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Autonomous robotic nanofabrication with

reinforcement learning

Philipp Leinen’*3*, Malte Esders**, Kristof T. Schiitt®, Christian Wagner'*,

Klaus-Robert Miiller*>®*, F. Stefan Tautz"*3

The ability to handle single molecules as effectively as macroscopic building blocks would enable the construc-
tion of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing
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this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present
a strategy to work around both obstacles and demonstrate autonomous robotic nanofabrication by manipulating
single molecules. Our approach uses reinforcement learning (RL), which finds solution strategies even in the face
of large uncertainty and sparse feedback. We demonstrate the potential of our RL approach by removing mole-
cules autonomously with a scanning probe microscope from a supramolecular structure. Our RL agent reaches an
excellent performance, enabling us to automate a task that previously had to be performed by a human. We anticipate
that our work opens the way toward autonomous agents for the robotic construction of functional supramolecular
structures with speed, precision, and perseverance beyond our current capabilities.

INTRODUCTION

The swift development of quantum technologies could be further
advanced if we managed to free ourselves from the imperatives of
crystal growth and self-assembly and learned to fabricate custom-
built metastable structures on atomic and molecular length scales
routinely (1-7). Metastable structures, apart from being more abun-
dant than stable ones, tend to offer attractive functionalities, because
their constituent building blocks can be arranged more freely and in
particular in desired functional relationships (7).

It is well established that single molecules can be manipulated
and arranged using mechanical, optical, or magnetic actuators (8),
such as the tips of scanning probe microscopes (SPMs) (9-12) or
optical tweezers (13, 14). With all these types of actuators, a sequence
of manipulation steps can be carried out to bring a system of molec-
ular building blocks into a desired target state. The problem of cre-
ating custom-built structures from single molecules can therefore be
cast as a challenge in robotics.

In the macroscopic world, robots are typically steered using either
human expert knowledge or model-based approaches (15-18). Both
strategies are not available at the nanoscale, because, on the one
hand, human intuition is largely trained on concepts like inertia and
gravity, which do not apply here, while, on the other hand, atomistic
simulations are either too imprecise to be helpful or computationally
too expensive to generate the large amount of sufficiently accurate
data required for training. This is aggravated by the fact that actuators
have variable and typically unknown structures and properties at the
nanometer scale, making it extremely difficult, if not impossible,
both to cover all relevant configurations of the actuator in the sim-
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ulation and to establish a connection between the actual robotic
process and the simulation. This leaves autonomous robotic nano-
fabrication as the preferred option.

In the current study, we show that reinforcement learning (RL)
can be used to automate a manipulation task at the nanoscale. In
RL, a software agent is placed in an environment at time ¢ = 0 and
sequentially performs actions to alter the state s; of this environment
(19, 20). While executing random actions in the beginning, the agent
will, based on its accumulated experience, incrementally learn a
policy w for choosing actions a; that maximize a sum over reward
signals 7, , 1. The reward signal is returned by the environment in a
manner specified by the experimenter beforehand. The experimenter
designs the reward signal such that behavior that solves the problem
yields a high reward, whereas failure to do so yields a low reward.
The advantage of this approach is that the experimenter does not
have to specify how the agent needs to act, but instead only has to
define the desired outcome.

Considering a compact layer of PTCDA (3,4,9,10-perylene-
tetracarboxylic dianhydride) on an Ag(111) surface, we define re-
moving individual molecules from this layer using an SPM as the
RL agent’s goal (see Fig. 1). This task is an example of a subtractive
manufacturing process that starts from a self-assembled molecular
structure. We note that subtractive manufacturing has been identi-
fied as key to nanoscale fabrication (21, 22).

RESULTS

Robotic nanofabrication as an RL challenge

An RL task is usually modeled as a Markov decision process (19),
which is a Markov process equipped with an agent that can perform
certain actions at each state to influence the transition into the next
state. In nanofabrication, a complete numerical representation of
the environment state 5; would consist of the coordinates of all rel-
evant atoms in the environment. The probability distribution p(5:1,
res1|3p ay), which defines the probability to reach state 5., and
receive reward r;, | after taking action a, in state 3, is deterministic
at low temperatures (in our example, at T = 5 K) and stochastic
at temperatures where thermal fluctuations are enabled (13). The
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Fig. 1. Subtractive manufacturing with an RL agent. (A) PTCDA molecules can spontaneously bind to the SPM tip and be removed from a monolayer upon tip retraction
on a suitable trajectory. Bond formation and breaking cause strong increases or decreases in the tunneling current (left inset). The removal task is challenging, because
PTCDA is retained in the layer by a network of hydrogen bonds (dotted lines in right inset). The RL agent can repeatedly choose from the five indicated actions a}_s (green
arrows) to find a suitable trajectory (action set A: Az=0.1 A step plus +0.3-A step in the x or y direction, or no lateral movement). (B) STM image of a PTCDA layer with
16 vacancies created by the RL agent (scale bar, 5 nm). (C) Probability of bond rupture in intervals of 0.5 A around tip height z as a function of z, based on all bond-breaking
events accumulated during the RL agent experiments (inset). (D) The Q function is approximated by a neural network with 30 neurons in the first and 2 x 15 neurons in
the second hidden layer. This dueling network architecture (39) features separate outputs A;and V, with Q;= V + A;for actions aj- . s. The actually performed action is then

randomly chosen from .4 with probabilities computed with the policy .

complete state 5; of the environment is generally not observable at
the current level of technology (13). To apply RL to nanofabrication,
we therefore suggest using an approximate state definition s;. There
are several plausible elements to construct such a definition. First,
there is the known actuator position. Second, there are typically
some measurable quantities (like forces) in any robotic nanofabri-
cation setup, which are functions of the complete state 5, of the en-
vironment and which could thus be used to approximate this state.

Any approximate state definition will be of much lower dimen-
sionality than the complete state definition, such that transitions
5; — 34 in the complete state space cannot be captured fully by
transitions s; — s 1 in the approximate state space. Hence, two states
s¢and s; could be identical even when the underlying complete states
5;and §; are not. Using an approximate state description has several
consequences: First, it could break the Markov property, because
the history s, ..., s could provide more information about 3, than s;
alone. Second, the problem could become effectively nonstationary
because a change in the actuator (i.e., in the arrangement of its atoms)
could change the entire probability distribution p(s; 4 1, 71 +1 | s as),
without the approximate state definition being capable of capturing
these changes. This could render the accumulated experience at
least partially worthless. An additional source of nonstationarity of
nanofabrication systems is parameters of the (external) macro-
scopic environment (the apparatus, the room, etc.), which are also
varying slowly.
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This nonstationarity is at the heart of the difficulty of autonomous
nanofabrication, because it means that the successful policy is not
static but must be evolved constantly. Furthermore, the speed at
which a policy is learned needs to be faster than the rate at which
p(st+1 e+ 1 | S ar) changes. In practice, this requires a substantial
speedup of the standard RL algorithm, which is typically very slow
because it needs a lot of training data. If this key advance was
achieved, a policy n(s;) could be learned in the lifetime of the distri-
bution p(s; 41, 7r+1 | S» ar). Moreover, the intrinsically adaptive RL
agent would be able to deal with occasional hidden changes of ;.
Below, we will demonstrate that RL can be sped up sufficiently to
solve our exemplary nanofabrication task.

PTCDA lifting task as an RL challenge

We have previously studied the removal of single PTCDA molecules
from condensed layers on Ag(111) by manual tip control (21, 23-27).
Using motion capture and virtual reality, we were able to identify
specific three-dimensional tip trajectories that reach the target state
in which the molecule is fully disconnected from the surface but still
bonded to the tip. We stress that the bond between one of the
carboxylic oxygen atoms and the tip (Fig. 1A) typically ruptures ifa
random retraction trajectory is chosen, because along most trajec-
tories, the molecule-surface and intermolecular forces together exceed
the strength of the tip-molecule bond. Thus, to be successful, the RL
agent has to find trajectories on which the retaining force, which
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holds the molecule in the layer, never surpasses the tip-molecule
bond strength.

In our example, neither the atomic coordinates of the object
system (PTCDA layer and manipulated PTCDA molecule) nor the
atomic structure of the rest of the environment (SPM tip apex) is
known precisely. For the definition of the approximate state s;, we
could exploit two measurable quantities: the tunneling current and
the force gradient of the SPM. We tried to use these quantities
together with the Cartesian coordinates of the tip apex as the state
description of the environment (five dimensions), but we had to con-
clude that, given the limited time until the task needs to be solved,
the measured quantities have too high a variance to be helpful in our
RL setup (see Materials and Methods). We therefore chose to subs-
tantially reduce the state description and only include the Cartesian
coordinates of the tip (three dimensions) in the state definition. Be-
cause the manipulated PTCDA molecule could assume different con-
formations at identical SPM tip positions if different tip trajectories
led to this position, this approximate state definition is not guaranteed
to have the Markov property. Because the given nanofabrication task
could nevertheless be solved successfully, we chose to keep the com-
plexity in our proof-of-concept study as low as possible and did
not use strategies to attempt to restore the Markov property [see,
e.g., (19), chap. 17].

In the PTCDA lifting task, the nonstationarity of p(s¢+ 1, 741 | St az)
discussed above arises, for example, from abrupt changes in the
atomic structure of the tip apex and from a slow drift of the piezo
tubes controlling the SPM tip. Such changes influence both the mea-
surable quantities and the trajectories on which it is possible to lift
the molecule and thus also the rewards 7 1 in the distribution p(s; . 1,
Tev1 | S ap).

It should be noted that despite the nonobservability of the com-
plete state, two important key events can be unambiguously detected:
the undesired loss of contact to the tip and the desired loss of con-
tact to the surface. In the former event, the tunneling current drops
by at least an order of magnitude (Fig. 1A), which is well outside the
range in which the current varies while the bond is still in place [see
(28) for the case of an isolated molecule]. In addition, in both events,
a clear signal can be observed in the SPM force gradient channel.

Formal RL setup

The RL agent steers the SPM with its actions. The environment is
the actuators of the SPM and the object system. At time step t, the
environment is in a state that we represent numerically by s, € S. As
noted above, we simplify the state representation to S C R and the
three components are the Cartesian coordinates of the tip apex. On
the basis of the received state, the agent picks an action a; from the
set of actions .A. We specify A to consist of five possible actions, all
of which move the tip in different directions (see Fig. 1A). The per-
formed action, in turn, causes the environment to emit a new state
s;iy1and alsoareward r; . | €R.

We design the reward system as follows: If the environment tran-
sitions to a nonterminal state, we assign a default reward of r¢, ; =
0.01 (see Materials and Methods for a discussion). If transitioning
into a state in which the SPM tip loses contact with the molecule,
the agent is penalized with r;, ; = —1, and the current episode stops.
Last, if transitioning into a state where the molecule has been lifted
successfully, we assign a reward of r,, ; = +1, and the episode
also stops. After each failed episode, the molecule, by virtue of
the hydrogen bonds (Fig. 1), drops back to its original position in
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the PTCDA layer, and the tip is moved back to sy = (0,0,0), where
the tip-molecule bond reestablishes such that the next episode can
start with identical conditions (provided that no change in the tip
apex has occurred).

Central to RL is the Q-value function, which is learned (Fig. 2C)
and which, in our case, is approximated by a neural network (NN)
(Fig. 1D). Q(ss, ay) is the agent’s estimate of the expected discounted
future reward G; = ZLHI yk_'_l 1y it will receive when performing
action ay in state s; and afterward following its policy m. In a given
state, the policy m assigns action-selection probabilities to each ac-
tion depending on their respective Q values. In our case, & is com-
puted from Q' = —Q using the Boltzmann distribution

w(sanT) zep(- U5 Z ep(-252)

Asis common in RL, Q appears with opposite sign in this equation,
because a high Q means a high probability, opposite to the energy/
occupation relation for which this distribution was initially derived.
The “temperature” parameter T determines how greedily the agent
chooses actions having higher Q values.

The interaction with the environment is organized into state-
action-reward-state tuples (s;, ay, 7¢+ 1, S+ 1) and stored in an experi-
ence memory to be used for training (Fig. 1D). During training, the
Q values predicted by the NN are adjusted to the discounted future
rewards (Fig. 2C). We use an off-policy variant (see below) of the
Expected SARSA (state-action-reward-state-action) (29) algorithm,
for which the loss is computed as

L(spar)= (Q<st,at)—( o+ 3 W6101.0) Qs ) ))2 @)

and used to optimize the NN weights via gradient descent with
samples obtained by prioritized sampling (30) from the experi-
ence memory. Note that the discounted (y = 0.97) future reward
at t + 1 is given by the Q-value function itself. This recursive for-
mulation, called temporal difference learning, allows one to learn
Q values particularly efficiently and propagate them through the
state space (19).

Simulation results and RL adjustments

Before connecting the RL agent to the microscope, we benchmarked
our RL setup on a simulated system using synthetic bond-breaking
criteria (Fig. 2A) derived from prior lifting experiments (21). Note
that the probability of bond rupture as a function of tip height is
similar between the simulation and the real experiment (Figs. 1C
and 2B). Specifically, there are two heights at which there is an
increased chance of rupture in the experiment, and our synthetic
bond-breaking criteria recover this pattern. Even in this stable sim-
ulation with no uncontrolled variability (and complete observability),
the agent typically requires more than 150 episodes to find a suc-
cessful policy (Fig. 2D). As discussed above, this low data efficiency
would make it (almost) impossible to achieve the goal in the real-
world experiment, where we expect a substantial degree of variability
over this time scale of hundreds of episodes, rendering much of the
collected experience worthless.

Driven by the need to solve the task more efficiently, we intro-
duce two modifications to the standard Expected SARSA algorithm:
First, we make use of our purely Cartesian coordinate state descrip-
tion to perform model-based RL similar to the Dyna algorithm (31).
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Fig. 2. Training and performance of RL agents. (A) Map [two-dimensional (2D) slice through the 3D system] of the synthetic bond rupture criteria used to study the RL
agent’s behavior under controlled conditions. The criteria are based on a successful experimental trajectory around which a corridor of variable diameter has been created
(light red) beyond which the bond ruptures (blue). The corridor diameter is chosen to approximately reproduce the experimental bond-rupture probabilities (Fig. 1C).
One successful trajectory [see (C)] is indicated in green. (B) Probability of agent failure in z intervals of 0.5 A in the simulation in (A). (C) Learning progress of one RL agent.
The six plots show 2D cuts (y=0) through the color-encoded value function V after the number of episodes indicated in the upper right corner. A 2D projection of the
agent’s trajectory in each episode is shown as a black line. Crosses indicate bond-breaking events triggered according to the criteria in (A) (see Supplementary Animation
for a 3D view). (D) Swarm plot comparing the performance of different types of RL agents acting in the simulation (A). Plotted is the number of episodes n required to
accomplish the removal task for four sets of 80 simulated experiments each. An experiment was considered a failure after 150 unsuccessful episodes. The respective

probabilities of agent failure are indicated in the upper part of the graph.

Dyna uses both actual experience from interaction with the environ-
ment and experience obtained from a learned environment model
to update the Q values. In our case, learning an environment model
is easy, because the state transition from s, given a; to s , | is deter-
ministic. The environment model also needs to model the obtained
reward. We implement our learned environment model such that it
emits the default reward r;, ; = 0.01, unless the successor state s; , 1 is
aknown failure state (bond previously ruptured at this position in the
experiment), in which case it emits the failure-reward ;. ; = —1.0.
We use this environment model to sample (s, a, 1+ 1, S¢+ 1) tuples
around states obtained from prior experience (see Materials and
Methods) and train our NN with them. Second, we introduce a rupture
avoidance mechanism by setting a negative temperature Ty, < 0 in
Eq. 1 during training. Using a negative temperature gives lower Q
values at time step ¢ + 1 in Eq. 2 more importance. Therefore, infor-
mation about impending failure states is propagated much further
toward previous positions, and the agent can use this information
to avoid them. Of course, while acting in the environment, we still
set a positive temperature T, > 0.

We next benchmark the performance of the RL setup with our
two modifications in the simulation. Figure 2D shows that especially
in combination, the two modifications speed up the learning process
markedly, to the extent that it now becomes possible to connect this
modified RL agent to the real-world experiment.

SPM setup

While the RL agent controls our ultrahigh-vacuum low-temperature
noncontact atomic force microscope/scanning tunneling microscope
(STM) fitted with a qPlus tuning-fork sensor (32), the tunneling cur-
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rent through the junction (Vyi,s = 10 mV) is continuously monitored
by our software (see Materials and Methods). When the bond to the
tip ruptures, the increased tunneling barrier leads to a sudden drop
in current, and the failure-reward is assigned. Because the length of
the molecule is known (11.5 A), the target state can also be automat-
ically detected as any state with z > 14 A, and the contact to the
molecule still in place. Thus, the agent works autonomously until
the point where the final success of the manipulation as reported by
the agent is verified by the experimenter, who deposits the molecule
from the tip elsewhere onto the Ag(111) surface (21) and images the
vacancy that is created in the PTCDA layer (Fig. 1B). Tip changes
that occasionally occurred either during an episode or when depos-
iting the molecule back onto the surface have been identified by
checking changes in the STM image contrast or position and in the
tip-molecule bonding behavior.

DISCUSSION

Analysis of the learning process

We measure the performance of each RL agent by the number n
of episodes that it requires to solve the removal task. To separate
intrinsic RL stochasticity from the uncontrollable variability of the
SPM manipulation, we plot in Fig. 3A all data points # of real-world
experiments that were conducted with identical tips in the same
color. The scatter is indeed smaller within groups of experiments
with identical tips. Moreover, the difficulty of the removal task
clearly depends on the tip. For example, with tip D, removal is easy,
resulting, on average, in small #, while tip E, with which removal
appears more difficult, results in larger n.
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A small force threshold of the tip-molecule bond reduces the
fraction of successful trajectories. For particularly weak tips (labeled
tip failure in Fig. 3A), the removal task cannot be solved at all. One
would expect that for larger #, i.e., weaker tips, successful trajectories
cluster more narrowly in space. Figure 3B, in which we compare the
(%, y) coordinates of successful trajectories atz = 2 A for tip D and
tip E, clearly confirms this effect. The distribution of the correspond-
ing (x, y) coordinates for all tips (plotted as a grayscale background)
is rather broad and indeed similar to the distribution for the strong
tip D. For the weak tip E, however, the agent has to traverse a very
specific region in the xy plane to avoid bond breaking. This naturally
explains why tip E tends to require larger numbers # of episodes
until success.

In Fig. 3A, we also compare randomly initialized (R) agents with
pretrained (P) ones. R-agents start with random weights in the NN,
while P-agents have already solved the removal task once with one
particular tip. Initially, all P-agents are identical; i.e., they have the
same experience and NN weights. On average, P-agents perform
better than R-agents. This is evident both in the complete dataset
and for individual tips (see, for instance, tip E). It clearly demon-
strates that at least some knowledge about the removal task is uni-
versal and can be transferred to new tip configurations.

Figure 3C reveals the nature of this universal knowledge. In this
figure, we have plotted the (x, y) coordinates of the rupture points
(i.e., termini of unsuccessful episodes) for R-agents (black) and
P-agents (red). The data are limited to the first 10 episodes of each
experiment, in which the difference in training and experience be-
tween both types of agents is strongest. The plot shows that the ran-
domly initialized agents explore all (x, y) directions rather uniformly,
while the pretrained agents have a strong bias toward the lower left
quadrant (x < 0, y < 0) through which almost all successful trajecto-
ries pass (Fig. 3B). This bias is the essence of the universally valid
policy that, once learned, gives P-agents a performance edge over
R-agents. We note that this policy is consistent with our general un-
derstanding that molecules have to be “peeled” out of the con-
densed layer along their long axis to break the hydrogen bonds
sequentially and limit the associated retaining force (21).

Conclusion

Automatically fabricating complex metastable structures at the mo-
lecular level is a highly desirable goal. Given the limited observ-
ability and uncontrolled variability involved, this goal seemed out
of reach until now. In this proof-of-concept study, we demonstrated
that indeed autonomous robotic nanofabrication becomes possible
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using RL without the necessity of human intervention. We chose
the real-world task of lifting a molecular structure off a material
surface as an example. Because we used the RL framework, it
was not necessary to specify how to solve the task—instead, only
the goal had to be set, which is clearly easier. We showed not
only that an RL agent in full control of an SPM setup is capable
of reaching a real manipulation goal with a moderate number of
trials but also that it is robust enough to transfer a previously
learned policy to new object systems. Furthermore, other nano-
fabrication tasks, using different molecules, could also benefit from
the accelerated learning approaches that we used to enable this per-
formance, namely, negative training temperature and model-based
learning.

The limited observability is perhaps the most severe limitation of
RL at the nanoscale. Although RL can indeed work under partial
observability and in stochastic environments, such conditions neg-
atively affect the number of trials needed to solve a task. To alleviate
this problem, one could try using a hybrid approach in which insight
gained from atomistic simulations is used for guiding the RL agent
in its exploration of possible solutions. While atomistic conforma-
tions may not be practically accessible in detail, related measure-
ments like tunneling current and force (gradient) are. Hence, a future
research direction could focus on including such helpful variables
into an RL setup. Moreover, the combination of autonomous SPM-
based nanofabrication with autonomous tip preparation (33-35)
would be a logical development.

In conclusion, we demonstrated that autonomous robotic nano-
fabrication is viable. It enables immediate progress toward the free-
dom of designing quantum matter, beyond the constraints of even
the most complex quantum materials.

MATERIALS AND METHODS
Experiments
PTCDA is deposited onto Ag(111) at room temperature and briefly
annealed to 200°C. The PtIr tip of the qPlus sensor was cut by ion-
beam etching and prepared via indentation into the uncovered
Ag(111) surface. Because each indentation typically changes the tip
apex structure, it affects the strength of the molecule-tip bond and
thus the difficulty of the removal task. This allowed us to test the RL
agent at various levels of difficulty. The RL agent controls the tip via
a voltage source, the output of which is added to the piezo voltages
of the SPM.

In principle, the primary criterion to quantify the performance
of an agent should be the time the agent requires to accomplish a
manipulation task. To assess agents for simulated and real systems
on equal footing, we use the number of episodes n required for this
task. This quantity # is not fully, but closely related to the time
needed (episodes may take longer or shorter depending on the
length of the trajectory). Using the wall-clock time as a criterion is
moreover rather meaningless, because we have intentionally slowed
down the removal process in the experiment to a point where we
could carefully observe the actions of the agent to, for example, spot
changes in tip apex structure immediately. A removal process took
typically 5 to 10 min in the experiment. The tip apex changed in
20% of the removal experiments (not to be confused with episodes),
which were excluded from the statistics. During redeposition of the
removed molecule onto the surface, the apex changed with a prob-
ability of 15%.
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Approximate state description

Generally speaking, the Markov property allows a much better theo-
retical treatment of RL, including, e.g., convergence proofs for the
possibility of finding the optimal solution. Without the Markov
property, convergence cannot be guaranteed on theoretical grounds.
With our reduced state description, distinct complete states could,
in principle, result in identical approximate states. In this case, the
Markov assumption would be violated, because the past trajectory
could be informative about future states. The inclusion of the mea-
sured I and Af would allow discriminating a larger set of the complete
states, thus reducing the scope of hidden parameters and associated
apparent memory, making the process altogether more Markovian.
As a consequence, fabrication tasks that involve processes that dis-
play, e.g., a strongly hysteretic behavior would benefit from includ-
ing I and Af, simply because the agent could make more informed
decisions based on its ability to discriminate the respective complete
states better. In principle, this could boost the learning efficiency, as
the agent would not receive apparently contradicting information.
However, there is also a downside: Generalizing a policy across re-
gions of similar approximate states becomes much harder if it is of
higher dimensionality (e.g., five versus three dimensions), especially
ifTand Af vary strongly. This hinders the learning process. Our initial
RL approaches included I and Afin the approximate state; however,
for the present manipulation task, the disadvantage of increased
dimensionality with strongly varying I and Af outweighed the
advantage of being able to better distinguish between underlying
complete states.

Reinforcement learning

The pure state transitions p(s;+1 | s» a) in our setup are deterministic,
because the SPM tip can be moved deterministically to a new posi-
tion. We use this fact to introduce model-based RL. Note that this
determinism is a result of our choice of restricting the state descrip-
tion to the coordinates of the tip. If we included the tunneling current
or the force gradient measurements, model-based RL would not be
possible anymore, unless one would learn to model these variables
as well, which proved too unstable in our pilot experiments.

To prevent overly optimistic estimates of the Q values (36), we
use the Double Q-learning approach (37), which also works with
function approximation (38). Note that instead of Q-learning, we
use Expected SARSA (29). While Expected SARSA is an on-policy
algorithm, we make it off-policy by using different temperatures
Tirain and T for the Boltzmann distribution (Eq. 1) during training
compared to when using the network to act in the environment. In
Double Q-learning, two networks are used in parallel: They start
out with equal weights, but in the subsequent training steps, only
one network is updated (the “live network™), while the other is held
fixed for a while (the “target network”). When computing Q-value
estimates for time step t + 1 in the loss function (Eq. 2), the target
network is used to obtain the actual Q values, while the live network
is used for the probabilities of the Boltzmann distribution in the
training policy (Eq. 1) and to compute Q(s;, a;). Every 200 training
steps, the weights of the target network are set to the weights of
the live network, such that both networks once again have equal
weights.

Rewards
There is a trade-off between sparse and shaped rewards. The former
are only given once the agent either accomplishes its final goal or
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ultimately fails, while the latter also reward (or punish) intermediate
steps, thus directing the agent more efficiently toward its goal. If not
chosen well, shaped rewards can induce unwanted agent behavior,
while sparse rewards induce no such bias. We use sparse rewards
because of the poor observability of the full state (atomic coordinates)
of the object system and the resulting lack of information regarding
the assessment of intermediate steps. Therefore, we give a reward
of +1.0 for success (fully lifting the PTCDA molecule out of the sur-
face) and —1.0 for rupture of the bond between the tip and PTCDA
molecule. However, we do slightly shape the reward by giving a
reward of +0.01 for each nonterminal step of the agent. Physically,
this is motivated by the fact that each step separates the molecule
0.1 A further from the surface. On the RL side, this small reward
makes the agent prefer exploring trajectories on which it previously
advanced very far before rupture. This happens because the (dis-
counted) propagation of rewards to previous states during training
(Eq. 2) makes states along longer trajectories have a higher value
and therefore more “attractive” to the agent.

NN architecture

The NN used to approximate the Q function consists of the three-
neuron input layer receiving (x, y, z), followed by a hidden layer with
30 neurons. After this intermediate layer, the network splits up into
two separate streams, as inspired by the Dueling Network Architec-
ture (39). Both streams consist of a hidden layer with 15 neurons
and an output layer with either 1 neuron (V-value stream) or 5 neu-
rons representing the five possible actions (A-value stream) with Q; =
V + A,. The neurons in all hidden layers have tanh nonlinearities.
The number of neurons in the hidden layers was tuned empirically
in the simulation to be as low as possible while maintaining optimal
performance.

Training details

The NN was trained after each episode and held fixed during epi-
sodes. The optimization method was “Adam” (40), with a constant
learning rate of 107 and a batch size of 30. To avoid performing
many training steps while little experience is present, the number of
training steps was increased in the first 10 episodes, from 200 after
the first episode to lastly 2000 training steps after 10 or more epi-
sodes. The discount for future rewards was y = 0.97. The training
temperature was Tirain = —0.1, and the action temperature used to
select actions during an episode was To¢ = 0.004.

During training, 10% of the samples are chosen from actual
experience that was obtained during any previous episode. These
samples are drawn with prioritized experience replay (30). Ninety
percent of the samples are obtained from the environment model.
The values of all parameters given above were selected via grid searches
in the simulation environment.

Rupture avoidance mechanism

Prior human trials of removing the PTCDA molecule from the sur-
face show that if a bond rupture (failure) occurs at a given location,
ruptures are likely to occur in the area around it too. Also, as stated
previously, a viable trajectory needs to be found as fast as possible,
because the SPM tip might change at any time. Thus, the agent
needs to explore the state space quickly for a promising direction.
Therefore, we implement a mechanism to make the agent rapidly
avoid states where the tip-molecule bond previously ruptured and
particularly also the states leading up to it.
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Usually, RL algorithms like the one trained with Eq. 2 tend to
“ignore” future negative rewards, if there is a strategy that narrowly
avoids them: To compute the expected future reward at time ¢ + 1,
they weigh the highest Q values more than the lower ones. In the
limit as T — 0, all Q values but the highest one are ignored. Because
of this, information about failure states barely propagates to any
states that lie two or more steps away. In our case, this means that
with a randomly initialized NN, an agent would try to lift the mole-
cule on similar paths in each episode until it is absolutely certain that
this path is not viable. This leads it to fail at nearly identical loca-
tions each time, and therefore, it does not explore efficiently. For
general RL settings, this may be the desired behavior, but we need
the agent to learn as quickly as possible to avoid the failure state and
the states leading up to it. Our solution is to use a negative tempera-
ture Ty, during training, which has the effect of inverting the im-
portance of the Q values as computed by Eq. 1. Now, low Q values,
which indicate danger of rupture, are given a high importance. This
information about a rupture is therefore propagated much further.

There is a trade-off here, because the further away the agent tries
to stay from known failure states, the more likely it becomes that it
misses a viable trajectory. We can control this trade-off by changing
the training temperature. In the simulation environment, we found
that the optimal training temperature was Trin = —0.1.

We tested whether using RL is necessary at all, then if all the
agent does is avoid the regions of rupture states. We conducted an
experiment in which the agent tries a random trajectory in the first
episode and, in all following episodes, chooses its actions such that
it stays as far away as possible from all previously occurred ruptures.
Despite substantial experimentation with this approach, the agent
never reached the goal state but got stuck in dead ends. RL, on
the other hand, can identify such dead ends and plan trajectories to
avoid them.

Exploiting the Cartesian state description for

model-based planning

We use a slight variation of Dyna (31) for model-based planning.
Dyna, in general, updates Q values with state transitions sampled
from alearned environment model. To learn an environment model,
we make use of the fact that the result of performing an action from
a known state deterministically results in a new state, because the
state description includes only the Cartesian coordinates of the tip,
and each action moves the tip by a specified amount. To obtain a
state from our environment model, we first pick a random state from
the unique set of actually visited states and sample a new position
around it. To sample a new position, we randomly pick between
zero and four actions from our action set .A and use them to walk to
a new location. At each step, we randomly either walk into the usual
positive z direction or instead walk in the negative z direction. The
new location becomes s;. Then, we sample an action a; and the re-
sulting successor state s; ., 1, which is easily computed given s; and a,.
At this point, we only need a reward r; .. ;. If the sampled successor
state is a known failure state (where bond breaking was observed
before), the environment model emits the failure-reward of —1.
Otherwise, it emits the default step-reward +0.01. In this way, we
generate new (sy, as, 71+ 1, St + 1) tuples and use them for training (Eq. 2)
in the same way as with regular samples. When training the NN, we
use 10% of the samples from real experience and 90% of the samples
from the environment model. In particular, in combination with the
rupture avoidance mechanism, this propagates failure information
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to a much larger number of states, which can then be avoided in the
next episodes.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/36/eabb6987/DC1
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