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Autonomous robotic nanofabrication with 
reinforcement learning
Philipp Leinen1,2,3*, Malte Esders4*, Kristof T. Schütt4, Christian Wagner1,2†,  
Klaus-Robert Müller4,5,6†, F. Stefan Tautz1,2,3

The ability to handle single molecules as effectively as macroscopic building blocks would enable the construc-
tion of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing 
this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present 
a strategy to work around both obstacles and demonstrate autonomous robotic nanofabrication by manipulating 
single molecules. Our approach uses reinforcement learning (RL), which finds solution strategies even in the face 
of large uncertainty and sparse feedback. We demonstrate the potential of our RL approach by removing mole-
cules autonomously with a scanning probe microscope from a supramolecular structure. Our RL agent reaches an 
excellent performance, enabling us to automate a task that previously had to be performed by a human. We anticipate 
that our work opens the way toward autonomous agents for the robotic construction of functional supramolecular 
structures with speed, precision, and perseverance beyond our current capabilities.

INTRODUCTION
The swift development of quantum technologies could be further 
advanced if we managed to free ourselves from the imperatives of 
crystal growth and self-assembly and learned to fabricate custom-
built metastable structures on atomic and molecular length scales 
routinely (1–7). Metastable structures, apart from being more abun-
dant than stable ones, tend to offer attractive functionalities, because 
their constituent building blocks can be arranged more freely and in 
particular in desired functional relationships (7).

It is well established that single molecules can be manipulated 
and arranged using mechanical, optical, or magnetic actuators (8), 
such as the tips of scanning probe microscopes (SPMs) (9–12) or 
optical tweezers (13, 14). With all these types of actuators, a sequence 
of manipulation steps can be carried out to bring a system of molec-
ular building blocks into a desired target state. The problem of cre-
ating custom-built structures from single molecules can therefore be 
cast as a challenge in robotics.

In the macroscopic world, robots are typically steered using either 
human expert knowledge or model-based approaches (15–18). Both 
strategies are not available at the nanoscale, because, on the one 
hand, human intuition is largely trained on concepts like inertia and 
gravity, which do not apply here, while, on the other hand, atomistic 
simulations are either too imprecise to be helpful or computationally 
too expensive to generate the large amount of sufficiently accurate 
data required for training. This is aggravated by the fact that actuators 
have variable and typically unknown structures and properties at the 
nanometer scale, making it extremely difficult, if not impossible, 
both to cover all relevant configurations of the actuator in the sim-

ulation and to establish a connection between the actual robotic 
process and the simulation. This leaves autonomous robotic nano-
fabrication as the preferred option.

In the current study, we show that reinforcement learning (RL) 
can be used to automate a manipulation task at the nanoscale. In 
RL, a software agent is placed in an environment at time t = 0 and 
sequentially performs actions to alter the state st of this environment 
(19, 20). While executing random actions in the beginning, the agent 
will, based on its accumulated experience, incrementally learn a 
policy  for choosing actions at that maximize a sum over reward 
signals rt + 1. The reward signal is returned by the environment in a 
manner specified by the experimenter beforehand. The experimenter 
designs the reward signal such that behavior that solves the problem 
yields a high reward, whereas failure to do so yields a low reward. 
The advantage of this approach is that the experimenter does not 
have to specify how the agent needs to act, but instead only has to 
define the desired outcome.

Considering a compact layer of PTCDA (3,4,9,10-perylene-
tetracarboxylic dianhydride) on an Ag(111) surface, we define re-
moving individual molecules from this layer using an SPM as the 
RL agent’s goal (see Fig. 1). This task is an example of a subtractive 
manufacturing process that starts from a self-assembled molecular 
structure. We note that subtractive manufacturing has been identi-
fied as key to nanoscale fabrication (21, 22).

RESULTS
Robotic nanofabrication as an RL challenge
An RL task is usually modeled as a Markov decision process (19), 
which is a Markov process equipped with an agent that can perform 
certain actions at each state to influence the transition into the next 
state. In nanofabrication, a complete numerical representation of 
the environment state ​​​s ̄ ​​ t​​​ would consist of the coordinates of all rel-
evant atoms in the environment. The probability distribution ​p(​​s ̄ ​​ t+1​​, ​
r​ t+1​​∣​​s ̄ ​​ t​​, ​a​ t​​)​, which defines the probability to reach state ​​​s ̄ ​​ t+1​​​ and 
receive reward rt + 1 after taking action at in state ​​​s ̄ ​​ t​​​, is deterministic 
at low temperatures (in our example, at T = 5 K) and stochastic 
at temperatures where thermal fluctuations are enabled (13). The 
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complete state ​​​s ̄ ​​ t​​​ of the environment is generally not observable at 
the current level of technology (13). To apply RL to nanofabrication, 
we therefore suggest using an approximate state definition st. There 
are several plausible elements to construct such a definition. First, 
there is the known actuator position. Second, there are typically 
some measurable quantities (like forces) in any robotic nanofabri-
cation setup, which are functions of the complete state ​​​s ̄ ​​ t​​​ of the en-
vironment and which could thus be used to approximate this state.

Any approximate state definition will be of much lower dimen-
sionality than the complete state definition, such that transitions 
​​​s ̄ ​​ t​​  → ​​ s ̄ ​​ t+1​​​ in the complete state space cannot be captured fully by 
transitions st → st + 1 in the approximate state space. Hence, two states 
st and ​​s​ t​ ′​​ could be identical even when the underlying complete states 
​​​s ̄ ​​ t​​​ and ​​​   s ​​ t​ ′​​ are not. Using an approximate state description has several 
consequences: First, it could break the Markov property, because 
the history s0, …, st could provide more information about ​​​s ̄ ​​ t​​​ than st 
alone. Second, the problem could become effectively nonstationary 
because a change in the actuator (i.e., in the arrangement of its atoms) 
could change the entire probability distribution p(st + 1, rt + 1 ∣ st, at), 
without the approximate state definition being capable of capturing 
these changes. This could render the accumulated experience at 
least partially worthless. An additional source of nonstationarity of 
nanofabrication systems is parameters of the (external) macro-
scopic environment (the apparatus, the room, etc.), which are also 
varying slowly.

This nonstationarity is at the heart of the difficulty of autonomous 
nanofabrication, because it means that the successful policy is not 
static but must be evolved constantly. Furthermore, the speed at 
which a policy is learned needs to be faster than the rate at which 
p(st + 1, rt + 1 ∣ st, at) changes. In practice, this requires a substantial 
speedup of the standard RL algorithm, which is typically very slow 
because it needs a lot of training data. If this key advance was 
achieved, a policy (st) could be learned in the lifetime of the distri-
bution p(st + 1, rt + 1 ∣ st, at). Moreover, the intrinsically adaptive RL 
agent would be able to deal with occasional hidden changes of ​​​s​ t​​ ̄ ​​. 
Below, we will demonstrate that RL can be sped up sufficiently to 
solve our exemplary nanofabrication task.

PTCDA lifting task as an RL challenge
We have previously studied the removal of single PTCDA molecules 
from condensed layers on Ag(111) by manual tip control (21, 23–27). 
Using motion capture and virtual reality, we were able to identify 
specific three-dimensional tip trajectories that reach the target state 
in which the molecule is fully disconnected from the surface but still 
bonded to the tip. We stress that the bond between one of the 
carboxylic oxygen atoms and the tip (Fig. 1A) typically ruptures if a 
random retraction trajectory is chosen, because along most trajec-
tories, the molecule-surface and intermolecular forces together exceed 
the strength of the tip-molecule bond. Thus, to be successful, the RL 
agent has to find trajectories on which the retaining force, which 
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Fig. 1. Subtractive manufacturing with an RL agent. (A) PTCDA molecules can spontaneously bind to the SPM tip and be removed from a monolayer upon tip retraction 
on a suitable trajectory. Bond formation and breaking cause strong increases or decreases in the tunneling current (left inset). The removal task is challenging, because 
PTCDA is retained in the layer by a network of hydrogen bonds (dotted lines in right inset). The RL agent can repeatedly choose from the five indicated actions ​​a​ 1−5​ ′  ​​ (green 
arrows) to find a suitable trajectory (action set A: ∆z = 0.1 Å step plus ±0.3-Å step in the x or y direction, or no lateral movement). (B) STM image of a PTCDA layer with 
16 vacancies created by the RL agent (scale bar, 5 nm). (C) Probability of bond rupture in intervals of 0.5 Å around tip height z as a function of z, based on all bond-breaking 
events accumulated during the RL agent experiments (inset). (D) The Q function is approximated by a neural network with 30 neurons in the first and 2 × 15 neurons in 
the second hidden layer. This dueling network architecture (39) features separate outputs Ai and V, with Qi = V + Ai for actions ​​a​ i=1…5​ ′  ​​. The actually performed action is then 
randomly chosen from A with probabilities computed with the policy .
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holds the molecule in the layer, never surpasses the tip-molecule 
bond strength.

In our example, neither the atomic coordinates of the object 
system (PTCDA layer and manipulated PTCDA molecule) nor the 
atomic structure of the rest of the environment (SPM tip apex) is 
known precisely. For the definition of the approximate state st, we 
could exploit two measurable quantities: the tunneling current and 
the force gradient of the SPM. We tried to use these quantities 
together with the Cartesian coordinates of the tip apex as the state 
description of the environment (five dimensions), but we had to con-
clude that, given the limited time until the task needs to be solved, 
the measured quantities have too high a variance to be helpful in our 
RL setup (see Materials and Methods). We therefore chose to subs
tantially reduce the state description and only include the Cartesian 
coordinates of the tip (three dimensions) in the state definition. Be-
cause the manipulated PTCDA molecule could assume different con-
formations at identical SPM tip positions if different tip trajectories 
led to this position, this approximate state definition is not guaranteed 
to have the Markov property. Because the given nanofabrication task 
could nevertheless be solved successfully, we chose to keep the com-
plexity in our proof-of-concept study as low as possible and did 
not use strategies to attempt to restore the Markov property [see, 
e.g., (19), chap. 17].

In the PTCDA lifting task, the nonstationarity of p(st + 1, rt + 1 ∣ st, at) 
discussed above arises, for example, from abrupt changes in the 
atomic structure of the tip apex and from a slow drift of the piezo 
tubes controlling the SPM tip. Such changes influence both the mea-
surable quantities and the trajectories on which it is possible to lift 
the molecule and thus also the rewards rt + 1 in the distribution p(st + 1, 
rt + 1 ∣ st, at).

It should be noted that despite the nonobservability of the com-
plete state, two important key events can be unambiguously detected: 
the undesired loss of contact to the tip and the desired loss of con-
tact to the surface. In the former event, the tunneling current drops 
by at least an order of magnitude (Fig. 1A), which is well outside the 
range in which the current varies while the bond is still in place [see 
(28) for the case of an isolated molecule]. In addition, in both events, 
a clear signal can be observed in the SPM force gradient channel.

Formal RL setup
The RL agent steers the SPM with its actions. The environment is 
the actuators of the SPM and the object system. At time step t, the 
environment is in a state that we represent numerically by st ∈ ​S​. As 
noted above, we simplify the state representation to ​S​ ⊂ ℝ3, and the 
three components are the Cartesian coordinates of the tip apex. On 
the basis of the received state, the agent picks an action at from the 
set of actions A. We specify A to consist of five possible actions, all 
of which move the tip in different directions (see Fig. 1A). The per-
formed action, in turn, causes the environment to emit a new state 
st + 1 and also a reward rt + 1 ∈ ℝ.

We design the reward system as follows: If the environment tran-
sitions to a nonterminal state, we assign a default reward of rt + 1 = 
0.01 (see Materials and Methods for a discussion). If transitioning 
into a state in which the SPM tip loses contact with the molecule, 
the agent is penalized with rt + 1 = −1, and the current episode stops. 
Last, if transitioning into a state where the molecule has been lifted 
successfully, we assign a reward of rt + 1 = +1, and the episode 
also stops. After each failed episode, the molecule, by virtue of 
the hydrogen bonds (Fig. 1), drops back to its original position in 

the PTCDA layer, and the tip is moved back to s0 = (0,0,0), where 
the tip-molecule bond reestablishes such that the next episode can 
start with identical conditions (provided that no change in the tip 
apex has occurred).

Central to RL is the Q-value function, which is learned (Fig. 2C) 
and which, in our case, is approximated by a neural network (NN) 
(Fig. 1D). Q(st, at) is the agent’s estimate of the expected discounted 
future reward ​​G​ t​​  = ​ ∑ k=t+1​ T  ​​ ​​​ k−t−1​ ​r​ k​​​ it will receive when performing 
action at in state st and afterward following its policy . In a given 
state, the policy  assigns action-selection probabilities to each ac-
tion depending on their respective Q values. In our case,  is com-
puted from Q′ = −Q using the Boltzmann distribution

	​​ π​(​​ ​s​ t​​, ​a​ t​​, T​)​​ = exp​(​​− ​Q′​(​​ ​s​ t​​, ​a​ t​​​)​​ _ T  ​​)​​​/​​ ​∑ 
  a∈A
​ ​​ exp​(​​− ​Q′​(​​ ​s​ t​​, a​)​​ _ T  ​​)​​​​	 (1)

As is common in RL, Q appears with opposite sign in this equation, 
because a high Q means a high probability, opposite to the energy/
occupation relation for which this distribution was initially derived. 
The “temperature” parameter T determines how greedily the agent 
chooses actions having higher Q values.

The interaction with the environment is organized into state-
action-reward-state tuples (st, at, rt + 1, st + 1) and stored in an experi-
ence memory to be used for training (Fig. 1D). During training, the 
Q values predicted by the NN are adjusted to the discounted future 
rewards (Fig. 2C). We use an off-policy variant (see below) of the 
Expected SARSA (state-action-reward-state-action) (29) algorithm, 
for which the loss is computed as

	​ L(​s​ t​​, ​a​ t​​ ) = ​​(​​Q(​s​ t​​, ​a​ t​​ ) − ​(​​ ​r​ t+1​​ + γ ​ ∑ 
a∈A

​​​ π(​s​ t+1​​, a ) Q(​s​ t+1​​, a ) ​)​​​)​​​​ 
2
​​	 (2)

and used to optimize the NN weights via gradient descent with 
samples obtained by prioritized sampling (30) from the experi-
ence memory. Note that the discounted ( = 0.97) future reward 
at t + 1 is given by the Q-value function itself. This recursive for-
mulation, called temporal difference learning, allows one to learn 
Q values particularly efficiently and propagate them through the 
state space (19).

Simulation results and RL adjustments
Before connecting the RL agent to the microscope, we benchmarked 
our RL setup on a simulated system using synthetic bond-breaking 
criteria (Fig. 2A) derived from prior lifting experiments (21). Note 
that the probability of bond rupture as a function of tip height is 
similar between the simulation and the real experiment (Figs. 1C 
and 2B). Specifically, there are two heights at which there is an 
increased chance of rupture in the experiment, and our synthetic 
bond-breaking criteria recover this pattern. Even in this stable sim-
ulation with no uncontrolled variability (and complete observability), 
the agent typically requires more than 150 episodes to find a suc-
cessful policy (Fig. 2D). As discussed above, this low data efficiency 
would make it (almost) impossible to achieve the goal in the real-
world experiment, where we expect a substantial degree of variability 
over this time scale of hundreds of episodes, rendering much of the 
collected experience worthless.

Driven by the need to solve the task more efficiently, we intro-
duce two modifications to the standard Expected SARSA algorithm: 
First, we make use of our purely Cartesian coordinate state descrip-
tion to perform model-based RL similar to the Dyna algorithm (31). 
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Dyna uses both actual experience from interaction with the environ-
ment and experience obtained from a learned environment model 
to update the Q values. In our case, learning an environment model 
is easy, because the state transition from st given at to st + 1 is deter-
ministic. The environment model also needs to model the obtained 
reward. We implement our learned environment model such that it 
emits the default reward rt + 1 = 0.01, unless the successor state st + 1 is 
a known failure state (bond previously ruptured at this position in the 
experiment), in which case it emits the failure-reward rt + 1 = −1.0. 
We use this environment model to sample (st, at, rt + 1, st + 1) tuples 
around states obtained from prior experience (see Materials and 
Methods) and train our NN with them. Second, we introduce a rupture 
avoidance mechanism by setting a negative temperature Ttrain < 0 in 
Eq. 1 during training. Using a negative temperature gives lower Q 
values at time step t + 1 in Eq. 2 more importance. Therefore, infor-
mation about impending failure states is propagated much further 
toward previous positions, and the agent can use this information 
to avoid them. Of course, while acting in the environment, we still 
set a positive temperature Tact > 0.

We next benchmark the performance of the RL setup with our 
two modifications in the simulation. Figure 2D shows that especially 
in combination, the two modifications speed up the learning process 
markedly, to the extent that it now becomes possible to connect this 
modified RL agent to the real-world experiment.

SPM setup
While the RL agent controls our ultrahigh-vacuum low-temperature 
noncontact atomic force microscope/scanning tunneling microscope 
(STM) fitted with a qPlus tuning-fork sensor (32), the tunneling cur-

rent through the junction (Vbias = 10 mV) is continuously monitored 
by our software (see Materials and Methods). When the bond to the 
tip ruptures, the increased tunneling barrier leads to a sudden drop 
in current, and the failure-reward is assigned. Because the length of 
the molecule is known (​11.5 Å​), the target state can also be automat-
ically detected as any state with ​z  >  14 Å​, and the contact to the 
molecule still in place. Thus, the agent works autonomously until 
the point where the final success of the manipulation as reported by 
the agent is verified by the experimenter, who deposits the molecule 
from the tip elsewhere onto the Ag(111) surface (21) and images the 
vacancy that is created in the PTCDA layer (Fig. 1B). Tip changes 
that occasionally occurred either during an episode or when depos-
iting the molecule back onto the surface have been identified by 
checking changes in the STM image contrast or position and in the 
tip-molecule bonding behavior.

DISCUSSION
Analysis of the learning process
We measure the performance of each RL agent by the number n 
of episodes that it requires to solve the removal task. To separate 
intrinsic RL stochasticity from the uncontrollable variability of the 
SPM manipulation, we plot in Fig. 3A all data points n of real-world 
experiments that were conducted with identical tips in the same 
color. The scatter is indeed smaller within groups of experiments 
with identical tips. Moreover, the difficulty of the removal task 
clearly depends on the tip. For example, with tip D, removal is easy, 
resulting, on average, in small n, while tip E, with which removal 
appears more difficult, results in larger n.
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A small force threshold of the tip-molecule bond reduces the 
fraction of successful trajectories. For particularly weak tips (labeled 
tip failure in Fig. 3A), the removal task cannot be solved at all. One 
would expect that for larger n, i.e., weaker tips, successful trajectories 
cluster more narrowly in space. Figure 3B, in which we compare the 
(x, y) coordinates of successful trajectories at ​z  =  2 Å​ for tip D and 
tip E, clearly confirms this effect. The distribution of the correspond-
ing (x, y) coordinates for all tips (plotted as a grayscale background) 
is rather broad and indeed similar to the distribution for the strong 
tip D. For the weak tip E, however, the agent has to traverse a very 
specific region in the xy plane to avoid bond breaking. This naturally 
explains why tip E tends to require larger numbers n of episodes 
until success.

In Fig. 3A, we also compare randomly initialized (R) agents with 
pretrained (P) ones. R-agents start with random weights in the NN, 
while P-agents have already solved the removal task once with one 
particular tip. Initially, all P-agents are identical; i.e., they have the 
same experience and NN weights. On average, P-agents perform 
better than R-agents. This is evident both in the complete dataset 
and for individual tips (see, for instance, tip E). It clearly demon-
strates that at least some knowledge about the removal task is uni-
versal and can be transferred to new tip configurations.

Figure 3C reveals the nature of this universal knowledge. In this 
figure, we have plotted the (x, y) coordinates of the rupture points 
(i.e., termini of unsuccessful episodes) for R-agents (black) and 
P-agents (red). The data are limited to the first 10 episodes of each 
experiment, in which the difference in training and experience be-
tween both types of agents is strongest. The plot shows that the ran-
domly initialized agents explore all (x, y) directions rather uniformly, 
while the pretrained agents have a strong bias toward the lower left 
quadrant (x < 0, y < 0) through which almost all successful trajecto-
ries pass (Fig. 3B). This bias is the essence of the universally valid 
policy that, once learned, gives P-agents a performance edge over 
R-agents. We note that this policy is consistent with our general un-
derstanding that molecules have to be “peeled” out of the con-
densed layer along their long axis to break the hydrogen bonds 
sequentially and limit the associated retaining force (21).

Conclusion
Automatically fabricating complex metastable structures at the mo-
lecular level is a highly desirable goal. Given the limited observ-
ability and uncontrolled variability involved, this goal seemed out 
of reach until now. In this proof-of-concept study, we demonstrated 
that indeed autonomous robotic nanofabrication becomes possible 
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using RL without the necessity of human intervention. We chose 
the real-world task of lifting a molecular structure off a material 
surface as an example. Because we used the RL framework, it 
was not necessary to specify how to solve the task—instead, only 
the goal had to be set, which is clearly easier. We showed not 
only that an RL agent in full control of an SPM setup is capable 
of reaching a real manipulation goal with a moderate number of 
trials but also that it is robust enough to transfer a previously 
learned policy to new object systems. Furthermore, other nano-
fabrication tasks, using different molecules, could also benefit from 
the accelerated learning approaches that we used to enable this per-
formance, namely, negative training temperature and model-based 
learning.

The limited observability is perhaps the most severe limitation of 
RL at the nanoscale. Although RL can indeed work under partial 
observability and in stochastic environments, such conditions neg-
atively affect the number of trials needed to solve a task. To alleviate 
this problem, one could try using a hybrid approach in which insight 
gained from atomistic simulations is used for guiding the RL agent 
in its exploration of possible solutions. While atomistic conforma-
tions may not be practically accessible in detail, related measure-
ments like tunneling current and force (gradient) are. Hence, a future 
research direction could focus on including such helpful variables 
into an RL setup. Moreover, the combination of autonomous SPM-
based nanofabrication with autonomous tip preparation (33–35) 
would be a logical development.

In conclusion, we demonstrated that autonomous robotic nano-
fabrication is viable. It enables immediate progress toward the free-
dom of designing quantum matter, beyond the constraints of even 
the most complex quantum materials.

MATERIALS AND METHODS
Experiments
PTCDA is deposited onto Ag(111) at room temperature and briefly 
annealed to 200°C. The PtIr tip of the qPlus sensor was cut by ion-
beam etching and prepared via indentation into the uncovered 
Ag(111) surface. Because each indentation typically changes the tip 
apex structure, it affects the strength of the molecule-tip bond and 
thus the difficulty of the removal task. This allowed us to test the RL 
agent at various levels of difficulty. The RL agent controls the tip via 
a voltage source, the output of which is added to the piezo voltages 
of the SPM.

In principle, the primary criterion to quantify the performance 
of an agent should be the time the agent requires to accomplish a 
manipulation task. To assess agents for simulated and real systems 
on equal footing, we use the number of episodes n required for this 
task. This quantity n is not fully, but closely related to the time 
needed (episodes may take longer or shorter depending on the 
length of the trajectory). Using the wall-clock time as a criterion is 
moreover rather meaningless, because we have intentionally slowed 
down the removal process in the experiment to a point where we 
could carefully observe the actions of the agent to, for example, spot 
changes in tip apex structure immediately. A removal process took 
typically 5 to 10 min in the experiment. The tip apex changed in 
20% of the removal experiments (not to be confused with episodes), 
which were excluded from the statistics. During redeposition of the 
removed molecule onto the surface, the apex changed with a prob-
ability of 15%.

Approximate state description
Generally speaking, the Markov property allows a much better theo-
retical treatment of RL, including, e.g., convergence proofs for the 
possibility of finding the optimal solution. Without the Markov 
property, convergence cannot be guaranteed on theoretical grounds. 
With our reduced state description, distinct complete states could, 
in principle, result in identical approximate states. In this case, the 
Markov assumption would be violated, because the past trajectory 
could be informative about future states. The inclusion of the mea-
sured I and f would allow discriminating a larger set of the complete 
states, thus reducing the scope of hidden parameters and associated 
apparent memory, making the process altogether more Markovian. 
As a consequence, fabrication tasks that involve processes that dis-
play, e.g., a strongly hysteretic behavior would benefit from includ-
ing I and f, simply because the agent could make more informed 
decisions based on its ability to discriminate the respective complete 
states better. In principle, this could boost the learning efficiency, as 
the agent would not receive apparently contradicting information. 
However, there is also a downside: Generalizing a policy across re-
gions of similar approximate states becomes much harder if it is of 
higher dimensionality (e.g., five versus three dimensions), especially 
if I and f vary strongly. This hinders the learning process. Our initial 
RL approaches included I and f in the approximate state; however, 
for the present manipulation task, the disadvantage of increased 
dimensionality with strongly varying I and f outweighed the 
advantage of being able to better distinguish between underlying 
complete states.

Reinforcement learning
The pure state transitions p(st + 1 ∣ st, at) in our setup are deterministic, 
because the SPM tip can be moved deterministically to a new posi-
tion. We use this fact to introduce model-based RL. Note that this 
determinism is a result of our choice of restricting the state descrip-
tion to the coordinates of the tip. If we included the tunneling current 
or the force gradient measurements, model-based RL would not be 
possible anymore, unless one would learn to model these variables 
as well, which proved too unstable in our pilot experiments.

To prevent overly optimistic estimates of the Q values (36), we 
use the Double Q-learning approach (37), which also works with 
function approximation (38). Note that instead of Q-learning, we 
use Expected SARSA (29). While Expected SARSA is an on-policy 
algorithm, we make it off-policy by using different temperatures 
Ttrain and Tact for the Boltzmann distribution (Eq. 1) during training 
compared to when using the network to act in the environment. In 
Double Q-learning, two networks are used in parallel: They start 
out with equal weights, but in the subsequent training steps, only 
one network is updated (the “live network”), while the other is held 
fixed for a while (the “target network”). When computing Q-value 
estimates for time step t + 1 in the loss function (Eq. 2), the target 
network is used to obtain the actual Q values, while the live network 
is used for the probabilities of the Boltzmann distribution in the 
training policy (Eq. 1) and to compute Q(st, at). Every 200 training 
steps, the weights of the target network are set to the weights of 
the live network, such that both networks once again have equal 
weights.

Rewards
There is a trade-off between sparse and shaped rewards. The former 
are only given once the agent either accomplishes its final goal or 
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ultimately fails, while the latter also reward (or punish) intermediate 
steps, thus directing the agent more efficiently toward its goal. If not 
chosen well, shaped rewards can induce unwanted agent behavior, 
while sparse rewards induce no such bias. We use sparse rewards 
because of the poor observability of the full state (atomic coordinates) 
of the object system and the resulting lack of information regarding 
the assessment of intermediate steps. Therefore, we give a reward 
of +1.0 for success (fully lifting the PTCDA molecule out of the sur-
face) and −1.0 for rupture of the bond between the tip and PTCDA 
molecule. However, we do slightly shape the reward by giving a 
reward of +0.01 for each nonterminal step of the agent. Physically, 
this is motivated by the fact that each step separates the molecule 
​0.1 Å​ further from the surface. On the RL side, this small reward 
makes the agent prefer exploring trajectories on which it previously 
advanced very far before rupture. This happens because the (dis-
counted) propagation of rewards to previous states during training 
(Eq. 2) makes states along longer trajectories have a higher value 
and therefore more “attractive” to the agent.

NN architecture
The NN used to approximate the Q function consists of the three-
neuron input layer receiving (x, y, z), followed by a hidden layer with 
30 neurons. After this intermediate layer, the network splits up into 
two separate streams, as inspired by the Dueling Network Architec-
ture (39). Both streams consist of a hidden layer with 15 neurons 
and an output layer with either 1 neuron (V-value stream) or 5 neu-
rons representing the five possible actions (A-value stream) with Qi = 
V + Ai. The neurons in all hidden layers have tanh nonlinearities. 
The number of neurons in the hidden layers was tuned empirically 
in the simulation to be as low as possible while maintaining optimal 
performance.

Training details
The NN was trained after each episode and held fixed during epi-
sodes. The optimization method was “Adam” (40), with a constant 
learning rate of 10−3 and a batch size of 30. To avoid performing 
many training steps while little experience is present, the number of 
training steps was increased in the first 10 episodes, from 200 after 
the first episode to lastly 2000 training steps after 10 or more epi-
sodes. The discount for future rewards was  = 0.97. The training 
temperature was Ttrain = −0.1, and the action temperature used to 
select actions during an episode was Tact = 0.004.

During training, 10% of the samples are chosen from actual 
experience that was obtained during any previous episode. These 
samples are drawn with prioritized experience replay (30). Ninety 
percent of the samples are obtained from the environment model. 
The values of all parameters given above were selected via grid searches 
in the simulation environment.

Rupture avoidance mechanism
Prior human trials of removing the PTCDA molecule from the sur-
face show that if a bond rupture (failure) occurs at a given location, 
ruptures are likely to occur in the area around it too. Also, as stated 
previously, a viable trajectory needs to be found as fast as possible, 
because the SPM tip might change at any time. Thus, the agent 
needs to explore the state space quickly for a promising direction. 
Therefore, we implement a mechanism to make the agent rapidly 
avoid states where the tip-molecule bond previously ruptured and 
particularly also the states leading up to it.

Usually, RL algorithms like the one trained with Eq. 2 tend to 
“ignore” future negative rewards, if there is a strategy that narrowly 
avoids them: To compute the expected future reward at time t + 1, 
they weigh the highest Q values more than the lower ones. In the 
limit as T → 0, all Q values but the highest one are ignored. Because 
of this, information about failure states barely propagates to any 
states that lie two or more steps away. In our case, this means that 
with a randomly initialized NN, an agent would try to lift the mole-
cule on similar paths in each episode until it is absolutely certain that 
this path is not viable. This leads it to fail at nearly identical loca-
tions each time, and therefore, it does not explore efficiently. For 
general RL settings, this may be the desired behavior, but we need 
the agent to learn as quickly as possible to avoid the failure state and 
the states leading up to it. Our solution is to use a negative tempera-
ture Ttrain during training, which has the effect of inverting the im-
portance of the Q values as computed by Eq. 1. Now, low Q values, 
which indicate danger of rupture, are given a high importance. This 
information about a rupture is therefore propagated much further.

There is a trade-off here, because the further away the agent tries 
to stay from known failure states, the more likely it becomes that it 
misses a viable trajectory. We can control this trade-off by changing 
the training temperature. In the simulation environment, we found 
that the optimal training temperature was Ttrain = −0.1.

We tested whether using RL is necessary at all, then if all the 
agent does is avoid the regions of rupture states. We conducted an 
experiment in which the agent tries a random trajectory in the first 
episode and, in all following episodes, chooses its actions such that 
it stays as far away as possible from all previously occurred ruptures. 
Despite substantial experimentation with this approach, the agent 
never reached the goal state but got stuck in dead ends. RL, on 
the other hand, can identify such dead ends and plan trajectories to 
avoid them.

Exploiting the Cartesian state description for  
model-based planning
We use a slight variation of Dyna (31) for model-based planning. 
Dyna, in general, updates Q values with state transitions sampled 
from a learned environment model. To learn an environment model, 
we make use of the fact that the result of performing an action from 
a known state deterministically results in a new state, because the 
state description includes only the Cartesian coordinates of the tip, 
and each action moves the tip by a specified amount. To obtain a 
state from our environment model, we first pick a random state from 
the unique set of actually visited states and sample a new position 
around it. To sample a new position, we randomly pick between 
zero and four actions from our action set A and use them to walk to 
a new location. At each step, we randomly either walk into the usual 
positive z direction or instead walk in the negative z direction. The 
new location becomes st. Then, we sample an action at and the re-
sulting successor state st + 1, which is easily computed given st and at. 
At this point, we only need a reward rt + 1. If the sampled successor 
state is a known failure state (where bond breaking was observed 
before), the environment model emits the failure-reward of −1. 
Otherwise, it emits the default step-reward +0.01. In this way, we 
generate new (st, at, rt + 1, st + 1) tuples and use them for training (Eq. 2) 
in the same way as with regular samples. When training the NN, we 
use 10% of the samples from real experience and 90% of the samples 
from the environment model. In particular, in combination with the 
rupture avoidance mechanism, this propagates failure information 
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to a much larger number of states, which can then be avoided in the 
next episodes.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/36/eabb6987/DC1
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