000884750 001__ 884750
000884750 005__ 20210401192806.0
000884750 0247_ $$2doi$$a10.1038/s41586-020-2716-8
000884750 0247_ $$2ISSN$$a0028-0836
000884750 0247_ $$2ISSN$$a1476-4687
000884750 0247_ $$2Handle$$a2128/25838
000884750 0247_ $$2altmetric$$aaltmetric:91060410
000884750 0247_ $$2pmid$$apmid:32968283
000884750 0247_ $$2WOS$$aWOS:000572352700007
000884750 037__ $$aFZJ-2020-03238
000884750 082__ $$a500
000884750 1001_ $$0P:(DE-HGF)0$$aGao, Shang$$b0
000884750 245__ $$aFractional antiferromagnetic skyrmion lattice induced by anisotropic couplings
000884750 260__ $$aLondon [u.a.]$$bNature Publ. Group78092$$c2020
000884750 3367_ $$2DRIVER$$aarticle
000884750 3367_ $$2DataCite$$aOutput Types/Journal article
000884750 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1617217736_31153
000884750 3367_ $$2BibTeX$$aARTICLE
000884750 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884750 3367_ $$00$$2EndNote$$aJournal Article
000884750 520__ $$aMagnetic skyrmions are topological solitons with a nanoscale winding spin texture that hold promise for spintronics applications1,2,3,4. Skyrmions have so far been observed in a variety of magnets that exhibit nearly parallel alignment for neighbouring spins, but theoretically skyrmions with anti-parallel neighbouring spins are also possible. Such antiferromagnetic skyrmions may allow more flexible control than conventional ferromagnetic skyrmions5,6,7,8,9,10. Here, by combining neutron scattering measurements and Monte Carlo simulations, we show that a fractional antiferromagnetic skyrmion lattice is stabilized in MnSc2S4 through anisotropic couplings. The observed lattice is composed of three antiferromagnetically coupled sublattices, and each sublattice is a triangular skyrmion lattice that is fractionalized into two parts with an incipient meron (half-skyrmion) character11,12. Our work demonstrates that the theoretically proposed antiferromagnetic skyrmions can be stabilized in real materials and represents an important step towards their implementation in spintronic devices.
000884750 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x0
000884750 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000884750 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000884750 588__ $$aDataset connected to CrossRef
000884750 65027 $$0V:(DE-MLZ)SciArea-170$$2V:(DE-HGF)$$aMagnetism$$x0
000884750 65027 $$0V:(DE-MLZ)SciArea-120$$2V:(DE-HGF)$$aCondensed Matter Physics$$x1
000884750 65017 $$0V:(DE-MLZ)GC-120-2016$$2V:(DE-HGF)$$aInformation and Communication$$x0
000884750 693__ $$0EXP:(DE-MLZ)PANDA-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)PANDA-20140101$$6EXP:(DE-MLZ)SR2-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$ePANDA: Cold three axes spectrometer$$fSR2$$x0
000884750 7001_ $$0P:(DE-HGF)0$$aRosales, H. Diego$$b1
000884750 7001_ $$0P:(DE-HGF)0$$aGómez Albarracín, Flavia A.$$b2
000884750 7001_ $$0P:(DE-HGF)0$$aTsurkan, Vladimir$$b3
000884750 7001_ $$0P:(DE-HGF)0$$aKaur, Guratinder$$b4
000884750 7001_ $$00000-0002-0063-7517$$aFennell, Tom$$b5
000884750 7001_ $$00000-0002-7034-4031$$aSteffens, Paul$$b6
000884750 7001_ $$0P:(DE-HGF)0$$aBoehm, Martin$$b7
000884750 7001_ $$0P:(DE-Juel1)159141$$aČermák, Petr$$b8
000884750 7001_ $$0P:(DE-Juel1)156579$$aSchneidewind, Astrid$$b9$$ufzj
000884750 7001_ $$0P:(DE-HGF)0$$aRessouche, Eric$$b10
000884750 7001_ $$0P:(DE-HGF)0$$aCabra, Daniel C.$$b11
000884750 7001_ $$0P:(DE-HGF)0$$aRüegg, Christian$$b12
000884750 7001_ $$00000-0001-5521-3124$$aZaharko, Oksana$$b13$$eCorresponding author
000884750 773__ $$0PERI:(DE-600)1413423-8$$a10.1038/s41586-020-2716-8$$p37-41$$tNature <London>$$v586$$x1476-4687$$y2020
000884750 8564_ $$uhttps://juser.fz-juelich.de/record/884750/files/MSS_accept.pdf$$yOpenAccess
000884750 8564_ $$uhttps://juser.fz-juelich.de/record/884750/files/s41586-020-2716-8.pdf$$yRestricted
000884750 8564_ $$uhttps://juser.fz-juelich.de/record/884750/files/MSS_accept.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884750 8564_ $$uhttps://juser.fz-juelich.de/record/884750/files/s41586-020-2716-8.pdf?subformat=pdfa$$xpdfa$$yRestricted
000884750 909CO $$ooai:juser.fz-juelich.de:884750$$pdnbdelivery$$pVDB$$pVDB:MLZ$$pdriver$$popen_access$$popenaire
000884750 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156579$$aForschungszentrum Jülich$$b9$$kFZJ
000884750 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000884750 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000884750 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000884750 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000884750 9141_ $$y2020
000884750 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1200$$2StatID$$aDBCoverage$$bChemical Reactions$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-12$$wger
000884750 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)9940$$2StatID$$aIF >= 40$$bNATURE : 2018$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNATURE : 2018$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1210$$2StatID$$aDBCoverage$$bIndex Chemicus$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884750 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-12
000884750 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-12
000884750 920__ $$lyes
000884750 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS-FRM-II$$lJCNS-FRM-II$$x0
000884750 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x1
000884750 9201_ $$0I:(DE-588b)4597118-3$$kMLZ$$lHeinz Maier-Leibnitz Zentrum$$x2
000884750 980__ $$ajournal
000884750 980__ $$aVDB
000884750 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000884750 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000884750 980__ $$aI:(DE-588b)4597118-3
000884750 980__ $$aUNRESTRICTED
000884750 9801_ $$aFullTexts