001     884701
005     20210118134507.0
024 7 _ |a 10.1016/j.jaac.2020.08.014
|2 doi
024 7 _ |a 0002-7138
|2 ISSN
024 7 _ |a 0890-8567
|2 ISSN
024 7 _ |a 1527-5418
|2 ISSN
024 7 _ |a 2376-614X
|2 ISSN
024 7 _ |a 2128/26627
|2 Handle
024 7 _ |a altmetric:90155566
|2 altmetric
024 7 _ |a 32946973
|2 pmid
024 7 _ |a WOS:000600656300018
|2 WOS
037 _ _ |a FZJ-2020-03202
082 _ _ |a 610
100 1 _ |a Cortese, Samuele
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Systematic Review and Meta-analysis: Resting State Functional Magnetic Resonance Imaging Studies of Attention-Deficit/Hyperactivity Disorder
260 _ _ |a [S.l.]
|c 2020
|b Ovid
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609263414_9888
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a This work was partially supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI (grant number 18K15493 to Y.Y.A. and 19K03370 and 19H04883 to T.I.), the Takeda Science Foundation (to Y.Y.A.), the SENSHIN Medical Research Foundation (to Y.Y.A.), the Deutsche Forschungsgemeinschaft (DFG, EI 816/11-1), the National Institute of Mental Health (NIMH; R01-MH074457), the Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain" and the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement 785907 (HBP SGA2) (to S.E.), and R61MH113663 (to F.X.C.).
520 _ _ |a ObjectiveWe conducted a meta-analysis of resting state functional magnetic resonance imaging (R-fMRI) studies in children/adolescents and adults with ADHD to assess spatial convergence of findings from available studies.MethodBased on a preregistered protocol in PROSPERO (CRD42019119553), a large set of databases were searched up to April 9th, 2019, with no language/type-of-document restrictions. Study authors were systematically contacted for additional unpublished information/data. R-fMRI studies using seed-based connectivity (SBC) or any other method (non-SBC) reporting whole-brain results of group comparisons between individuals with ADHD and typically developing controls were eligible. Voxel-wise meta-analysis via activation likelihood estimation with cluster-level Family Wise Error (FWE) (voxel-level: p < 0.001; cluster-level: p < 0.05) was used. The full dataset used for analyses will be freely available online in an open source platform (http://anima.fz-juelich.de/).Results30 studies (18 SBC and 12 non-SBC), including a total of 1978 participants (1094 ADHD; 884 controls) were retained. The meta-analysis focused on SBC studies found no significant spatial convergence of ADHD-related hyper- or hypo-connectivity across studies. This non-significant finding remained after integrating 12 non-SBC studies into the main-analysis and in sensitivity analyses limited to studies including only children or only non-medication naïve patients.ConclusionThe lack of significant spatial convergence may be accounted for by heterogeneity in study participants, experimental procedures and analytic flexibility, as well as in ADHD pathophysiology. Alongside other neuroimaging meta-analyses in other psychiatric conditions, our results should inform the conduct and publication of future neuroimaging studies of psychiatric disorders.Key wordsADHDresting stateALEmeta-analysisneuroimaging
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
536 _ _ |a HBP SGA2 - Human Brain Project Specific Grant Agreement 2 (785907)
|0 G:(EU-Grant)785907
|c 785907
|f H2020-SGA-FETFLAG-HBP-2017
|x 1
536 _ _ |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)
|0 G:(DE-Juel1)HGF-SMHB-2013-2017
|c HGF-SMHB-2013-2017
|f SMHB
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aoki, Yuta Y.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Itahashi, Takashi
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Castellanos, F. Xavier
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 4
773 _ _ |a 10.1016/j.jaac.2020.08.014
|g p. S0890856720314143
|0 PERI:(DE-600)2022051-0
|n 1
|p 61-75
|t Journal of the American Academy of Child and Adolescent Psychiatry
|v 60
|y 2020
|x 0890-8567
856 4 _ |u https://juser.fz-juelich.de/record/884701/files/1-s2.0-S0890856720314143-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:884701
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Theory, modelling and simulation
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0130
|2 StatID
|b Social Sciences Citation Index
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2019-12-20
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J AM ACAD CHILD PSY : 2018
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1180
|2 StatID
|b Current Contents - Social and Behavioral Sciences
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2019-12-20
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-20
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2019-12-20
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J AM ACAD CHILD PSY : 2018
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2019-12-20
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-20
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2019-12-20
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-20
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21