.org/10.1007/s00445-003-0329-3


High-Resolution Source Estimation of Volcanic Sulfur Dioxide Emissions 73

8. Flemming, J., Inness, A.: Volcanic sulfur dioxide plume forecasts based on UV satellite
retrievals for the 2011 Grimsvotn and the 2010 Eyjafjallajokull eruption. J. Geophys. Res.-
Atmos. 118(17), 10172–10189 (2013)

9. Molnar, F., Szakaly, T., Meszaros, R., et al.: Air pollution modelling using a Graphics
Processing Unit with CUDA. Comput. Phys. Commun. 181(1), 105–112 (2010)

10. Santos,M.C., Pinheiro, A., Schirru, R., et al.: GPU-based implementation of a real-timemodel
for atmospheric dispersion of radionuclides. Prog. Nucl. Energy 110, 245–259 (2019)

11. Müller, E.H., Ford, R., Hort, M.C., et al.: Parallelisation of the Lagrangian atmospheric
dispersion model NAME. Comput. Phys. Commun. 184(12), 2734–2745 (2013)

12. Larson, D.J., Nasstrom, J.S.: Shared- and distributed-memory parallelization of a Lagrangian
atmospheric dispersion model. Atmos. Environ. 36(9), 1559–1564 (2002)

13. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian
Bayesian state estimation. IEE Proc. F (Radar Signal Process.) 140(2), 107–113 (1993)

14. Dee, D.P., Uppala, S.M., Simmons, A.J., et al.: The ERA-Interim reanalysis: configuration
and performance of the data assimilation system.Q. J. Roy.Meteorol. Soc. 137(656), 553–597
(2011)

15. Bowman, K.P., Lin, J.C., Stohl, A., et al.: Input data requirements for Lagrangian trajectory
models. Bull. Am. Meteorol. Soc. 94(7), 1051–1058 (2013)

16. Stohl, A., Forster, C., Frank, A., et al.: Technical note: the Lagrangian particle dispersion
model FLEXPART version 6.2. Atmos. Chem. Phys. 5, 2461–2474 (2005)

17. Rößler, T., Stein, O., Heng, Y., et al.: Trajectory errors of different numerical integration
schemes diagnosed with the MPTRAC advection module driven by ECMWF operational
analyses. Geosci. Model Dev. 11(2), 575–592 (2018)

18. Hoffmann, L., Hertzog, A., Rößler, T., et al.: Intercomparison of meteorological analyses
and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon
observations. Atmos. Chem. Phys. 17, 8045–8061 (2017)

19. Hoffmann, L., Griessbach, S., Meyer, C.I.: Volcanic emissions from AIRS observations:
detection methods, case study, and statistical analysis. In: Proceedings of SPIE, vol. 9242
(2014)

20. Schaefer, J.: The critical success index as an indicator of warning skill. Weather Forecast. 5,
570–575 (1990)

21. Heng, Y., Hoffmann, L., Griessbach, S., et al.: Inverse transport modeling of volcanic sulfur
dioxide emissions using large-scale simulations. Geosci. Model Dev. 9(4), 1627–1645 (2016)

22. Che, Y., Yang, M., Xu, C., et al.: Petascale scramjet combustion simulation on the Tianhe-2
heterogeneous supercomputer. Parallel Comput. 77, 101–117 (2018)

23. Fu, G.L., Lin, H.X., Heemink, A., et al.: Accelerating volcanic ash data assimilation using
a mask-state algorithm based on an ensemble Kalman filter: a case study with the LOTOS-
EUROS model (version 1.10). Geosci. Model Dev. 10(4), 1751–1766 (2017)

24. Wu, X., Griessbach, S., Hoffmann, L.: Equatorward dispersion of a high-latitude volcanic
lume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in
2009. Atmos. Chem. Phys. 17(21), 13439–13455 (2017)

25. Fromm, M., Nedoluha, G., Charvat, Z.: Comment on “large volcanic aerosol load in the
stratosphere linked to Asian monsoon transport”. Science 339(6120), 647 (2013)

26. Fromm, M., Kablick, G., Nedoluha, G., et al.: Correcting the record of volcanic stratospheric
aerosol impact: Nabro and Sarychev Peak. J. Geophys. Res.-Atmos. 119(17), 10343–10364
(2014)


	High-Resolution Source Estimation of Volcanic Sulfur Dioxide Emissions Using Large-Scale Transport Simulations
	1 Introduction
	2 Data and Methods
	2.1 Lagrangian Particle Dispersion Model
	2.2 Evaluation of Goodness-of-Fit of Forward Simulation Results
	2.3 Inverse Source Estimation Algorithm
	2.4 Parallel Implementation

	3 Parallel Performance Analysis
	4 Case Study of the Nabro Volcanic Eruption
	4.1 Reconstructed Emission Results with Different Resolutions
	4.2 Final Forward Simulation Results

	5 Conclusions and Outlook
	References




