000884302 001__ 884302
000884302 005__ 20220930130252.0
000884302 0247_ $$2doi$$a10.1002/adfm.202004118
000884302 0247_ $$2ISSN$$a1057-9257
000884302 0247_ $$2ISSN$$a1099-0712
000884302 0247_ $$2ISSN$$a1616-301X
000884302 0247_ $$2ISSN$$a1616-3028
000884302 0247_ $$2Handle$$a2128/26313
000884302 0247_ $$2WOS$$aWOS:000569775200001
000884302 037__ $$aFZJ-2020-03188
000884302 082__ $$a530
000884302 1001_ $$0P:(DE-Juel1)169605$$aHeisig, Thomas$$b0$$eCorresponding author
000884302 245__ $$aAntiphase Boundaries Constitute Fast Cation Diffusion Paths in SrTiO 3 Memristive Devices
000884302 260__ $$aWeinheim$$bWiley-VCH$$c2020
000884302 3367_ $$2DRIVER$$aarticle
000884302 3367_ $$2DataCite$$aOutput Types/Journal article
000884302 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606573519_2106
000884302 3367_ $$2BibTeX$$aARTICLE
000884302 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884302 3367_ $$00$$2EndNote$$aJournal Article
000884302 520__ $$aResistive switching in transition metal oxide‐based metal‐insulator‐metal structures relies on the reversible drift of ions under an applied electric field on the nanoscale. In such structures, the formation of conductive filaments is believed to be induced by the electric‐field driven migration of oxygen anions, while the cation sublattice is often considered to be inactive. This simple mechanistic picture of the switching process is incomplete as both oxygen anions and metal cations have been previously identified as mobile species under device operation. Here, spectromicroscopic techniques combined with atomistic simulations to elucidate the diffusion and drift processes that take place in the resistive switching model material SrTiO3 are used. It is demonstrated that the conductive filament in epitaxial SrTiO3 devices is not homogenous but exhibits a complex microstructure. Specifically, the filament consists of a conductive Ti3+‐rich region and insulating Sr‐rich islands. Transmission electron microscopy shows that the Sr‐rich islands emerge above Ruddlesden–Popper type antiphase boundaries. The role of these extended defects is clarified by molecular static and molecular dynamic simulations, which reveal that the Ruddlesden–Popper antiphase boundaries constitute diffusion fast‐paths for Sr cations in the perovskites structure.
000884302 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000884302 588__ $$aDataset connected to CrossRef
000884302 7001_ $$0P:(DE-HGF)0$$aKler, Joe$$b1
000884302 7001_ $$0P:(DE-Juel1)145710$$aDu, Hongchu$$b2
000884302 7001_ $$0P:(DE-HGF)0$$aBaeumer, Christoph$$b3
000884302 7001_ $$0P:(DE-Juel1)165926$$aHensling, Felix$$b4
000884302 7001_ $$0P:(DE-Juel1)172893$$aGlöß, Maria$$b5
000884302 7001_ $$0P:(DE-Juel1)145323$$aMoors, Marco$$b6
000884302 7001_ $$0P:(DE-HGF)0$$aLocatelli, Andrea$$b7
000884302 7001_ $$0P:(DE-HGF)0$$aMenteş, Tevfik Onur$$b8
000884302 7001_ $$0P:(DE-HGF)0$$aGenuzio, Francesca$$b9
000884302 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b10
000884302 7001_ $$0P:(DE-HGF)0$$aDe Souza, Roger A.$$b11
000884302 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b12
000884302 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202004118$$gp. 2004118 -$$n48$$p2004118$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000884302 8564_ $$uhttps://juser.fz-juelich.de/record/884302/files/adfm.202004118.pdf$$yOpenAccess
000884302 8767_ $$92020-08-28$$d2020-09-19$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000884302 909CO $$ooai:juser.fz-juelich.de:884302$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169605$$aForschungszentrum Jülich$$b0$$kFZJ
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145710$$aForschungszentrum Jülich$$b2$$kFZJ
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165926$$aForschungszentrum Jülich$$b4$$kFZJ
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172893$$aForschungszentrum Jülich$$b5$$kFZJ
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b10$$kFZJ
000884302 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b12$$kFZJ
000884302 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000884302 9141_ $$y2020
000884302 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000884302 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000884302 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884302 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884302 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884302 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884302 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000884302 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000884302 9201_ $$0I:(DE-Juel1)ER-C-2-20170209$$kER-C-2$$lMaterialwissenschaft u. Werkstofftechnik$$x2
000884302 980__ $$ajournal
000884302 980__ $$aVDB
000884302 980__ $$aUNRESTRICTED
000884302 980__ $$aI:(DE-Juel1)PGI-7-20110106
000884302 980__ $$aI:(DE-82)080009_20140620
000884302 980__ $$aI:(DE-Juel1)ER-C-2-20170209
000884302 980__ $$aAPC
000884302 9801_ $$aAPC
000884302 9801_ $$aFullTexts