Deep Learning for Air Quality and Climate Forecasts

CoordinatorSchultz, Martin
Grant period2019-11-01 - 2020-10-31
Funding bodyESM
IdentifierG:(DE-Juel1)deepacf_20191101

Note: JSC computation time grant
 

Recent Publications

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;
Generating Views Using Atmospheric Correction for Contrastive Self-Supervised Learning of Multispectral Images
IEEE geoscience and remote sensing letters 20(2502305), 1 - 5 () [10.1109/LGRS.2023.3274493] OpenAccess  Download fulltext Files BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;  ;
AQ-Bench: a benchmark dataset for machine learning on global air quality metrics
Earth system science data 13(6), 3013 - 3033 () [10.5194/essd-13-3013-2021] special issue: "Benchmark datasets and machine learning algorithms for Earth system science data (ESSD/GMD inter-journal SI)" OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;  ;
Context aware benchmarking and tuning of a TByte-scale air quality database and web service
Earth science informatics 14, 1597-1607 () [10.1007/s12145-021-00631-4] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;
MLAir (v1.0) – a tool to enable fast and flexible machine learning on air data time series
Geoscientific model development 14(3), 1553 - 1574 () [10.5194/gmd-14-1553-2021] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png Journal Article  ;  ;
IntelliO3-ts v1.0: a neural network approach to predict near-surface ozone concentrations in Germany
Geoscientific model development 14(1), 1 - 25 () [10.5194/gmd-14-1-2021] OpenAccess  Download fulltext Files  Download fulltextFulltext by OpenAccess repository BibTeX | EndNote: XML, Text | RIS

All known publications ...
Download: BibTeX | EndNote XML,  Text | RIS | 


 Datensatz erzeugt am 2020-09-21, letzte Änderung am 2020-09-21



Dieses Dokument bewerten:

Rate this document:
1
2
3
 
(Bisher nicht rezensiert)