001     884301
005     20240712084526.0
024 7 _ |a 10.1002/admt.202000592
|2 doi
024 7 _ |a 2128/26699
|2 Handle
024 7 _ |a altmetric:95709742
|2 altmetric
024 7 _ |a WOS:000588665700001
|2 WOS
037 _ _ |a FZJ-2020-03187
082 _ _ |a 600
100 1 _ |a Lee, Minoh
|0 P:(DE-Juel1)173834
|b 0
|e Corresponding author
245 _ _ |a Bifunctional CoFeVO$_x$ Catalyst for Solar Water Splitting by using Multijunction and Heterojunction Silicon Solar Cells
260 _ _ |a Weinheim
|c 2020
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1610278596_17468
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Photovoltaic driven electrochemical (PV-EC) water splitting technology is considered as one of the solutions for an environmental-friendly hydrogen supply. In a PV-EC system, efficient catalysts are required to increase the rate of both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Here, we present the development of a CoFeVO$_x$ bifunctional catalyst produced by a simple electrodeposition method. We have found that after the water splitting reaction vanadium is almost completely depleted in the mixture of elements for OER while its concentration at the HER catalyst is similar or even higher after the reaction. For the OER catalyst the depletion of vanadium might lead to the formation of pores, which could be correlated with the activity enhancement. The developed catalyst is integrated into PV-EC devices, coupled with different types of silicon PV. An average solar to hydrogen efficiency of 13.3 % (9.6 cm$^2$ PV aperture area) is achieved with a shingled module consisting of three laterally series connected silicon heterojunction solar cells.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
700 1 _ |a Ding, Xinyu
|0 P:(DE-Juel1)177795
|b 1
700 1 _ |a BANERJEE, SWARNENDU
|0 P:(DE-Juel1)179584
|b 2
700 1 _ |a Krause, Florian
|0 P:(DE-Juel1)178709
|b 3
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 4
|u fzj
700 1 _ |a Astakhov, Oleksandr
|0 P:(DE-Juel1)130212
|b 5
|u fzj
700 1 _ |a Merdzhanova, Tsvetelina
|0 P:(DE-Juel1)130268
|b 6
|u fzj
700 1 _ |a Klingebiel, Benjamin
|0 P:(DE-Juel1)159235
|b 7
|u fzj
700 1 _ |a Kirchartz, Thomas
|0 P:(DE-Juel1)159457
|b 8
|u fzj
700 1 _ |a Finger, Friedhelm
|0 P:(DE-Juel1)130238
|b 9
|u fzj
700 1 _ |a Rau, Uwe
|0 P:(DE-Juel1)143905
|b 10
|u fzj
700 1 _ |a Haas, Stefan
|0 P:(DE-Juel1)130246
|b 11
|u fzj
773 _ _ |a 10.1002/admt.202000592
|0 PERI:(DE-600)2850995-X
|n 12
|p 2000592
|t Advanced materials technologies
|v 5
|y 2020
|x 2365-709X
856 4 _ |u https://juser.fz-juelich.de/record/884301/files/Supporting%20Information.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884301/files/Journal%20version.pdf
909 C O |o oai:juser.fz-juelich.de:884301
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)173834
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130212
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)130268
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)159235
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)159457
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130238
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)143905
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)130246
913 1 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
|d 2020-02-26
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV MATER TECHNOL-US : 2018
|d 2020-02-26
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV MATER TECHNOL-US : 2018
|d 2020-02-26
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21