000884748 001__ 884748
000884748 005__ 20210130005929.0
000884748 0247_ $$2doi$$a10.1021/acssynbio.0c00111
000884748 0247_ $$2Handle$$a2128/25736
000884748 0247_ $$2altmetric$$aaltmetric:86690105
000884748 0247_ $$2pmid$$apmid:32649183
000884748 0247_ $$2WOS$$aWOS:000563758100010
000884748 037__ $$aFZJ-2020-03237
000884748 082__ $$a570
000884748 1001_ $$0P:(DE-Juel1)171113$$aWiechert, Johanna$$b0
000884748 245__ $$aInducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch
000884748 260__ $$aWashington, DC$$bACS$$c2020
000884748 3367_ $$2DRIVER$$aarticle
000884748 3367_ $$2DataCite$$aOutput Types/Journal article
000884748 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1600953090_17522
000884748 3367_ $$2BibTeX$$aARTICLE
000884748 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884748 3367_ $$00$$2EndNote$$aJournal Article
000884748 520__ $$aInducible expression systems represent key modules in regulatory circuit design and metabolic engineering approaches. However, established systems are often limited in terms of applications due to high background expression levels and inducer toxicity. In bacteria, xenogeneic silencing (XS) proteins are involved in the tight control of horizontally acquired, AT-rich DNA. The action of XS proteins may be opposed by interference with a specific transcription factor, resulting in the phenomenon of counter-silencing, thereby activating gene expression. In this study, we harnessed this principle for the construction of a synthetic promoter library consisting of phage promoters targeted by the Lsr2-like XS protein CgpS of Corynebacterium glutamicum. Counter-silencing was achieved by inserting the operator sequence of the gluconate-responsive transcription factor GntR. The GntR-dependent promoter library is comprised of 28 activated and 16 repressed regulatory elements featuring effector-dependent tunability. For selected candidates, background expression levels were confirmed to be significantly reduced in comparison to established heterologous expression systems. Finally, a GntR-dependent metabolic toggle switch was implemented in a C. glutamicuml-valine production strain allowing the dynamic redirection of carbon flux between biomass and product formation.
000884748 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000884748 588__ $$aDataset connected to CrossRef
000884748 7001_ $$0P:(DE-HGF)0$$aGätgens, Cornelia$$b1
000884748 7001_ $$0P:(DE-Juel1)171825$$aWirtz, Astrid$$b2
000884748 7001_ $$0P:(DE-Juel1)138503$$aFrunzke, Julia$$b3$$eCorresponding author
000884748 773__ $$0PERI:(DE-600)2644383-1$$a10.1021/acssynbio.0c00111$$gVol. 9, no. 8, p. 2023 - 2038$$n8$$p2023 - 2038$$tACS synthetic biology$$v9$$x2161-5063$$y2020
000884748 8564_ $$uhttps://juser.fz-juelich.de/record/884748/files/Inducible%20Expression%20Systems%20Based%20on%20Xenoegeneic%20Silencing%20with%20Supplements.pdf$$yPublished on 2020-07-10. Available in OpenAccess from 2021-07-10.$$zStatID:(DE-HGF)0510
000884748 8564_ $$uhttps://juser.fz-juelich.de/record/884748/files/acssynbio.0c00111.pdf
000884748 8564_ $$uhttps://juser.fz-juelich.de/record/884748/files/Inducible%20Expression%20Systems%20Based%20on%20Xenoegeneic%20Silencing%20with%20Supplements.pdf?subformat=pdfa$$xpdfa$$yPublished on 2020-07-10. Available in OpenAccess from 2021-07-10.$$zStatID:(DE-HGF)0510
000884748 8564_ $$uhttps://juser.fz-juelich.de/record/884748/files/acssynbio.0c00111.pdf?subformat=pdfa$$xpdfa
000884748 909CO $$ooai:juser.fz-juelich.de:884748$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171113$$aForschungszentrum Jülich$$b0$$kFZJ
000884748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171825$$aForschungszentrum Jülich$$b2$$kFZJ
000884748 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138503$$aForschungszentrum Jülich$$b3$$kFZJ
000884748 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000884748 9141_ $$y2020
000884748 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000884748 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS SYNTH BIOL : 2018$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS SYNTH BIOL : 2018$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000884748 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000884748 920__ $$lyes
000884748 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000884748 980__ $$ajournal
000884748 980__ $$aVDB
000884748 980__ $$aUNRESTRICTED
000884748 980__ $$aI:(DE-Juel1)IBG-1-20101118
000884748 9801_ $$aFullTexts