000884701 001__ 884701
000884701 005__ 20210118134507.0
000884701 0247_ $$2doi$$a10.1016/j.jaac.2020.08.014
000884701 0247_ $$2ISSN$$a0002-7138
000884701 0247_ $$2ISSN$$a0890-8567
000884701 0247_ $$2ISSN$$a1527-5418
000884701 0247_ $$2ISSN$$a2376-614X
000884701 0247_ $$2Handle$$a2128/26627
000884701 0247_ $$2altmetric$$aaltmetric:90155566
000884701 0247_ $$2pmid$$a32946973
000884701 0247_ $$2WOS$$aWOS:000600656300018
000884701 037__ $$aFZJ-2020-03202
000884701 082__ $$a610
000884701 1001_ $$0P:(DE-HGF)0$$aCortese, Samuele$$b0$$eCorresponding author
000884701 245__ $$aSystematic Review and Meta-analysis: Resting State Functional Magnetic Resonance Imaging Studies of Attention-Deficit/Hyperactivity Disorder
000884701 260__ $$a[S.l.]$$bOvid$$c2020
000884701 3367_ $$2DRIVER$$aarticle
000884701 3367_ $$2DataCite$$aOutput Types/Journal article
000884701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609263414_9888
000884701 3367_ $$2BibTeX$$aARTICLE
000884701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884701 3367_ $$00$$2EndNote$$aJournal Article
000884701 500__ $$aThis work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number 18K15493 to Y.Y.A. and 19K03370 and 19H04883 to T.I.), the Takeda Science Foundation (to Y.Y.A.), the SENSHIN Medical Research Foundation (to Y.Y.A.), the Deutsche Forschungsgemeinschaft (DFG, EI 816/11-1), the National Institute of Mental Health (NIMH; R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain" and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 785907 (HBP SGA2) (to S.E.), and R61MH113663 (to F.X.C.).
000884701 520__ $$aObjectiveWe conducted a meta-analysis of resting state functional magnetic resonance imaging (R-fMRI) studies in children/adolescents and adults with ADHD to assess spatial convergence of findings from available studies.MethodBased on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases were searched up to April 9th, 2019, with no language/type-of-document restrictions. Study authors were systematically contacted for additional unpublished information/data. R-fMRI studies using seed-based connectivity (SBC) or any other method (non-SBC) reporting whole-brain results of group comparisons between individuals with ADHD and typically developing controls were eligible. Voxel-wise meta-analysis via activation likelihood estimation with cluster-level Family Wise Error (FWE) (voxel-level: p < 0.001; cluster-level: p < 0.05) was used. The full dataset used for analyses will be freely available online in an open source platform (http://anima.fz-juelich.de/).Results30 studies (18 SBC and 12 non-SBC), including a total of 1978 participants (1094 ADHD; 884 controls) were retained. The meta-analysis focused on SBC studies found no significant spatial convergence of ADHD-related hyper- or hypo-connectivity across studies. This non-significant finding remained after integrating 12 non-SBC studies into the main-analysis and in sensitivity analyses limited to studies including only children or only non-medication naïve patients.ConclusionThe lack of significant spatial convergence may be accounted for by heterogeneity in study participants, experimental procedures and analytic flexibility, as well as in ADHD pathophysiology. Alongside other neuroimaging meta-analyses in other psychiatric conditions, our results should inform the conduct and publication of future neuroimaging studies of psychiatric disorders.Key wordsADHDresting stateALEmeta-analysisneuroimaging
000884701 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000884701 536__ $$0G:(EU-Grant)785907$$aHBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)$$c785907$$fH2020-SGA-FETFLAG-HBP-2017$$x1
000884701 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000884701 588__ $$aDataset connected to CrossRef
000884701 7001_ $$0P:(DE-HGF)0$$aAoki, Yuta Y.$$b1$$eCorresponding author
000884701 7001_ $$0P:(DE-HGF)0$$aItahashi, Takashi$$b2
000884701 7001_ $$0P:(DE-HGF)0$$aCastellanos, F. Xavier$$b3
000884701 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b4
000884701 773__ $$0PERI:(DE-600)2022051-0$$a10.1016/j.jaac.2020.08.014$$gp. S0890856720314143$$n1$$p61-75$$tJournal of the American Academy of Child and Adolescent Psychiatry$$v60$$x0890-8567$$y2020
000884701 8564_ $$uhttps://juser.fz-juelich.de/record/884701/files/1-s2.0-S0890856720314143-main.pdf$$yOpenAccess
000884701 909CO $$ooai:juser.fz-juelich.de:884701$$pdnbdelivery$$pec_fundedresources$$pVDB$$pdriver$$popen_access$$popenaire
000884701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b4$$kFZJ
000884701 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000884701 9141_ $$y2020
000884701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0130$$2StatID$$aDBCoverage$$bSocial Sciences Citation Index$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ AM ACAD CHILD PSY : 2018$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)1180$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ AM ACAD CHILD PSY : 2018$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2019-12-20
000884701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-20
000884701 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884701 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-20$$wger
000884701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-20
000884701 920__ $$lyes
000884701 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000884701 980__ $$ajournal
000884701 980__ $$aVDB
000884701 980__ $$aUNRESTRICTED
000884701 980__ $$aI:(DE-Juel1)INM-7-20090406
000884701 9801_ $$aFullTexts