| Hauptseite > Publikationsdatenbank > Discovery of Real‐Space Topological Ferroelectricity in Metallic Transition Metal Phosphides > print |
| 001 | 884303 | ||
| 005 | 20220930130252.0 | ||
| 024 | 7 | _ | |a 10.1002/adma.202003479 |2 doi |
| 024 | 7 | _ | |a 2128/26331 |2 Handle |
| 024 | 7 | _ | |a altmetric:91980808 |2 altmetric |
| 024 | 7 | _ | |a pmid:33029890 |2 pmid |
| 024 | 7 | _ | |a WOS:000575804200001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-03189 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 660 |
| 100 | 1 | _ | |a Wei, Xian‐Kui |0 P:(DE-Juel1)145420 |b 0 |e Corresponding author |
| 245 | _ | _ | |a Discovery of Real‐Space Topological Ferroelectricity in Metallic Transition Metal Phosphides |
| 260 | _ | _ | |a Weinheim |c 2020 |b Wiley-VCH |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1607263668_14040 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Ferroelectric metals—with coexisting ferroelectricity and structural asymmetry—challenge traditional perceptions because free electrons screen electrostatic forces between ions, the driving force of breaking the spatial inversion symmetry. Despite ferroelectric metals having been unveiled one after another, topologically switchable polar objects with metallicity have never been identified so far. Here, the discovery of real‐space topological ferroelectricity in metallic and non‐centrosymmetric Ni2P is reported. Protected by the rotation–inversion symmetry operation, it is found that the balanced polarity of alternately stacked polyhedra couples intimately with elemental valence states, which are verified using quantitative electron energy‐loss spectroscopy. First‐principles calculations reveal that an applied in‐plane compressive strain creates a tunable bilinear double‐well potential and reverses the polyhedral polarity on a unit‐cell scale. The dual roles of nickel cations, including polar displacement inside polyhedral cages and a 3D bonding network, facilitate the coexistence of topological polarity with metallicity. In addition, the switchable in‐plane polyhedral polarity gives rise to a spin–orbit‐coupling‐induced spin texture with large momentum‐dependent spin splitting. These findings point out a new direction for exploring valence–polarity–spin correlative interactions via topological ferroelectricity in metallic systems with structural asymmetry. |
| 536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
| 536 | _ | _ | |a CritCat - Towards Replacement of Critical Catalyst Materials by Improved Nanoparticle Control and Rational Design (686053) |0 G:(EU-Grant)686053 |c 686053 |f H2020-NMP-2015-two-stage |x 1 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Bihlmayer, Gustav |0 P:(DE-Juel1)130545 |b 1 |u fzj |
| 700 | 1 | _ | |a Zhou, Xiaodong |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Feng, Wanxiang |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Kolen'ko, Yury V. |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Xiong, Dehua |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Liu, Lifeng |0 P:(DE-HGF)0 |b 6 |
| 700 | 1 | _ | |a Blügel, Stefan |0 P:(DE-Juel1)130548 |b 7 |u fzj |
| 700 | 1 | _ | |a Dunin‐Borkowski, Rafal E. |0 P:(DE-HGF)0 |b 8 |
| 773 | _ | _ | |a 10.1002/adma.202003479 |g p. 2003479 - |0 PERI:(DE-600)1474949-x |n 6 |p 2003479 |t Advanced materials |v 32 |y 2020 |x 0935-9648 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/884303/files/adma.202003479-1.pdf |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:884303 |p openaire |p open_access |p OpenAPC_DEAL |p driver |p VDB |p ec_fundedresources |p openCost |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)145420 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)130545 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)130548 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-HGF)0 |
| 913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |d 2020-02-26 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-02-26 |
| 915 | _ | _ | |a DEAL Wiley |0 StatID:(DE-HGF)3001 |2 StatID |d 2020-02-26 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-02-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-02-26 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-02-26 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b ADV MATER : 2018 |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-02-26 |
| 915 | _ | _ | |a IF >= 25 |0 StatID:(DE-HGF)9925 |2 StatID |b ADV MATER : 2018 |d 2020-02-26 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-02-26 |
| 915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |d 2020-02-26 |w ger |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-02-26 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)ER-C-2-20170209 |k ER-C-2 |l Materialwissenschaft u. Werkstofftechnik |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)ER-C-2-20170209 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
| 980 | _ | _ | |a APC |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a APC |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|