000884767 001__ 884767
000884767 005__ 20220930130252.0
000884767 0247_ $$2doi$$a10.1088/1367-2630/abb514
000884767 0247_ $$2Handle$$a2128/25951
000884767 0247_ $$2altmetric$$aaltmetric:91587153
000884767 0247_ $$2WOS$$aWOS:000576907700001
000884767 037__ $$aFZJ-2020-03243
000884767 082__ $$a530
000884767 1001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b0$$eCorresponding author
000884767 245__ $$aMultiple-scattering approach for multi-spin chiral magnetic interactions: application to the one- and two-dimensional Rashba electron gas
000884767 260__ $$a[London]$$bIOP$$c2020
000884767 3367_ $$2DRIVER$$aarticle
000884767 3367_ $$2DataCite$$aOutput Types/Journal article
000884767 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603714202_5291
000884767 3367_ $$2BibTeX$$aARTICLE
000884767 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884767 3367_ $$00$$2EndNote$$aJournal Article
000884767 520__ $$aVarious multi-spin magnetic exchange interactions (MEI) of chiral nature have been recently unveiled. Owing to their potential impact on the realisation of twisted spin-textures, their future implication in spintronics or quantum computing is very promising. Here, I address the long-range behavior of multi-spin MEI on the basis of a multiple-scattering formalism implementable in Green functions based methods such as the Korringa–Kohn–Rostoker (KKR) Green function framework. I consider the impact of spin–orbit coupling (SOC) as described in the one- (1D) and two-dimensional (2D) Rashba model, from which the analytical forms of the four- and six-spin interactions are extracted and compared to the well known bilinear isotropic, anisotropic and Dzyaloshinskii–Moriya interactions (DMI). Similarly to the DMI between two sites i and j, there is a four-spin chiral vector perpendicular to the bond connecting the two sites. The oscillatory behavior of the MEI and their decay as function of interatomic distances are analysed and quantified for the Rashba surfaces states characterizing Au surfaces. The interplay of beating effects and strength of SOC gives rise to a wide parameter space where chiral MEI are more prominent than the isotropic ones. The multi-spin interactions for a plaquette of N magnetic moments decay like ${\left\{{q}_{\mathrm{F}}^{N-d}{P}^{\frac{1}{2}\left(d-1\right)}L\right\}}^{-1}$ simplifying to ${\left\{{q}_{\mathrm{F}}^{N-d}{R}^{\left[1+\frac{N}{2}\left(d-1\right)\right]}N\right\}}^{-1}$ for equidistant atoms, where d is the dimension of the mediating electrons, q F the Fermi wave vector, L the perimeter of the plaquette while P is the product of interatomic distances. This recovers the behavior of the bilinear MEI, ${\left\{{q}_{\mathrm{F}}^{2-d}{R}^{d}\right\}}^{-1}$, and shows that increasing the perimeter of the plaquette weakens the MEI. More important, the power-law pertaining to the distance-dependent 1D MEI is insensitive to the number of atoms in the plaquette in contrast to the linear dependence associated with the 2D MEI. Furthermore, the N-dependence of q F offers the possibility of tuning the interactions amplitude by engineering the electronic occupation.
000884767 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000884767 588__ $$aDataset connected to CrossRef
000884767 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/abb514$$gVol. 22, no. 10, p. 103003 -$$n10$$p103003$$tNew journal of physics$$v22$$x1367-2630$$y2020
000884767 8564_ $$uhttps://juser.fz-juelich.de/record/884767/files/8156837.pdf
000884767 8564_ $$uhttps://juser.fz-juelich.de/record/884767/files/8156837.pdf?subformat=pdfa$$xpdfa
000884767 8564_ $$uhttps://juser.fz-juelich.de/record/884767/files/Lounis_2020_New_J._Phys._22_103003.pdf$$yOpenAccess
000884767 8564_ $$uhttps://juser.fz-juelich.de/record/884767/files/Lounis_2020_New_J._Phys._22_103003.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884767 8767_ $$88158496$$92020-09-28$$d2020-10-02$$eAPC$$jZahlung erfolgt$$zBelegnr.: 1200157808
000884767 909CO $$ooai:juser.fz-juelich.de:884767$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884767 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b0$$kFZJ
000884767 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000884767 9141_ $$y2020
000884767 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-11
000884767 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884767 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2018$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884767 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-11
000884767 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-11
000884767 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-01-11$$wger
000884767 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-11
000884767 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000884767 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000884767 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000884767 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000884767 980__ $$ajournal
000884767 980__ $$aVDB
000884767 980__ $$aUNRESTRICTED
000884767 980__ $$aI:(DE-Juel1)IAS-1-20090406
000884767 980__ $$aI:(DE-Juel1)PGI-1-20110106
000884767 980__ $$aI:(DE-82)080009_20140620
000884767 980__ $$aI:(DE-82)080012_20140620
000884767 980__ $$aAPC
000884767 9801_ $$aAPC
000884767 9801_ $$aFullTexts