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Magnetic skyrmions are topological solitons with a nanoscale winding spin37

texture that hold promise for spintronics applications1–4. Until now, skyrmions38

have been observed in a variety of magnets that exhibit nearly parallel align-39

ment for the neighbouring spins, but theoretically, skyrmions with anti-parallel40

neighbouring spins are also possible. The latter, antiferromagnetic skyrmions,41

may allow more flexible control compared to the conventional ferromagnetic42

skyrmions5–10. Here, by combining neutron scattering and Monte Carlo simu-43

lations, we show that a fractional antiferromagnetic skyrmion lattice with an44

incipient meron character11,12 is stabilized in MnSc2S4 through anisotropic cou-45

plings. Our work demonstrates that the theoretically proposed antiferromag-46

netic skyrmions can be stabilized in real materials and represents an important47

step towards implementing the antiferromagnetic-skyrmion based spintronic de-48

vices.49

The concept of topology has revolutionized condensed matter physics: it reveals that the50

classification of different phases can extend beyond the Landau-Ginzburg-Wilson paradigm51

of classification by symmetry, bringing about a variety of new phases with topological char-52

acters13. Among the topological entities, magnetic skyrmions with a winding spin texture53

in real space have triggered enormous interest due to their potential for spintronics applica-54

tions1–4. Information encoded in the nanoscale spin winding of the skyrmions is topologically55

protected against perturbations, and can be conveniently manipulated with electronic cur-56

rents14–16.57

Similar to the vortices that emerge in the Berezinskii-Kosterlitz-Thouless transition, mag-58

netic skymions are conventionally treated as topological solitons in non-linear field theory17,59

which implies a continuous ferromagnetic spin alignment at short length scales. This short-60

range ferromagnetism is indeed a common feature for most of the known skyrmion hosts,61

including the chiral magnets with antisymmetric Dzyaloshinskii-Moriya interactions (DMI)3,62

and the recently discovered centrosymmetric compounds with multiple-spin couplings18–20.63

However, explorations on skyrmions should not be confined to ferromagnets21. Theoret-64

ical calculations have suggested that skyrmions might be also stabilized in antiferromag-65

nets with two6,7 or three8–10 sublattices, leading to antiferromagnetic skyrmions (AF-Sks)66

with anti-parallel nearest-neighbouring (NN) spin alignment, which might complement the67

skyrmion control in spintronic devices5. On the other hand, antiferromagnets are often68
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accompanied by strong frustration, which is a known ingredient to enhance fluctuations22.69

Thus the marriage between skyrmion and antiferromagnetism23,24 might be the key to realize70

exotic states like magnetic hopfions25,26 or even quantum skyrmions27.71

Despite their tantalizing prospects, it is as yet unclear whether AF-Sks can be experi-72

mentally realized or not. Direct observation of the AF-Sks, e.g. with Lorentz transmission73

electron microscopy2, is challenging since the alternating spins cancel the local magnetic field.74

Although single-q magnetic structures can be accurately determined by neutron diffraction,75

skyrmion lattices are multi-q structures and the phase factors between the different prop-76

agation vectors q are lost. One prominent example is the spinel MnSc2S4
28,29, where the77

magnetic Mn2+ ions form a bipartite diamond lattice (see Fig. 1a). A previous neutron78

diffraction work revealed the existence of a field-induced triple-q phase in this antiferromag-79

net29, but the exact arrangement of magnetic moments still remains unclear.80

In this article, we show that a fractional three-sublattice AF-Sk lattice is realized in81

the MnSc2S4 triple-q phase. By combining state-of-the-art neutron spectroscopy, exten-82

sive Monte Carlo simulations, and neutron diffraction, we clarify the microscopic couplings83

between the Mn2+ spins in MnSc2S4 up to the third-neighbours and, most importantly, es-84

tablish the existence of a fractional three-sublattice AF-Sk lattice8–10 that originates from85

anisotropic couplings over the nearest-neighbours. The fractionalization of the AF-Sks can86

be attributed to their close packing11, leading to incomplete spin wrapping that is reminis-87

cent of the magnetic merons/antimerons12.88

Inelastic neutron scattering (INS) probes the magnon excitations in long-range ordered89

magnets. Compared to the neutron diffuse scattering that was used to characterize the quasi-90

elastic spiral spin-liquid correlations in the same compound29, the rich information that is91

available in inelastic neutron spectra allows a direct clarification of the further-neighbouring92

couplings in the spin Hamiltonian, which are crucial in understanding the phase transitions93

in MnSc2S4
30–32.94

Figure 1b shows our inelastic neutron spectra collected on a powder sample of MnSc2S495

at temperature T = 1.3 K in the helical ordered state, which is the parent phase of the96

field-induced triple-q state29. Strong inelastic scattering intensities are observed, emanating97

from the magnetic Bragg reflections that belong to the propagation vector q = (0.75 0.7598

0), and reaching a maximal energy of E ∼ 0.9 meV at wavevector Q ∼ 0.9 Å−1. Compared99

to other similar spinel compounds33–35, the magnon dispersion bandwidth in MnSc2S4 is100
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narrower, consistent with its relatively low ordering temperature of TN = 2.3 K28,29.101

Figure 2 presents our INS results collected on a single crystal sample of MnSc2S4 along the102

high symmetry lines (h h 0), (h 1.5−h 0), and (h 0.75 0) in reciprocal space. No excitation103

gap can be resolved, which is compatible with the absence of single-ion anisotropy up to the104

second order in spin operators due to the 3d5 electron configuration of the Mn2+ ions36. A105

representative energy scan at (0 0.75 0) shown in Fig. 2a reveals rather broad excitations,106

suggesting the appearance of multiple magnon bands.107

Using linear spin wave theory, we are able to model the spin dynamics with Hamiltonian108

H0 =
∑

ij JijSi · Sj, where Jij is the exchange coupling between Heisenberg spins Si and109

Sj. As explained in the Methods section, it is necessary to include couplings up to the110

third-neighbours30–32 in order to reproduce the measured INS spectra. The fitted coupling111

strengths are J1 = −0.31(1) K, J2 = 0.46(1) K, and J3 = 0.087(4) K at the nearest-, second-112

, and third-neighbours, respectively. Representative fits to the powder data at selected Q113

positions are shown in Fig. 1d. The overall calculated spectra are presented in Fig. 1c and114

Fig. 2e,f for comparison with the powder and single crystal experimental data, respectively.115

As shown in Fig. 2a for the energy scan at (0 0.75 0), contributions from different magnetic116

domains are necessary to describe the broad excitations in the single crystal data.117

Although the J1-J2-J3 model successfully captures the spin dynamics in the helical phase118

of MnSc2S4, it fails to account for the field-induced triple-q phase29, which implies the neces-119

sity of even weaker perturbations that are beyond the INS resolution. Such a perturbation-120

dominated scenario is allowed in MnSc2S4 due to its enormous ground state degeneracy29,30.121

Theoretical calculations on centrosymmetric systems have revealed that perturbations from122

the high-order analogs of the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions can of-123

ten stabilize a triple-q phase37,38. However, this mechanism fails in MnSc2S4 because the124

insulating character of this compound rules out any RKKY-like interactions that rely on the125

conduction electrons.126

Through extensive Monte Carlo simulations, we explored the effect of different perturba-127

tions that are compatible with the symmetries of the lattice31, and revealed that the triple-q128

phase in MnSc2S4 can be stabilized by anisotropic couplings at the nearest-neighbours to-129

gether with a fourth-order single-ion anisotropy term that might be microscopically derived130

from the spin-orbit coupling and dipolar interactions31. The perturbed J1-J2-J3 Hamiltonian131

now reads132
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H = H0 +H‖ +HA +HZeeman

=
∑

ij

JijSi · Sj + J‖
∑

ij∈NN

(Si · r̂ij)(Sj · r̂ij)

+ A4

∑

i,α=x,y,z

(Sα
i )

4 − gµBB111

∑

i

Si , (1)

where H‖ is the perturbation term due to the NN anisotropic couplings, in which J‖ is the133

anisotropic coupling strength and r̂ij is the unitary direction vector along the NN bonds;134

HA describes a weak fourth-order single-ion anisotropy that is needed to stabilize a zero-135

field helical ground state36; HZeeman is the conventional Zeeman term for spins in a magnetic136

field B111 along the [111] direction. In our minimal Hamiltonian, the anisotropic J‖ is137

found to be the only term that can induce a triple-q phase. Through comparison with138

the experimental phase diagram presented in Fig. 3, the perturbation parameters can be139

determined to be J‖ = −0.01 K and A4 = 0.0016 K. As exemplified in Fig. 3a, only one140

triple-q domain with propagation vectors lying within the (111) plane is stabilized in field29,141

and the consequent non-monotonous evolution of the domain distribution is successfully142

reproduced in our simulations. As presented in the Methods section, the magnitude of the143

total scalar spin chirality increases sharply upon entering the triple-q phase, evidencing a144

magnetic structure that is topologically different from the single-q helical phase8,23.145

With Monte Carlo simulations, we can directly inspect the triple-q structure by layers,146

in which the Mn2+ ions form a triangular lattice (see Figs. 1a and 4a). As expected for147

antiferromagnets, the spin configuration in one layer shown in Fig. 4b involve nearly anti-148

parallel spins at the nearest-neighbours. However, if the whole triangular lattice is separated149

into three sublattices8,10 as shown in the insets of Fig. 4b, a smooth whirling texture will150

emerge in each sublattice, and the only difference among the sublattices is an overall shift of151

whorls. As described in Figs. 4c and d, spins at the centers of the whorls are anti-aligned with152

field, leading to a texture that is similar to the skyrmion lattices1. Due to the short distance153

between the centers of the whorls, skyrmions in the triangular sublattices are not wrapping154

the full sphere, but are fractionalized into two blocks with opposite winding directions11,155

forming a pair of incipient meron and antimeron12 as indicated in Fig. 4d. When the three156

sublattices are added together as shown schematically in Fig. 4b, fractional skyrmions with157

opposite magnetizations overlap in the whole triangular lattice, leading to oscillating S111158
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components near the center of the whorls and 120◦-like alignments for the S⊥ components159

close to the periphery, where S111 (S⊥) are magnetic moments along (perpendicular to) the160

(111) direction. Therefore, each (111) layer in the triple-q phase realizes a fractional AF-Sk161

lattice that is composed of three sublattices8.162

Stacking of AF-Sk lattices along the [111] direction is determined by the propagation163

vectors and the Mn2+ positions within the (111) layers. In the Methods section, we present164

an analytical ansatz for spins at general positions constructed as a superposition of three165

helical modulations, and the correctness of the fractional AF-Sk lattice is verified through166

comparison against the neutron diffraction dataset shown in Extended Data Fig. 7. The167

bipartite character of the diamond lattice leads to bilayers with exactly the same spin con-168

figurations as explained in Fig. 4a, thus realizing three consecutive AF-Sk bilayers with169

shifted whorl centers. Such a stacking order leads to AF-Sk tubes along the [111] direction170

shown in Fig. 4c, which is a common feature for many skyrmion lattices39,40.171

The fractional AF-Sk lattice established in our work demonstrates that even antiferro-172

magnets can exhibit topologically non-trivial spin textures. In MnSc2S4, the AF-Sk lattice173

inherits the three-sublattice character of the triangular lattice in the (111) layers. However,174

the mechanism we discovered, which utilizes anisotropic couplings to stabilize a triple-q175

phase, can be generalized to AF systems with different geometries41,42. Especially, on the176

bipartite honeycomb lattice43, anisotropic couplings might stabilize a two-sublattice AF-Sk177

lattice with opposite spin winding textures, thus lending an ideal platform to explore the178

AF-Sk transport6,7.179

The spin dynamics of the AF-Sks also deserves further investigations. In chiral systems,180

the lifetime of isolated AF-Sks is known to be enhanced by the DMI44. It is therefore181

interesting to compare the effect of the antisymmetric couplings on the lifetime of the AF-182

Sks in centrosymmetric systems. For the AF-Sk lattice, magnons propagating through a183

topological spin texture might carry a Berry phase and thus experience a fictitious magnetic184

field45,46, leading to the thermal Hall effect that can be utilized for magnonics applications.185

Furthermore, recent calculations on a three-sublattice AF-Sk lattice that is similar to the186

triple-q phase in MnSc2S4 revealed the lowest magnon band to be topological non-trivial9.187

The consequent chiral magnon edge states allow magnon transport without backscattering47188

and could further reduce the energy dissipation in magnonics devices.189

In summary, our combined neutron scattering and Monte Carlo simulation works clarify190
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the microscopic spin couplings in MnSc2S4 and establish the existence of a fractional AF-191

Sk lattice that is induced by the anisotropic couplings. Our work shows that topological192

structures can be stabilized in antiferromagnets, which is an important step in fullfilling193

spintronic devices that aim to achieve efficient operations with a minimal scale.194
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FIG. 1. Spin dynamics in a powder sample of MnSc2S4. a, Mn2+ ions (blue and brown

spheres) in MnSc2S4 form a bipartite diamond lattice that can be viewed as triangular planes

(blue) stacked along the [111] direction. Couplings up to the third neighbours are indicated.

The presentation of the magnetic lattice in the cubic unit cell can be found in Ref.29. b, INS

spectra S(Q,ω) collected on FOCUS at T = 1.3 K using a powder sample of MnSc2S4. c, INS

spectra calculated using the linear spin wave theory for the J1-J2-J3 model with J1 = −0.31(1)

K, J2 = 0.46(1) K, and J3 = 0.087(4) K. The calculated spectra are convoluted by a Gaussian

function with fitted full-width-half-maximum (FWHM) of 0.27 meV to account for the instrumental

resolution. d, Integrated INS spectra I(ω) at Q = 0.4 (red triangles), 0.9 (blue circles), and 1.3

Å−1 (yellow triangles) with an integration width of 0.1 Å−1. Solid lines are the fitted spectra using

the J1-J2-J3 model at the corresponding Q positions. Error bars represent standard deviations.

FIG. 2. Spin dynamics in a single crystal sample of MnSc2S4. a, Representative INS spectra

I(ω) (red circles) collected on PANDA at T = 0.5 K and Q = (0 0.75 0). The red solid line denotes

the calculated spectra using the J1-J2-J3 model. Dashed lines with shaded areas indicate the

contributions of magnon scattering from the (0.75 ±0.75 0) and (0 0.75 ±0.75) magnetic domains

(yellow), magnon scattering from the (0.75 0 ±0.75) magnetic domains (blue), and tail of the elastic

line (grey). The calculated spectra are convoluted by a Gaussian function with fitted FWHM of

0.21 meV to account for the instrumental resolution and thermal broadening. b, Brillouin zone in

the (hk0) plane with conventional notations. INS spectra are measured along the yellow dashed

lines. c, INS spectra measured on ThALES at T = 1.2 K along the (h h 0) and (h 1.5−h 0)

directions. d, INS spectra measured on PANDA at T = 0.5 K along the (h 0.75 0) direction. e,f,

Calculated INS spectra using the J1-J2-J3 model. Error bars in a represent standard deviations.
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FIG. 3. Anisotropic coupling induced triple-q phase in MnSc2S4. a, Evolution of magnetic

domains as a function of magnetic field applied along the [111] direction at T = 0.1 K. Red squares

are neutron diffraction intensities of the (0.75 −0.75 0) reflection within the (111) plane measured

in a decreasing field. Solid lines are intensities obtained from Monte Carlo simulations, with the

averaged contributions from the six arms perpendicular (non-perpendicular) to the [111] direction

shown in red (blue). Error bars indicate the standard deviations of the mean. In the intermediate

phase region between 3.5 and 7 T, the six arms perpendicular to the [111] direction have equal

intensities, consistent with its triple-q character. Insets show the intensity distribution of the 〈0.75

0.75 0〉 star in the single-q helical phase observed in zero-field cooling (left), triple-q phase in an

intermediate field (middle), and single-q helical phase with field-induced domain redistribution

(right). Each dot represents a propagation vector, with red (grey) color indicating non-zero (zero)

intensity. b, Phase diagram for MnSc2S4 obtained from neutron diffraction experiment performed

in a magnetic field along the [111] direction. Colormap shows the intensity of the (0.75 −0.75 0)

reflection collected in a decreasing field, and the phase boundary of the AF-Sk lattice state (AF-

SkL) is marked by triangles that are connected by dashed lines as guide to the eyes. CL (ICM)

stands for the single-q collinear (incommensurate) phase. The Fan phase is a single-q collinear

phase added with a uniform magnetization along the [111] direction. Error bars representing the

standard deviations are smaller than the marker size.
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FIG. 4. Fractional AF-Sk lattice in MnSc2S4. a, Stacking order for the Mn2+ triangular

lattice layers along the [111] direction. A and B denote the two FCC sublattices of the diamond

lattice shifted by (1/4 1/4 1/4), and the Mn2+ positions are the same in the neighbouring layers of

the same color. Within the A or B sublattice, the triangular lattices in the consecutive layers are

shifted by (1/2 1/2 0), leading to three different types of layers shown by different colors. b, In

each layer, the Mn2+ triangular lattice can be divided into three sublattices of △1, △2, and △3 as

illustrated in the insets. In the triple-q phase, Mn2+ spins within each triangular sublattice form

a fractional Sk lattice (see panel d), which leads to a fractional AF-Sk lattice of three sublattices

in the whole layer. Blue and yellow circles in the insets describe the locations of the fractional

skyrmions with opposite winding direction, which overlap with each other in the complete (111)

layer. The circular (triangular) inset is a zoomed-in plot of the magnetic structure around the

skyrmion center (boundary). c, Spin configurations in the same type of layers are exactly the

same, leading to cylinders of fractional skyrmions along the [111] direction. d, Spin texture of

the triangular sublattice △1 in layer A1. Directions of the spins are indicated by arrows, with

colors denoting the size of the spin component along the [111] direction. Fractional skyrmions

with opposite winding directions are indicated by blue and yellow lines in the main panel, and the

wrapping of their spin texture are described over the two spheres shown on the right.
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METHODS339

Inelastic neutron scattering experiments. Inelastic neutron scattering experiments340

on a powder sample of MnSc2S4 were performed on FOCUS at the Swiss Spallation Neutron341

Source SINQ of the Paul Scherrer Institut PSI. For the measurements, about 4 g of MnSc2S4342

powder sample synthesized through the solid-state reactions48 was filled into an annular-343

shaped aluminum can with outer/inner diameters of 12/10 mm. An orange cryostat with344

an additional roots pump was used, enabling a base temperature of 1.3 K. A setup with 5.0345

Å incoming neutron wavelength was employed.346

Inelastic neutron scattering experiments on a single crystal sample of MnSc2S4 grown347

with the chemical transport reaction technique29 were performed on ThALES49,50 at the348

Institut Laue-Langevin ILL and PANDA51,52 at the Heinz Maier-Leibnitz Zentrum MLZ.349

Five crystals with a total mass of ∼ 100 mg were co-aligned with (hk0) as the horizontal350

scattering plane. For the experiment on ThALES, a cryomagnet together with an additional351

roots pump was used, which enabled a base temperature of 1.3 K and a maximal vertical field352

of 10 T. For better resolution, the Si(111) monochromator and PG(002) analyzer with double353

focusing were used. A Be-filter between the sample and analyzer and a radial collimator354

between the analyzer and detector were mounted. The final neutron momentum kf was355

fixed at 1.3 Å−1. For the experiment on PANDA, a 3He cryostat was used, which enabled a356

base temperature of ∼ 0.5 K. PG(002) monochromator and analyzer with double focusing357

were employed. The final neutron momentum kf was fixed at 1.3 Å−1. A cooled Be filter358

was mounted before the sample to remove the higher-order neutrons.359

Linear spin wave calculations and fits for the INS spectra were performed using the SpinW360

package53. Input data for the fits are the three integrated intensities I(ω) shown in Fig. 1b.361

The spin Hamiltonian of the J1-J2-J3 model has the helical ground state with a propagation362

vector q = (0.75 0.75 0).363

Neutron diffraction experiments. Neutron diffraction experiment was performed on364

the diffractometer D23 at the ILL to map out the phase diagram shown in Fig. 3. Incoming365

neutron wavelength of 1.27 Å was selected by the Cu(200) monochromator. A dilution366

refridgerator with a base temperature of 50 mK together with a magnet that supplies a field367

up to 12 T was employed. The MnSc2S4 crystal was aligned with the (111) direction along368

the vertical field direction. To map out the phase diagram, we first cooled the crystal in369
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zero field, then perform rocking scan for the (0.75 −0.75 0) reflection with increasing and370

decreasing fields.371

The neutron diffraction dataset in the triple-q phase was collected on TriCS (now ZE-372

BRA) at SINQ, PSI. Incoming neutron wavelength of 2.32 Å was selected by the PG(002)373

monochromator. A PG filter was mounted before the sample. A cryomagnet together with374

a roots pump was employed for the measurements. 67 reflections were collected at T =375

1.60 K in a magnetic field of 3.5 T along the [111] direction.376

Monte Carlo simulations. Monte Carlo simulations were performed using the377

Metropolis algorithm by lowering the temperature in an annealing scheme and comput-378

ing 500 independent runs initialized by different random numbers for each temperature379

and external magnetic field. Simulations were performed in 2 × L3 magnetic site clusters,380

with L = 8 − 24 and periodic boundary conditions. In order to compare the classical381

MC simulations with the experimental results, the S2 factor in the computed thermal av-382

erages of relevant quantities was replaced by the quantum mechanical expectation value383

〈S2〉 = S(S + 1) following Ref. 54.384

Comparison for different spin models. Using linear spin wave theory, we compared385

different spin models against the INS spectra collected on a powder sample of MnSc2S4.386

Extended Data Fig. 1a and b reproduce the experimental data and the spin wave calculation387

results for the J1-J2-J3 model with J1 = −0.31 K, J2 = 0.46 K, and J3 = 0.087 K as presented388

in the main text, respectively. For the J1-J2 model with J3 = 0, if the spectra at Q ∼ 0.4 Å389

was fitted to the experimental data, the calculated INS intensity will reach ∼ 1.2 meV390

at Q ∼ 0.9 Å as shown in Extended Data Fig. 1c, which is higher than the experimental391

bandwidth of ∼ 0.9 meV. Therefore, the third-neighbour coupling J3 is necessary to achieve392

a good fit for the INS spectra. The ratio J2/J1 is now increased to ∼ 1.5 as compared to 0.85393

from neutron diffuse scattering29, indicating that the lattice is even more frustrated than394

anticipated before. As shown in Extended Data Fig. 2, at temperatures above TN , the J1-395

J2-J3 model leads to stronger intensities at around q = (0.75 0.75 0), which reproduces the396

intensity contrast within the spiral surface that was observed in our previous experiment29.397

Recent density functional theory (DFT) calculations32 suggest a different J1-J2-J3 model398

with J1 = −0.378 K, J2 = 0.621 K, and J3 = 0.217 K. From the calculated INS spectra399

shown in Extended Data Fig. 1d, we see that this DFT model produces a magnon bandwidth400

that is higher than the experimental observation. Compared to the coupling strengths fitted401

18



from the spin wave dispersions, the DFT model overestimates the coupling strength for J2402

and J3.403

Theoretical phase diagram from the Monte Carlo simulations. Extended Data404

Fig. 3 plots the calculated phase diagram obtained from Monte Carlo simulations using the405

perturbed spin Hamiltonian (Eq. 1 in the main text). The J1, J2, and J3 couplings are406

fixed to the spin wave fits of the INS spectra, while the anisotropy terms are determined to407

be J‖ = −0.01 K and A4 = 0.0016 K after exploring the stability of the triple-q phase as408

discussed below. The color scale denotes the absolute value of the total scalar spin chirality409

χtot = 〈 1
8π

∑
n χn〉 with χn = Si · (Sj × Sk), where n indexes the N elementary triangles of410

sites i, j, and k in the (111) layers.411

In zero magnetic field the single-q helical state is identified by χ = 0. The transient412

collinear and incommensurate phases found experimentally in the vicinity of TN (Ref.29)413

are not reproduced in our simulations possibly due to thermal fluctuations and finite size414

effects, and a detailed exploration in the transitional regime is deferred for future analysis.415

In applied magnetic fields the triple-q phase is identified by sharp increase of the total416

scalar spin chirality, which evidences a magnetic structure that is topologically different417

from the single-q helical phase. Contrary to the skyrmion lattice that are stabilized by the418

antysimmetric Dzyaloshinskii-Moriya interactions1, here the winding direction can be either419

clockwise or anti-clockwise since the model preserves the inversion symmetry in the (111)420

plane23. This implies a spontaneous symmetry breaking in the AF-SkL phase.421

Two complementary methods have been employed to clarify the AF-SkL state in the422

Monte Carlo simulations. One is to directly check the magnetic textures in real space as423

exemplified in Fig. 4 of the main text, another is to calculate the magnetic structure factors424

in reciprocal space that can be directly compared to the neutron diffraction results. In425

the latter method, the skyrmion phase can be identified by the six Bragg spots located in426

the plane perpendicular to the magnetic field. Extended Data Fig. 4 shows the calculated427

magnetic structure factors in (hk0) and (111) planes at T = 1.25 K and B111 = 5.6 T using428

a 16× 16× 16 super-lattice over 500 averaged copies.429

In order to illustrate the stability of the triple-q phase and explain how did we determine430

the strength of the perturbation terms, we compare the phase diagrams calculated with431

different strength of J‖ in Extended Data Fig. 5. When the strength of J‖ is reduced from432

−0.01 K to −0.005 K, the stability region of the triple-q phase will also become reduced and433
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thus deviates from our experimental observation. On the other hand, when the strength of434

J‖ is increased to −0.02 K, although the stability region of the triple-q phase remains almost435

the same, a new chiral phase emerges at lower magnetic fields, which is possibly a multiple-q436

state that is different from the skyrmion, fractional skyrmion, or meron lattices. Finally,437

when the sign of J‖ become positive with J‖ = 0.01 K, the triple-q phase will disappear438

completely. Therefore, the perturbation term J‖ can be determined to be −0.01 K.439

Analytical expression for the AF-Sk lattice. As confirmed in many different types440

of skymion lattices, the magnetic structure of each q-component of the triple-q structure is441

often connected to the single-q structure observed in zero field. A well-known example is442

the Bloch-type skyrmion lattice in MnSi (Ref. 1), where the helical components are derived443

from the zero-field helical phase. Similar arguments hold for the cycloidal components of444

the Néel-type skyrmion lattice observed in GaV4S8 (Ref. 55). Therefore, considering the445

helical and collinear structures that are observed in MnSc2S4 at zero field, we can express446

its field-induced triple-q structure through the ansatz:447

S(r) =
1

nS

(A⊥

3∑

i=1

sin(qi · r + φ⊥)êi

+ A111

3∑

i=1

cos(qi · r + φ111)ê111

+M111) , (2)

where nS is the normalization factor that fixes the spin magnitude to 5/2, A⊥ (A111) is the448

amplitude for spin modulation perpendicular (parallel) to the [111] direction ê111 with phase449

factor φ⊥ (φ111), qi are the three propagation vectors (0.75 −0.75 0), (0.75 0 −0.75), and450

(0 0.75 −0.75), êi are the unitary vectors that form cartesian coordinate systems with the451

corresponding qi and ê111, and M111 is an homogeneous contribution to the magnetization452

along ê111.453

Assuming equal magnitude for A⊥ and A111, and φ⊥ = 0 without loss of generality, the454

case of φ111 = −π and −3π/2 corresponds to helical and collinear components, respectively455

(see Extended Data Fig. 6a). Note that for the zero-field collinear structure, the spin456

directions are canted out of the (111) plane by 45◦ according to our previous refinement29,457

and such a canting has been taken into account in our expression. Therefore, by varying458

φ111, we can construct different triple-q structures with q-components covering the observed459
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collinear structure, helical structure, and most importantly, a general distorted structure460

that lies in-between the collinear and helical phases.461

Extended Data Fig. 6b shows the representative magnetic structure of the proposed462

ansatz for one sublattice in the (111) plane together with that obtained from the Monte463

Carlo simulations. Assuming |M111| = 1, the parameter set of A111 = −A⊥ = 2.2, φ⊥ = 0,464

and φ111 = −9π/8, the proposed ansatz well reproduces the magnetic structure obtained in465

the Monte Carlo simulations. Two very important details can be observed from this result.466

First, unlike what happens in the typical skyrmion lattice, the internal phase for the spin467

configuration is different for the perpendicaular and parallel component of the spin θj 6= φj.468

Secondly, the condition
∑

j cos(θj) = 1 is not satisfied as usual in triple-q phases23.469

Refinement of the neutron diffraction dataset in the triple-q phase. With470

the ansatz presented in the previous section, we can directly verify the antiferromagnetic471

skyrmion lattice by comparing its magnetic structure factors with the neutron diffraction472

intensities of magnetic Bragg peaks. Details for the neutron diffraction experiment can be473

found in the Methods section. As shown in Extended Data Fig. 7a of the main text, the474

fractional antiferromagnetic skyrmion lattice obtained in the Monte Carlo simulation fits475

the neutron diffraction dataset very well, with R-factors RF2 = 14.3 % and RF = 10.8 %.476

By varying the φ111 phase factors, we compared the refinement results from different477

triple-q structures that are composed of general distorted helical components. Extended478

Data Fig. 7b of the main text summarizes the dependence of the RF2 factor on φ111. The479

best refinement was achieved in the region of −9/8π ≤ φ111 ≤ −7/8π with comparable480

R-factors, justifying the value of φ111 = −9/8π obtained from the Monte Carlo simulations.481

More importantly, as shown in Extended Data Fig. 7c, in the whole regime of −9/8π ≤482

φ111 ≤ −7/8π, the triple-q structure can always be described as a fractional AF-SkL, that483

is, each (111) plane exhibit a three-sublattice antiferromagnetic alignment, and a fractional484

skyrmion lattice emerges in each sublattice. The only difference in these structures is a485

slight variation in the fractionalization. Therefore, our neutron diffraction results strongly486

support the emergence of a fractional three-sublattice AF-SkL in MnSc2S4.487

∗ Present address: Materials Science & Technology Division and Neutron Science Division, Oak488

Ridge National Laboratory, Oak Ridge, TN 37831, USA489
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51. A. Schneidewind and P. Čermák, Heinz Maier-Leibnitz Zentrum et al. PANDA: Cold three500

axes spectrometer, J. Large-scale Research Facilities 1, A12 (2015).501

52. C. Utschick, M. Skoulatos, A. Schneidewind, and P. Böni, Optimizing the triple-axis spectrom-502
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Extended Data Fig. 1. Comparison of different spin models. a, INS spectra S(Q,ω) collected

on FOCUS at T = 1.3 K using a powder sample of MnSc2S4. b-d INS spectra calculated using the

linear spin wave theory for the J1-J2-J3 model with J1 = −0.31 K, J2 = 0.46 K, and J3 = 0.087(4)

K as presented in the main text (b), for the J1-J2 model with J1 = −0.71 K, J2 = −0.85 × J1 =

0.60 K (c), and for the J1-J2-J3 model with parameters calculated from the DFT calculations32

J1 = −0.378 K, J2 = 0.621 K, and J3 = 0.217 K. Please note the different energy ranges in different

panels.

Extended Data Fig. 2. Spiral surface above the long-range order transition. Spin corre-

lations in the (hk0) plane calculated by Monte Carlo simulations using the J1-J2-J3 model plus

the anisotropic perturbation terms with coupling strength listed in the main text. Calculations

were performed at T = 2.9 K. Calculations with zero anisotropic perturbations does not affect the

results.

Extended Data Fig. 3. Calculated phase diagram with perturbations J‖ = −0.01 K and

A4 = 0.0016 K. Phase diagram for MnSc2S4 obtained from the Monte Carlo simulation with field

applied along the [111] direction as in the experiment. Colormap shows the calculated absolute

value of the total scalar spin chirality χtot. Squares indicate the phase boundary obtained from

the peak position of the calculated magnetic susceptibility in field along the [111] direction. Up-

pointing triangles on the boundary of the AF-SkL phase are the middle points of the steep rise/drop

in χtot(H) at constant T , and their errors are estimated using the half-width of the transitional

region. Left-pointing triangles mark the sudden rise in χtot(T ) in constant field. Error bars

representing the standard deviations are not shown if their length is smaller than the marker size.
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Extended Data Fig. 4. Identifying the triple-q phase. Magnetic structure factor obtained by

simulations in the triple-q phase at T = 1.25 K and B111 = 5.6 T in the (hk0) (a) and (111) (b)

planes.

Extended Data Fig. 5. Dependence of the triple-q phase stability on the perturbation

terms J‖. a-d, Calculated phase diagrams with perturbations J‖ = 0.01 K (a), −0.005 K (b),

−0.01 K (c), and −0.02 K (d). The single-ion anisotropy A4 is fixed at 0.0016 K. Colormap shows

the absolute value of the total scalar spin chirality similar to that in Extended Data Fig. 3. e-h,

Field dependence of the domain population at T = 0.1 K. Red circles (blue triangles) indicate

domains with q in (out of) the (111) plane. Yellow squares are the calculated absolute value of the

scalar spin chirality. Error bars representing the standard deviations of the mean are smaller than

the marker size.

Extended Data Fig. 6. Analytical ansatz for the AF-Sk lattice. a, Schematic for the moment

directions in each q-component of the triple-q structure at φ111 = −π (helical), −3/2π (collinear),

and −9/8π (distorted helical). b, Comparison between representative magnetic texture for one

sublattice in the (111) plane obtained by the analytical ansatz (left) and the Monte Carlo sim-

ulations (right) performed at T = 0.5 K and B111 = 5 T. The color scheme indicates the spin

component along the [111] direction, and the arrows indicate the spin component in the (111)

plane.

Extended Data Fig. 7. Refinement of the neutron diffraction dataset collected in triple-q

phase. a, Comparison of the observed and calculated intensities for the fractional antiferromag-

netic skyrmion lattice. The dataset was collected in the triple-q phase under a magnetic field of 3.5

T along the [111] direction. b, Dependence of the RF2 factor on the phase factor φ111. The arrows

indicate results for φ111 = −π, −3/2π, and −9/8π, which correspond to the triple-q structures

with helical, collinear, and distorted helical components, respectively. c, Magnetic textures for one

sublattice in the (111) plane with φ111 = −9/8π, −π, and −7/8π, showing that in the region of

−9/8π ≤ φ111 ≤ −7/8π, the triple-q structure always realizes a fractional AF-SkL and only the

proportion of fractionalization is varied. The color scheme indicates the spin component along the

[111] direction, and the arrows indicate the spin component in the (111) plane.
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