001     884306
005     20210130005906.0
024 7 _ |a 10.1016/j.geoderma.2020.114336
|2 doi
024 7 _ |a 0016-7061
|2 ISSN
024 7 _ |a 1872-6259
|2 ISSN
024 7 _ |a 2128/25760
|2 Handle
024 7 _ |a WOS:000528270900011
|2 WOS
037 _ _ |a FZJ-2020-03192
082 _ _ |a 910
100 1 _ |a Sun, Yajie
|0 P:(DE-Juel1)168265
|b 0
|e Corresponding author
245 _ _ |a Non-critical uranium accumulation in soils of German and Danish long-term fertilizer experiments
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601037061_14614
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Phosphorus (P) fertilizers vary considerably in contents of uranium (U), thus raising concerns regarding U accumulation in agricultural soils. We examined U concentrations in soil from three long-term field experiments with different P fertilizer applications: Rengen (P fertilizer from basic slag, grassland, Germany), Thyrow (P fertilizer from igneous phosphate rocks, arable land, Germany) and Askov (P fertilizer from igneous phosphate rocks, arable land, Denmark). Accumulation rates were low for Rengen (1.3 µg U kg−1 yr−1) and Thyrow (0.6 µg U kg−1 yr−1) in P-treated plots compared with plots without P fertilization. These accumulation rates were ten times lower than those previously reported (mean 17 µg U kg−1 yr−1). Intriguingly, concentrations of acid-extractable U in the Askov topsoil increased from 1923 to 2016, regardless of whether P was added (5.1 µg kg−1 yr−1) or not (4.7 µg kg−1 yr−1). This suggests that at least part of the accumulated U originated from other sources than P fertilizers. Total U concentrations were significantly larger in the period 1985–2016 than in the period 1938–1976 in Askov soil treated with NPK but not in soils without P fertilization. Hence, long-term P fertilizer application did increase the soil U concentrations at Askov, although at a low level.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wu, Bei
|0 P:(DE-Juel1)138881
|b 1
700 1 _ |a Amelung, W.
|0 P:(DE-Juel1)129427
|b 2
700 1 _ |a Christensen, B. T.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Pätzold, S.
|0 P:(DE-Juel1)133221
|b 4
700 1 _ |a Bauke, S. L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Schweitzer, K.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Baumecker, M.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Bol, R.
|0 P:(DE-Juel1)145865
|b 8
773 _ _ |a 10.1016/j.geoderma.2020.114336
|g Vol. 370, p. 114336 -
|0 PERI:(DE-600)2001729-7
|p 114336 -
|t Geoderma
|v 370
|y 2020
|x 0016-7061
856 4 _ |y Published on 2020-04-07. Available in OpenAccess from 2022-04-07.
|u https://juser.fz-juelich.de/record/884306/files/Non-critical%20U%20accumulation%20in%20soils%20of%20German%20and%20Danish.pdf
856 4 _ |y Published on 2020-04-07. Available in OpenAccess from 2022-04-07.
|x pdfa
|u https://juser.fz-juelich.de/record/884306/files/Non-critical%20U%20accumulation%20in%20soils%20of%20German%20and%20Danish.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884306
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168265
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)138881
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129427
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-06
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-06
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-06
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-06
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-06
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEODERMA : 2018
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-06
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-06
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-06
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-06
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21