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Preface 
 
This is the first time in the 51-year history of the IFF Spring School that the subject has been 
a “Technology”.  Can there be two weeks of intensive lectures by top scientists on a mere 
technology? 
 
The decision just a few years ago, to designate Quantum Technology as a coherent societal 
endeavour, was taken after much deliberation within a large circle of working scientists.  This 
endeavour is not a technology in a traditional sense, but is rather a unique intermingling of 
basic scientific insights, new capabilities demonstrated in laboratories, and an ambition to turn 
these unique capabilities into applications for the further advancement of technical capability 
on a number of fronts.   
 
The “quantum revolution” has been declared multiple times over the last century.  The first 
uncovering of quantum mechanics at the beginning of the 20th century was an intellectual rev-
olution, albeit a small one confined to the circle of modern physicists.  But by mid-century, 
quantum knowledge was power: first with the quantum properties of the nucleus, but much 
more extensively with the quantum behaviour of light and of electrons, entirely new capabili-
ties arose.  This first (quantum) technological revolution produced the information processing 
world of today. 
 
But our second quantum revolution, which has prompted the birth of our new quantum-
technology era, was waiting to happen because only a subset of the phenomena that are possi-
ble in the quantum world were harnessed in the first edition.  We have simple, if inscrutable, 
names for some of these phenomena – “quantum entanglement”, “spooky action at a dis-
tance”, “quantum logic gates”.  But it takes more than a glance to perceive what are the new 
things that are happening that produce our new quantum-technological era. 
 
One helpful guide has been provided, and will be followed in the lecture scheme of our two 
weeks together.  We speak of quantum technology as consisting of four pillars, which define 
the new application areas that are foreseen as a result of the fuller exploitation of the phenom-
enology of the quantum world: 
 
Quantum Sensing and Metrology: Quantum mechanics defines the smallest detectable in-
fluence; here the aim is to produce detection devices working at this limit. 
 
Quantum Communication: We can work towards networks that communicate not bits, but 
two-level quantum systems (qubits); these can yield absolute advantages in the security, pri-
vacy, and authenticatability of transmissions, and are important for interconnecting quantum 
computers: 
 
Quantum Computing: If bits are replaced by qubits in processors, a new style of computing 
machine can come into being.  For some problems it will have unrivalled algorithmic power. 
 
Quantum Simulation: When appropriately specialized, quantum processors can efficiently 
mimic the dynamics of natural objects obeying the laws of quantum mechanics.  The quantum 
simulator can sharpen our modelling abilities for complex molecular or solid-state quantum 
systems. 
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The 2020 IFF Spring School will cover all the main areas of quantum technology.  Each lec-
turer, each a renowned research expert in the area, will give an in-depth presentation, with 
three hours devoted to each of the four pillars of quantum technology.  These main “pillar” 
lectures, by Browaeys, Wallraff, Pan, and Salomon, will provide the core concepts of quan-
tum technology, and the main current set of laboratory achievements.  In the case of Pan, the 
“laboratory” is a full satellite-plus-earth stations quantum communications system! 

Other lectures, extending into the second week, will expose the fundamental-science flavour 
that is still very present in the field.  Gross, DiVincenzo, and Wilhelm-Mauch will give sever-
al current perspectives on how the basic physical quantum theory continues to be refined to 
deal with new problems.  Buhrman will give the pure-theory perspective from the computer-
science and mathematics direction.  Hassler will discuss how the mathematical subject of to-
pology has provided new concepts for condensed matter physics and, at the same time, for the 
theory of quantum computing. 

The real technological aspect of quantum technology is also a key component of our lectures.  
The forward focus of the Jülich Research Center is seen in the several perspectives that are 
given on the progress towards building real solid-state quantum computers: Vandersypen will 
touch on what has become possible with semiconducting qubits, Marcus will give the Mi-
crosoft view of developments in topological-qubit systems, and, following on Wallraff’s lec-
tures, Neven will show Google’s active program, which currently leads the world in produc-
ing the most capable superconducting qubit processor. 

While these devices are still some way from changing the world of information processing, 
they have produced an enormous leap in the degree of commercial interest in quantum tech-
nologies.  As a first for the IFF Spring School, we will devote a whole day in the second week 
to industry, with presentations from active contributors from small and large companies.  Stu-
dents will hear some frank views about where all this is heading, will have a chance to ask 
questions directly to the experts, and can think about career moves into quantum technology! 

We would like to close with some thanks: First, thank you to all the lecturers who have 
worked long in advance to provide lectures notes for the school (in traditional and non-
traditional formats), and who have agreed to, in most cases, give in-depth, three-hour presen-
tations of their subject. We are very grateful to the board of directors of the For-
schungszentrum Jülich for its continuous organizational and financial support of this school 
and of this book of lecture notes. Finally, our special thanks go to Ms. Barbara Daegener and 
Ms. L. Snyders for the general management and the help in compiling this book. 

David DiVincenzo January, 2020 
Hendrik Bluhm 
Tommaso Calarco 
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A1.2 David P. DiVincenzo

These notes are reprinted from: Lecture Notes of the 44th IFF Spring School ”Quantum Infor-
mation Processing”, lecture A1, copyright Forschungszentrum Jülich 2013. Used by permisson.

1 What is Quantum Information Science?

In this volume you will learn a great deal about current developments in Quantum Information
Science. I would like first to define the term, since it didn’t exist, with its current meaning,
fifteen years ago. The term tries to convey the idea that an entirely new field has been created
(or, more accurately, is in the making) that, while it has strong affinities to Physics, Informatics,
Computer Engineering (and, less obviously, to pure Mathematics, to Electrical Engineering,
Materials Science, and Chemistry), it can stand as its own subject. As the title of this school
we use the related phrase Quantum Information Processing (QIP), because there is a strong
emphasis here on the devices that will manipulate quantum information. Beware: QIP is also
the title of one of the longest-running series of international conferences in this field, but the
QIP conferences have evolved to mainly cover the specialty of theoretical quantum computer
science.

I have already used a few additional phrases worth noting. Quantum information is, one might
say, the descriptor of the raw material of the subject, the stuff that is actually processed or
communicated. Theoretical quantum computer science concerns itself with rigorous formal
properties of quantum information; but, the acronym QCS is in use in the USA as the name of a
major national research program that is oriented towards rather more practical computer science
issues. Quantum Computing is sometimes used as a generic phrase for the whole field, but is
more properly reserved for the part of the field concerned with the implementation of Quantum
Algorithms, a central but in fact quite difficult specialty in the field. Quantum Communications
and Quantum Cryptography are two more terms that are more-or-less self defining.

Returning to Quantum Information Science itself, it is worth quoting in full a carefully thought
out definition that was created in a workshop with this name sponsored by the National Science
Foundation of the United States in 1999 [1]:

Quantum information science (QIS) is a new field of science and technology, combining and
drawing on the disciplines of physical science, mathematics, computer science, and engineer-
ing. Its aim is to understand how certain fundamental laws of physics discovered earlier in this
century [20th] can be harnessed to dramatically improve the acquisition, transmission, and
processing of information.

You will hear in this school our progress in achieving these dramatic improvements. Indeed, it
must be admitted that we still have not built the quantum computer, or anything other than the
most rudimentary quantum communications system. The things we have achieved in this new
science are less tangible, but arguably more profound. Here is my personal list of present-day
successes of QIS:

New ways have arisen of teaching and learning the quantum theory. Many computer science
curricula include lectures in quantum theory today, something that was almost unheard of and
unthinkable fifteen years ago. This shows that quantum mechanics is more than what its origina-
tors thought it was: it is a theory of knowledge, a theory of the transformations of information,
in addition to its being a theory of matter and energy. Lectures in theoretical physics are also

Introduction A1.3

gradually adopting both these points of view. On the research side, it has enlivened discus-
sions of what the quantum world is (does quantum mechanics require many worlds) and what
it could be (there is a theory called quantum boxes, which is like quantum theory but is even
more nonlocal in the correlations are possible between separated systems).

A mathematically sophisticated and rigorous information theory has been developed around
quantum mechanics. This refers to specific technical developments that have been decisively
influenced by QIS concepts. I have two rather different things in mind here: first, the highly
developed entropic characterizations of quantum properties and protocols that have arisen in a
large literature. They are natural outgrowths of the reasoning introduced by Shannon in com-
munication theory; a great variety of “Shannon entropies” are used to quantify a large number
of things, for example, the carrying capacity of a noisy qubit channel. Second, there is a surge
of interest in QIS in the areas of quantum gravity and astrophysics. I am not competent to
comment in any detail about these developments, but evidently quantum entanglement has been
a very useful concept in making more sense of Hawking radiation, and about the question of
whether information is truly lost in a black hole. This seems to be still going strong, as you
could read in a current semi-popular account of “firewalls” in black holes [2].

We have a new mindset for discussing quantum experiments. QIS has defined a set of metrics
that we apply confidently and profitably to experiments from many different fields of experi-
mental quantum physics and chemistry. We can talk about process fidelities, leakage rates, and
decoherence times for experiments from a vast range of fields – nuclear magnetic resonance,
quantum dots, ion traps, or optical lattices. We have both a good grasp of the fundamentals
of this work, and we have a reasonably accurate assessment of how there different systems
progress towards achieving real quantum information processing. In some fields, QIS has com-
pletely turned around the idea of what is interesting. In the 1980s, it was fashionable in quantum
dot research to design experiments to see how fast the relaxation times could be made. Since the
advent of QIS, we have recognized that it is also scientifically interesting for these experiments
to investigate how slow relaxation can be. Slow is good, if what is slow is decoherence.

Quantum experiments have gone in entirely new directions. Building a quantum computer is
really hard, in the 1990s we realized that, despite a century of remarkable advances, we had
only taken the first baby steps towards such a machine. This has motivated experiments to
tackle quantum phenomena in a remarkably ambitious new way. We had to think about ion
traps, not just for studying single ions, but for large arrays of ions that could be shuttled around,
recooled, and coupled at will. This exciting science would not have happened without QIS. In
quantum dot research, we have achieved not only one-by-one control of trapped electrons, not
only precise temporal control of exchange couplings, not only exquisite control of the nuclear
spins in the crystal lattice, not only intricate coherence-recovery protocols, not only precise and
accurate in-place quantum measurements, but all of these things together in a single complex
device. In superconducting devices, we have gone in ten years from the barest hint of quantum
coherence to fidelities that rival those in atomic systems, with designed-to-order qubits with
tailored coupling networks on the way. Experiments in this area are now driven explicitly by
architectural ideas for a fault-tolerant quantum computer.

In the remainder of this introductory chapter, I will tell the story, as I have seen it and recon-
structed it, of how we got to where we are. Of course, a tale of personalities, as I will tell it,
is intrinsically limited. It does not by itself convey the detailed implications of the discover-
ies, and it is certainly very unfair to the large number of other persons that took part in these
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whether information is truly lost in a black hole. This seems to be still going strong, as you
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traps, not just for studying single ions, but for large arrays of ions that could be shuttled around,
recooled, and coupled at will. This exciting science would not have happened without QIS. In
quantum dot research, we have achieved not only one-by-one control of trapped electrons, not
only precise temporal control of exchange couplings, not only exquisite control of the nuclear
spins in the crystal lattice, not only intricate coherence-recovery protocols, not only precise and
accurate in-place quantum measurements, but all of these things together in a single complex
device. In superconducting devices, we have gone in ten years from the barest hint of quantum
coherence to fidelities that rival those in atomic systems, with designed-to-order qubits with
tailored coupling networks on the way. Experiments in this area are now driven explicitly by
architectural ideas for a fault-tolerant quantum computer.

In the remainder of this introductory chapter, I will tell the story, as I have seen it and recon-
structed it, of how we got to where we are. Of course, a tale of personalities, as I will tell it,
is intrinsically limited. It does not by itself convey the detailed implications of the discover-
ies, and it is certainly very unfair to the large number of other persons that took part in these
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(a) Erwin Schrödinger. (b) Rolf Landauer.

Fig. 1: Schrodinger clarified the ideas of correlations as introduced, by Einstein, Podolsky,
and Rosen, introducing the notion of quantum entanglement. Landauer articulated ideas of the
information-carrying capacity of physical systems.

developments and played many different roles, major and minor, in moving them along.

2 Pioneers of Quantum Information Science

How did QIS happen?

The inventors of modern quantum theory in the 1920s certainly did not think of a quantum
computer. It would have been anachronistic for them to have done so: it should be recalled
that the whole notion of an automatic computing device barely existed at the time. Also, the
concept of the ”bit” was hardly in use – such mechanical calculators as existed in those times
implemented base-10 arithmetic in their gearworks, rather absurdly imitating human calculating
hardware. But there was a further reason why the first generation of quantum theorists did not
think about quantum computers: being just barely understood for the first time, quantum theory
was only comprehended as a special theory of the very small – nuclei, electrons, molecules,
the smallest quanta of light. The idea that one could manufacture something that intentionally
followed chosen features of the quantum theory was utterly foreign to them. Thus, even when
there arose a next wave of scientists like von Neumann and Turing, both at the forefront of
new developments in computing machines and quite aware of current developments in quantum
mechanics, the connection of information processing and quantum theory was barely made.

I say “barely” because there was a significant intellectual stir triggered in 1935 by the publica-
tion of the paper of Einstein, Podolsky, and Rosen [3] (EPR), which put into print the misgivings
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that Einstein had had for many years about quantum theory. This paper featured the strangeness
of correlations between two observers sharing parts of a quantum state, which convinced Ein-
stein that quantum theory was incorrect or incomplete. Others were not convinced. Of all the
popular and scholarly reaction in 1935 to the EPR paper, in my opinion the most relevant and
interesting from our current perspective is that of Schrödinger (Fig. 1(a)), in a set of immortal
papers in 1935-6 [4]. Schrödinger gave us the name for correlations in quantum states that we
still use in English and in German (entanglement/Verschränkung). Schrödinger accepted quan-
tum theory, and accepted that it was very weird – he famously gave us his Cat in these papers.
Famous as they are, I think that these papers deserve to be more famous. In the technical side,
he develops the relation of mixed quantum states and the pure states from which they must arise
– the work presages by many decades the Uhlmann theorem that you will learn in quantum
information theory. He rather poetically expresses himself about quantum measurement, thus:
Es ist ein Unterschied zwischen einer verwackelten oder unscharf eingestellten Photographie
und einer Aufnahme von Wolken und Nebelschaden./ There is a difference between a shaky or
out-of-focus photograph and a snapshot of clouds and fog banks. A modern, technical transla-
tion would run: there is a difference between a weak quantum measurement on a pure quantum
state and a strong quantum measurement on a mixed state. This insight is very central to what
you will learn in quantum information theory about measurement.

Schrödinger, in his discussion of entanglement and how it is created by interaction and then
separation of two subsystems, in fact gives us the rudiments of a theory of communication
with quantum systems. There was perhaps only one other instance of an information-theoretic
argument in physics before this, in the discussion of the paradox of the Maxwell demon, for
example, in the Habiltationschrift of Szilard [5]. In fact, both Schrödinger’s entanglement and
Szilard’s engine played some role in the next few steps in the development of quantum infor-
mation theory, as we will now see.

These developments were, however, a long time in coming. From the 1930s to the 1960s,
practitioners of quantum science were solving momentous practical problems at a furious pace,
and there was not very much room for “philosophy”. Computer science underwent tremendous
development in those times, the classification of the hardness of mathematical problems from
an algorithmic perspective was well underway; and, of course, we became comfortable with the
concept of the “bit”. Two contributors in quantum physics in those times are worth mentioning:
David Bohm, in the midst of many practical contributions to quantum mechanics, pointed out
the canonical example of entanglement of two qubits that we use today, states like (|00〉 +
|11〉)/

√
2, loosely called “EPR pairs”. The role of the other worker, John Wheeler, is a little

harder to pin down. It is clear that in this period, Wheeler became convinced that quantum
theory was some sort of information science. We have from this period his catchphrase, “it
from bit” [6]. His influence on QIS becomes much clearer in a later period, in the group of
other scientists with whom he surrounded himself.

In 1961 Rolf Landauer (Fig. 1(b)) ushered in the contemporary period of the physics of infor-
mation with his article [7] on heat generation in computing. His kBT ln 2 formula for dissipated
energy per logical operation, an important milestone today in digital computing, was under-
stood to come from the discarding of logical information during the performance of boolean
logic operations. The refinement of this understanding in the following decade [8] was crucial
in the acceptance of quantum mechanics as a valid platform for a computing theory.

The discovery by John Bell of his inequalities in 1964 [9] gave an entirely new motivation
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(a) Alexander Holevo. (b) Yuri Manin.

Fig. 2: Earliest contributors in the U.S.S.R. to quantum information.

for doing quantum experiments. He showed that classes of non-quantum physical theories
could be straightforwardly ruled out by the measurement of correlations of entangled, separated
quantum particles. The experiments that resulted (e.g., [10], and especially later [11]) were
clear forerunners of experiments done today in quantum communication; they evolved towards
much more reliable and copious sources of EPR quantum states, in the form of photon pairs
created by spontaneous downconversion [12]. A very readable, semi-technical account of these
developments may be found in [13]. In fact, even more powerful physical resources for the
implementation of quantum computation were gestating in these times: see my Postscript to
this chapter.

While much had happened up to the year 1970, no one at that time recognized any trend in the
making. The developments of the next decade were still isolated; but we see in them the seeds
from which the current trends clearly sprang up.

A singular individual in the Soviet Union invented the modern, rigorous information-theoretic
treatment of quantum channels. This was Alexander Holevo (Fig. 2(a)), whose “Bounds for
the Quantity of Information Transmitted by a Quantum Communication Channel” [14] in 1973
ushered in the application of Shannon entropies the quantum questions. First Holevo, and very
gradually others, added to this corpus of ideas, which is a large and flourishing area of analysis
today.

Even more isolated was the advent of Steven Wiesner’s observations (Fig. 3(a)) on “conjugate
coding” – the potential applications of preparing and measuring a two-state quantum system in
one of two bases defined by non-commuting operators. Wiesner was quite serious and explicit in
using this feature of quantum mechanics for cryptographic purposes, he immediately conceived
of the possibility of money that could not be counterfeited. It would perhaps not be useful
to date his contribution to around 1970, as it was known to hardly any other person at that
time, appearing in publication only in 1983 [15]. But, crucially, Wiesner’s ideas were well
known and appreciated by his University classmate Charles Bennett (Fig. 3(b)), who will figure
prominently in the remainder of this history. In the following 25 years Bennett worked very
effectively to make Wiesner’s concepts known, and to greatly extend them to produce some of
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(a) Steven Wiesner. (b) Charles H. Bennett.

Fig. 3: Seminal American contributors to quantum information.

the best-known discoveries in QIS.

Independent of Wiesner’s ideas, Bennett in 1973 contributed his revolutionary correction [16]
to Landauer’s arguments about the energy consumption in computing, by showing that there
is no lower limit on how little heat needs to be dissipated during the computational process;
Landauer’s kBT ln 2 is avoided by efficiently eliminating the need to erase workspaces. This
discovery of reversible computation initially had no impact on quantum research – but by the
time of Bennett’s review of the subject in 1982 [17] it had begun to. In the meantime, Bennett’s
result, which had been formulated for the Turing machine model of computation, was extended
to the logic-gate model of computation in a series of papers by Toffoli (see Fig. 4(a)) and
Fredkin [18]. Toffoli’s gate was his concept for an all-purpose Boolean logic gate that could
perform the logical OR or the logical AND as desired, and would be reversible – the inputs
could be reconstructed from the outputs. In its minimal form, as everybody today knows, it
involves three bits. But it is only known to us as the “Toffoli gate” on account of Richard
Feynman (Fig. 4(b)).

Feynman had been speculating about the physics of the very small for a long time; his 1959
speech “There’s Plenty of Room at the Bottom” [19] is considering a founding manifesto of
the field of nanoscience. He connected his own thoughts about quantum physics with his recent
awareness of the work of Landauer, Bennett and Toffoli to put in print in 1982 [20], for (almost)
the first time, the phrase quantum computer, and some (but not all) of the thoughts that we
associate today with this phrase. I say “almost” because our Russian friends tell us that the well
known mathematician Yuri Manin (Fig. 2(b)) made some reasonable speculations about the
idea of a quantum computer in 1980 [21]. I have never seen this reference, and I don’t believe it
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(a) Tomasso Toffoli. (b) Richard Feynman.

Fig. 4: These two contributed essential ideas to quantum computing in the early 1980s.

has been read outside the Russian community. Feynman’s vision of a quantum computer arose
from his understanding that determining the properties of many-particle quantum systems is
computationally intractable; thus he introduced the quantum computer as a computer simulator.
In his only follow-up to his 1982 work [22], Feynman groped towards a more definite model
for the quantum computer, which he built as an extension of the idea of reversible computing,
quantum evolution being a more general version of reversible dynamics. It was in this work
that he gave the world Toffoli’s name for the three-bit logic gate. But Feynman’s final work
was also notable for the crucial element that he (and others like Benioff) missed: he failed to
recognize that entangled quantum states, and entangling logic gates, would be crucial for the
real quantum aspects of this new computer. This lack was made up in the next seminal work
towards quantum computation.

Before getting to this, I might mention that the set of papers I have been citing from 1982,
in the International Journal of Theoretical Physics, were all written for a conference, on “The
Physics of Computation” held at MIT in May, 1981. There were about 60 participants, includ-
ing Bennett, Feynman, Fredkin, Landauer, and Toffoli, as well as others like Dyson, Büttiker,
Greenberger (of the Greenberger, Horne, Zeilinger (GHZ) state), and prominent computer ar-
chitects Hillison and Cocke. One should not get the impression that quantum computing then
became a large-scale enterprise; the conference was not repeated until about a dozen years later.
Important developments began to occur with some regularity, but I can think of no quantum
information papers in 1983 or in 1987. But these were perhaps the last years for which this
could ever be said.

Not present at the 1981 conference, but soon to contribute decisively to further developments,
was the active group around Wheeler at that time; Fig. 5 shows part of his group then. Two
of those pictured, Wootters and Zurek, gave the essential formal underpinning for the Wiesner
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Fig. 5: The group of John A. Wheeler attending the NATO Advanced Study Institute on Quan-
tum Optics and Experimental General Relativity, held August 16-29, 1981, in Bad Windsheim,
Bavaria, Federal Republic of Germany. Left to right are William Wootters (see Fig. 7), Kip
Thorne, Wheeler, Wojciech Zurek, and William Unruh.

ideas, which were just beginning to be known to a wider circle. They proved (as Dieks did
independently at the same time) that a single, unknown quantum state cannot be copied, or
“cloned” [23]. This work provided a simple physical insight into why quantum systems could
be interesting for cryptography, where privacy is of paramount importance. Bennett had been
continuing to follow up on Wiesner’s concepts, culminating in the announcement in 1984, with
cryptographer Gilles Brassard (see Fig. 7), of a full protocol for distributing keys for secret
message transmissions, as well as secure, remote coin tossing [24]. Even at this juncture, it was
still some years before “BB84” was a widely known concept.

The next, and perhaps the, decisive step in the further articulation of the quantum computer
came also indirectly out of the Wheeler group. Another member of the group in Texas shortly
after the time of Fig. 5 was David Deutsch (Fig. 6(a)), who came on a postdoctoral fellow-
ship from Oxford. Deutsch’s 1985 paper [25] took the crucial step of generalizing Bennett’s
reversible computing to the quantum case, taking the step which had eluded Feynman. Work-
ing with Bennett’s original reversible Turing machine approach, Deutsch makes a small change
to its definition; this change permits the bits of the machine to evolve into entangled states.
He exhibits a Turing machine program for the “EPR experiment”. Further, he points out that
the equivalence concept that had developed in computer science at that time, that all reason-
able physical implementations of a computing device had the same scaling of efficiency up to
“small” polynomial factors, would in all likelihood not apply to his simple quantum generaliza-
tion. The quantum computer would be in a different complexity class. In this paper Deutsch is
silent on the connection that his discovery had to ideas in the Texas group, but one tiny detail
gives it away: he acknowledges grant PHY8205717, which a short investigation reveals to be
Wheeler’s National Science Foundation grant in the early 1980s.
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ideas, which were just beginning to be known to a wider circle. They proved (as Dieks did
independently at the same time) that a single, unknown quantum state cannot be copied, or
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be interesting for cryptography, where privacy is of paramount importance. Bennett had been
continuing to follow up on Wiesner’s concepts, culminating in the announcement in 1984, with
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still some years before “BB84” was a widely known concept.

The next, and perhaps the, decisive step in the further articulation of the quantum computer
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(a) David Deutsch. (b) Peter Shor.

Fig. 6: The workers who began and completed the revolution in quantum algorithms.

Deutsch’s follow up in 1989 [26] took several more giant steps, and put the field irrevocably on
that track that it has gone on ever since. This paper introduced the circuit model of quantum
computing that we are most familiar with today, provided us with the notion of a universal set of
quantum gates (he gave a simple generalization of the three-bit Toffoli gate – simpler universal
sets came later), discussed the controlled NOT gate and its roles in producing entanglement
and performing noninvasive quantum measurements. Finally, it reinforced the notion of his
1985 paper of quantum computing being in a different class from ordinary computation, by
introducing a problem for which a quantum algorithm provably took fewer steps than on any
classical machine! This algorithm was “useless” in itself, but was revolutionary in what it made
possible.

Indeed, the timeline from Deutsch’s toy algorithm to Peter Shor’s (Fig. 6(b)) renowned factor-
ing algorithm was, by the standards of the rest of this history, very fast and sure. (I will not
give a reference, since the student can find this in any textbook.) Also, a much wider circle of
workers soon came into the picture. The Deutsch-Jozsa algorithm (1992) [27] was followed by
the Bernstein-Vazirani algorithm from Berkeley workers (1993) [28], followed within months
by the Simon algorithm (Montreal, 1994) [29]. Shor’s work at Bell labs came a few months
afterwards. I will not take my story into this era; the prehistory of QIS, at this point, was com-
plete. To say that the discovery of the factoring algorithm was inevitable once Deutsch’s algo-
rithm came to light perhaps has some truth to it, but it unfairly minimizes the great innovations
of these five years, and Shor’s remarkable synthesis of the ideas of others with sophisticated
knowledge of the structure of integer factoring.

It should also not be understood that the only activity of the time was the advancement of quan-
tum algorithms. In fact, the founding ideas of QIS were being developed on many fronts by the
early 1990s. I will not tell the story of the considerable insights of quantum cryptography, of the
further innovations in quantum communication theory, in the developing concepts in quantum
measurement and in quantum decoherence, and the fortuitous dramatic improvements in the
manipulation of single quanta in the lab (but see Postscript), that occurred in these few years.
Wootters and Schumacher coined the term qubit in this time period. I must say a word, however,
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Fig. 7: The discoverers of quantum teleportation; photo taken c. 2004, 11 years after the
discovery. Left to right: Gilles Brassard, Richard Jozsa, William Wootters (see Fig. 5), Claude
Crepeau, Charles Bennett (see Fig. 3), and Asher Peres.

about quantum teleportation [30] (Fig. 7), which was a synthesis of many ideas that I have been
mentioning: EPR states as a kind of communication channel, the conjugate bases of Wiesner,
quantum logic circuits, and entangling quantum measurements. Within a few years quantum
teleportation entered quantum computer theory in a big way, as a predecessor of quantum error
correcting codes and fault tolerant quantum computing; of course, in many ways, this 1993
paper has become an iconic representative of our entire field.

After 1994 the field took on a different character, with the involvement, in succession, of many
additional communities in theoretical and experimental physics. Much of our school will con-
centrate on a rather later wave, the advent of solid state devices as high-quality qubits. With
scarcely an hour going by without a new paper appearing on some aspect of QIS, it is clear that
the telling of the post-1994 history is a very much harder job than the one I have done in my
story of the pioneers of the field.

3 Postscript: the 2012 Nobel Prize in Physics

After the construction of the above history, the 2012 Nobel Prizes for Physics were announced.
While the laureates Serge Haroche and David Wineland (Fig. 8) did not figure in my discussion,
they are in fact the outstanding representatives of one of the important specialties that got pulled
into the QIS orbit almost immediately after the advent of Shor’s factoring algorithm. While
Bell’s work in the 1960 had already caught the attention of the quantum optics community,
and downconverted photon pairs became a readily available resource for simple experiments on
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Fig. 8: Nobel laureates in physics for 2012: they are experimentaists who brought single quanta
under control in atomic physics in the 1980s.

entanglement, workers like Haroche and Wineland progressed to qualitatively more powerful
control of single quantum systems. As we will hear in this school, they worked on controlled
entanglement and measurement, Haroche using Rydberg states (highly excited states) of atoms
passing through microwave cavities, Wineland using vibrational and other states of individual
ions in Paul-style traps.

I am delighted and proud that the Nobel Committee had honored their outstanding work, and
that it has seen fit to present their work to the public in the language of its contributions to the
further development of Quantum Information Science.

Haroche and Wineland did not work on qubits or quantum gates – the terms had not been in-
vented in the 1980s when they began their work. But by the mid-90s, their systems became
prime testing ground for the new ideas from QIS. Haroche, especially, was not an unabashed
supporter of quantum information concepts at that time; he wrote a commentary entitled “Quan-
tum Computing: Dream or Nightmare” [31]. But he engaged in serious and fair debates on the
future of our subject at that time, being an especially spirited participant in the discussions at
the end of our Program on Quantum Computing at the Institute for Theoretical Physics (now
Kavli) at Santa Barbara in 1996. I would like to end by quoting Preskill’s final remarks during
that debate, as set down in his written lecture notes of the time [32]:

Serge Haroche, while a leader at the frontier of experimental quantum computing, continues
to deride the vision of practical quantum computers as an impossible dream that can come to
fruition only in the wake of some as yet unglimpsed revolution in physics. As everyone at this
meeting knows well, building a quantum computer will be an enormous technical challenge,
and perhaps the naysayers will be vindicated in the end. Surely, their skepticism is reasonable.
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But to me, quantum computing is not an impossible dream; it is a possible dream. It is a dream
that can be held without flouting the laws of physics as currently understood. It is a dream that
can stimulate an enormously productive collaboration of experimenters and theorists seeking
deep insights into the nature of decoherence. It is a dream that can be pursued by responsible
scientists determined to explore, without prejudice, the potential of a fascinating and powerful
new idea. It is a dream that could change the world. So let us dream.
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This chapter introduces the basic ideas of quantum simulation, presents a few experimental
platforms used so-far and illustrates the concepts on a selection of recent experiments. Several
reviews, giving more details or emphasizing different aspects, have been published over the last
few years (e.g. [1]) and will be cited throughout the text1.

1 What is quantum simulation?

Quantum simulation can be defined as the process by which one performs the simulation of
a many-body problem using a well-controlled synthetic quantum system, called the quantum
simulator. Many-body problems deal with situations where ensembles of quantum particles in-
teract. They are thus encountered in many areas of physics, such as condensed matter, nuclear
and high-energy physics. Usually one has in mind that with the knowledge of the microscopic
laws ruling the particles and their interaction, one could in principle calculate ab-initio the
macroscopic properties of the ensemble. However, the size of the Hilbert space scales expo-
nentially with the number of particles involved, making any ab-initio calculations impossible
beyond a few tens of particles. For example, for the simplest case of an ensemble of N spin-1/2
particles, the size of the Hilbert space is 2N . Today, the most advanced computers can calculate
up to N ≈ 50 interacting spins. To investigate systems involving larger number of particles,
one must therefore rely on approximations. Many approximate methods have been devised such
as mean-field theory, density functional theory, density matrix renormalization group, quantum
Monte-Carlo, etc., that allow calculating ground state properties of quantum systems or their
dynamics in low dimension. However they all have limitations: for example finding the ground
state of an ensemble of interacting fermions is hard as one must keep track of a large number
of minus signs when anti-symmetrizing the many-body wave functions. This is outside the va-
lidity range of the approximate methods that quantum simulation becomes really relevant. In
some cases, the range of applicability of the methods is not even known and one may want to
compare their predictions to the “exact” solution provided by a quantum simulator.

The idea of quantum simulation was introduced by Richard Feynman in 1982 [2]. He stated
that “with a suitable class of quantum machine you could imitate any quantum system, includ-
ing the physical world”. Let us illustrate the idea on a particular example. Assume you want
to understand a phenomenon observed in an experiment, for example high-Tc superconductiv-
ity. You know experimentally that below a certain temperature the resistivity of certain alloys
vanishes (macroscopic property), but you want to understand it from a microscopic perspective.
You guess that the electrons need to be involved and that a minimal model should include some
kind of transport of the electrons and the fact that they interact. The simplest model with all the
relevant ingredients was written 1963 by J. Hubbard [3]. The corresponding Hamiltonian is

HFH = −J
∑
〈i,j〉,σ

(ĉ†iσ ĉjσ + ĉiσ ĉ
†
jσ) + U

∑
i

n̂i↓n̂i↑ , (1)

with ĉiσ(ĉ
†
iσ) the annihilation (creation) operator of an electron on site i with a spin σ =↑, ↓. This

Fermi-Hubbard Hamiltonian describes the hopping of electrons from site i to j with amplitude
J in the tight-binding limit and with an on-site interaction U . This model is only a very crude

1 I thank my colleague Thierry Lahaye for his careful reading of these notes.
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approximation of a real metal or of a superconducting material. However it remains very hard
to solve with the arsenal of theoretical physics and numerical calculations are restricted to small
numbers of fermions. There is therefore no point in proposing more elaborate models, if this
one is not already solved. In particular, one does not know whether the ground state of the model
exhibits superconductivity when the number of spins ↑ and ↓ is not equal. It turns out however
that the Hamiltonian (1) can be readily implemented using a gas of ultracold fermionic atoms
placed in optical lattices (see Sec. 3.3). Hence, by measuring the ground state of this synthetic
atomic system, one can hope to answer the question of the existence of superconductivity for
the Fermi-Hubbard model.

This example illustrates one first important idea about quantum simulation: one has to find a
mapping between the system we are interested in (here the electrons of a metal in a periodic
lattice) and the one that can be implemented in the lab. Other examples are the study of the
motion of electrons in a strong magnetic field emulated by an ensemble of atoms placed in
a suitable laser field, or the study of the magnetic properties of electrons in a lattice that are
mapped onto an ensemble of interacting two-level atoms or ions.

The quantum simulation approach therefore has several appealing features. First, as explained
above, it helps answering questions about real-life materials or situations. Second, relying
on a synthetic system allows one to vary the parameters of the model in a range inaccessible
otherwise, thus providing a way to better understand their respective influence. For example
mimicking a magnetic field seen by an electron by a laser field applied on atoms may allow
reaching values of the magnetic field impossible to produce in a condensed matter laboratory.
Also, if one is interested in the influence of interatomic interactions on the phase diagram of
a given compound, synthetic systems are valuable as they allow varying their strength in a
way which is usually impossible in real materials. Third, synthetic systems usually provide
new types of probes, such as the direct measurement of the correlation functions between the
particles, or the direct observation of the wave functions. Finally, it allows implementing models
that are purely mathematical, and hence not even an idealization of real materials. In this
case, their implementation leads to the fabrication of an artificial many-body system, which
becomes an object of study in its own. From this perspective, quantum simulation can be
viewed as exploring many-body physics with synthetic systems: in the same way chemists
design new materials exhibiting interesting properties (such as magnetism, superconductivity,
etc.), physicists assemble artificial systems and study their properties, with the hope to observe
new phenomena.

2 The approaches to quantum simulation

Two main approaches to quantum simulation have been proposed.

In the first approach, called analog quantum simulation, the model Hamiltonian Hmodel that one
is interested in is directly implemented on the experimental platform (see examples in Sec. 3).
Performing a quantum simulation of the model means evolving the initial state |ψ(0)〉 of the
quantum simulator, assumed to be relatively easy to prepare, under the action of Hmodel, to
reach a final state of interest:

|ψ(t)〉 = U(t) |ψ(0)〉 with U(t) = exp

(
− i

�

∫ t

0

Hmodel(t
′)dt′

)
. (2)
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This chapter introduces the basic ideas of quantum simulation, presents a few experimental
platforms used so-far and illustrates the concepts on a selection of recent experiments. Several
reviews, giving more details or emphasizing different aspects, have been published over the last
few years (e.g. [1]) and will be cited throughout the text1.
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beyond a few tens of particles. For example, for the simplest case of an ensemble of N spin-1/2
particles, the size of the Hilbert space is 2N . Today, the most advanced computers can calculate
up to N ≈ 50 interacting spins. To investigate systems involving larger number of particles,
one must therefore rely on approximations. Many approximate methods have been devised such
as mean-field theory, density functional theory, density matrix renormalization group, quantum
Monte-Carlo, etc., that allow calculating ground state properties of quantum systems or their
dynamics in low dimension. However they all have limitations: for example finding the ground
state of an ensemble of interacting fermions is hard as one must keep track of a large number
of minus signs when anti-symmetrizing the many-body wave functions. This is outside the va-
lidity range of the approximate methods that quantum simulation becomes really relevant. In
some cases, the range of applicability of the methods is not even known and one may want to
compare their predictions to the “exact” solution provided by a quantum simulator.

The idea of quantum simulation was introduced by Richard Feynman in 1982 [2]. He stated
that “with a suitable class of quantum machine you could imitate any quantum system, includ-
ing the physical world”. Let us illustrate the idea on a particular example. Assume you want
to understand a phenomenon observed in an experiment, for example high-Tc superconductiv-
ity. You know experimentally that below a certain temperature the resistivity of certain alloys
vanishes (macroscopic property), but you want to understand it from a microscopic perspective.
You guess that the electrons need to be involved and that a minimal model should include some
kind of transport of the electrons and the fact that they interact. The simplest model with all the
relevant ingredients was written 1963 by J. Hubbard [3]. The corresponding Hamiltonian is
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approximation of a real metal or of a superconducting material. However it remains very hard
to solve with the arsenal of theoretical physics and numerical calculations are restricted to small
numbers of fermions. There is therefore no point in proposing more elaborate models, if this
one is not already solved. In particular, one does not know whether the ground state of the model
exhibits superconductivity when the number of spins ↑ and ↓ is not equal. It turns out however
that the Hamiltonian (1) can be readily implemented using a gas of ultracold fermionic atoms
placed in optical lattices (see Sec. 3.3). Hence, by measuring the ground state of this synthetic
atomic system, one can hope to answer the question of the existence of superconductivity for
the Fermi-Hubbard model.

This example illustrates one first important idea about quantum simulation: one has to find a
mapping between the system we are interested in (here the electrons of a metal in a periodic
lattice) and the one that can be implemented in the lab. Other examples are the study of the
motion of electrons in a strong magnetic field emulated by an ensemble of atoms placed in
a suitable laser field, or the study of the magnetic properties of electrons in a lattice that are
mapped onto an ensemble of interacting two-level atoms or ions.

The quantum simulation approach therefore has several appealing features. First, as explained
above, it helps answering questions about real-life materials or situations. Second, relying
on a synthetic system allows one to vary the parameters of the model in a range inaccessible
otherwise, thus providing a way to better understand their respective influence. For example
mimicking a magnetic field seen by an electron by a laser field applied on atoms may allow
reaching values of the magnetic field impossible to produce in a condensed matter laboratory.
Also, if one is interested in the influence of interatomic interactions on the phase diagram of
a given compound, synthetic systems are valuable as they allow varying their strength in a
way which is usually impossible in real materials. Third, synthetic systems usually provide
new types of probes, such as the direct measurement of the correlation functions between the
particles, or the direct observation of the wave functions. Finally, it allows implementing models
that are purely mathematical, and hence not even an idealization of real materials. In this
case, their implementation leads to the fabrication of an artificial many-body system, which
becomes an object of study in its own. From this perspective, quantum simulation can be
viewed as exploring many-body physics with synthetic systems: in the same way chemists
design new materials exhibiting interesting properties (such as magnetism, superconductivity,
etc.), physicists assemble artificial systems and study their properties, with the hope to observe
new phenomena.

2 The approaches to quantum simulation

Two main approaches to quantum simulation have been proposed.

In the first approach, called analog quantum simulation, the model Hamiltonian Hmodel that one
is interested in is directly implemented on the experimental platform (see examples in Sec. 3).
Performing a quantum simulation of the model means evolving the initial state |ψ(0)〉 of the
quantum simulator, assumed to be relatively easy to prepare, under the action of Hmodel, to
reach a final state of interest:

|ψ(t)〉 = U(t) |ψ(0)〉 with U(t) = exp

(
− i

�

∫ t

0

Hmodel(t
′)dt′

)
. (2)
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Following this evolution, the state of the simulator is read out. Usually, this does not mean mea-
suring exactly |ψ(t)〉, as this is too difficult (the number of components of the wave function
scales exponentially with the particle number), but to measure the average value 〈ψ(t)| Ô |ψ(t)〉
of an observable Ô, such as a magnetization, the mean occupancy on a given site of an array,
or a pair correlation function. This time evolution of the state of the quantum simulator allows
studying two kinds of situations: (i) the out-of-equilibrium dynamics of the system follow-
ing the sudden variation of one parameter of the Hamiltonian; (ii) the adiabatic preparation of
the ground state of the synthetic system following the slow variation of the parameters of the
Hamiltonian. We will illustrate this in more details in Sec. 4. This first, analog approach is the
easiest to implement experimentally. It is problem-specific, in the sense that for any problem of
interest, one has to build a dedicated synthetic quantum system to study it. By engineering the
system in a way that all parameters of the Hamiltonian are tunable, the machine can be thought
as an analog programmable quantum simulator. Analog quantum simulation relies on the idea
of mapping between two systems: the one we are interested in (e.g. the motion of an electron in
an ultra-strong magnetic field, transport of electrons in metal, etc.) and the one that emulates it,
which is implemented in the lab (e.g. atoms subjected to shaped laser fields, interacting atoms
in optical lattices, etc.).

An interesting aspect of the analog approach is that it is, to a certain extent, relatively robust
to imperfections and errors in the implementation. Although this statement would need to be
carefully defined (which is still the topics of current research), one naive way to understand
it is to realize that some interesting features could emerge even in the presence of errors: for
example, a magnetic ordering of interest may develop on top of a background resulting from
the imperfections. If one is only interested in the possibility of such ordering, one gets already
a partial answer to the question. This idea that imperfect quantum machines can already be
useful has been conceptualized recently by J. Preskill under the name Noisy Intermediate Scale
Quantum technology [4].

The second approach, named digital quantum simulation, allows synthetizing any arbitrary
Hamiltonian, including ones that can not be directly realized experimentally. The idea was
introduced by Seth Lloyd in 1996 [5]. Let us first assume that we want to implement a Hamil-
tonian, which is the sum of terms describing local interactions (i.e. single and two-body):
H =

∑
� H�. As an example, think of the Ising Hamiltonian for spins in a transverse magnetic

field: HIsing = J
∑

i,j σ
z
i σ

z
j + B

∑
i σ

x
i . In general, the various terms H� in the Hamiltonian do

not commute, and therefore the evolution operator U(t) = exp[−iHt/�] (here H is assumed
time-independent) can not be decomposed into a product of terms exp[−iH�t/�]. However,
an approximate factorization is possible when breaking the evolution time t into n time steps,
using the first-order Trotter decomposition:

U(t) =
[
e−iH�

t
n

]n
≈

[∏
�

e−i
H�
�

t
n

]n

+O
(

1

n2

)
. (3)

When n → ∞, the evolution operator is a product of elementary evolutions that can be effi-
ciently calculated. This has a price, as the number of time steps can be large to reach a given
precision. It was however shown in [5] that, for a fixed precision, the complexity of the simula-
tion grows only polynomially with the number of particles involved in the simulation.

More generally, any unitary evolution operator U(t) = exp[−iHt/�] can be decomposed as
the product of universal gates, such as the ones operating on one or two quantum bits. It is

Quantum Simulation A2.5

therefore possible to synthetise any Hamiltonian with this digital approach, including the ones
that do not involve interactions between particles allowed by Nature. As an example, consider
the Hamiltonian describing the interaction between three spins

H = σz
1 ⊗ σz

2 ⊗ σz
3 . (4)

This 3-body Hamiltonian does not correspond to any physical interaction, as only two-body
interactions are found in Nature. However, it can be digitally synthetized using sets of C-NOT
gates and the unitary evolution of a fourth ancillary quantum bit, as shown in Fig. 1. As can
be seen on this example, the implementation of an arbitrary Hamiltonian may require auxiliary
quantum bits and therefore may not necessarily scale favorably with the number of particles to
consider.

Fig. 1: Quantum circuit to synthetize the 3-body spin interaction described by Eq. (4). Figure
from [1].

Using the digital approach, it becomes possible to perform a universal quantum simulation:
the quantum simulator does not need to be rebuilt for each Hamiltonian H to be studied, but
just reprogrammed for a specific problem. It should also be clear that the digital approach
to quantum simulation actually amounts to performing a quantum computation, the quantum
simulator being now a full fledged quantum computer. It is therefore much more demanding
experimentally than the analog approach: the fidelity of each gate must be as high as possible
for the final result to be meaningful.

3 Experimental platforms

Although the idea of quantum simulation using synthetic quantum systems is now rather old, it
was for a very long time essentially theoretical. This was due to the fact that the control over
quantum systems was not advanced enough. The situation changed radically in the last 20 years
with the development of experimental techniques to control the quantum state of individual
quantum objects, be they atoms, molecules, ions, photons, or even artificial atoms such as
quantum dots, superconducting circuits or excitons in semi-conductors, to name a few.

In this Section, we will describe some of the platforms that have already demonstrated their
potential for quantum simulation. It is not meant to be exhaustive, but rather to illustrate the idea
of mapping introduced in Sec. 1. More detailed reviews on each platform have been published
recently: they are mentioned in the titles of the sections below.

3.1 Requirements for experimental implementations

A key question for the experimentalist is how faithfully one can implement the model Hamil-
tonian, and how well one can initialize the quantum simulator in a given state |ψ(0)〉. For the
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Using the digital approach, it becomes possible to perform a universal quantum simulation:
the quantum simulator does not need to be rebuilt for each Hamiltonian H to be studied, but
just reprogrammed for a specific problem. It should also be clear that the digital approach
to quantum simulation actually amounts to performing a quantum computation, the quantum
simulator being now a full fledged quantum computer. It is therefore much more demanding
experimentally than the analog approach: the fidelity of each gate must be as high as possible
for the final result to be meaningful.

3 Experimental platforms

Although the idea of quantum simulation using synthetic quantum systems is now rather old, it
was for a very long time essentially theoretical. This was due to the fact that the control over
quantum systems was not advanced enough. The situation changed radically in the last 20 years
with the development of experimental techniques to control the quantum state of individual
quantum objects, be they atoms, molecules, ions, photons, or even artificial atoms such as
quantum dots, superconducting circuits or excitons in semi-conductors, to name a few.

In this Section, we will describe some of the platforms that have already demonstrated their
potential for quantum simulation. It is not meant to be exhaustive, but rather to illustrate the idea
of mapping introduced in Sec. 1. More detailed reviews on each platform have been published
recently: they are mentioned in the titles of the sections below.

3.1 Requirements for experimental implementations

A key question for the experimentalist is how faithfully one can implement the model Hamil-
tonian, and how well one can initialize the quantum simulator in a given state |ψ(0)〉. For the
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digital approach, this is critical as the highest fidelity is required for the results to be meaning-
ful. This is also true for analogous quantum simulators, although here the constraints on fidelity
of the mapping are less severe.

The programmability or the simulators, i.e. the ability to tune the parameters of the Hamiltonian
at will over large ranges, is another important key feature. This includes the control of the
external parameters of the simulators acting at the single particle level (ex: magnetic field, laser
light, trapping potential, etc.), but also the tunability of the interactions between the constituent
particles. Importantly, the energy scale U associated to the interactions sets the timescale �/U
for a dynamics induced by them. It should of course be much smaller than the decoherence time
of the platform.

When considering programmable and digital quantum simulation, one usually adds the require-
ment of individual particle manipulations and detection. In particular, the ability to address any
individual constituent allows for local variations of the parameters (e.g. placing one impurity
somewhere and following its evolution, local gates, or gates acting on two particular particles,
etc.). It also makes it possible to measure the state of each particle individually, and in this
way allow reconstructing important quantities characterizing the many-body properties of the
system: this is in particular the case of the n-order correlation functions 〈ψ| Ô1Ô2...Ôn |ψ〉 of a
relevant observable Ôi for the particle i. One can thus link macroscopic variables to the details
of the microscopic configuration.

3.2 Trapped ions [6, 7]

In this first platform, ions are trapped and laser-cooled in electromagnetic traps, such as Paul or
Penning traps. There, the interplay between their electrostatic repulsion and the harmonic con-
finement provided by the traps leads to a “Coulomb crystal” for sufficiently low temperatures.

A popular configuration for the trap is the so-called linear Paul trap (Fig. 2a) where a combi-
nation of DC and RF electric fields results into a highly anisotropic, nearly harmonic potential
for an ion (mass M , charge q), of the form Vtrap(x, y, z) = Mω2

⊥(x
2 + y2)/2 +Mω2

zz
2/2 with

ω⊥ � ωz. In practice: ω⊥/(2π) ≈ 5 MHz and ωz/(2π) ≈ 100 kHz. The distances between the
ions are set by balancing the confinement energy with the electrostatic repulsion between ions.
For two ions, this gives Mω2

z∆z/4 = q2/(4πε0∆z2), yielding ∆z = [q2/(πε0Mω2
z)]

1
3 . For

two 40Ca+ ions, ∆z ≈ 3.5µm . For larger numbers N of ions, no analytic expression exist for
the inter-ion spacings, which are numerically found to scale as [q2/(4πε0Mω2

z)]
1/3N−0.59. The

largest linear ion crystal produced contains around 100 ions separated by a few micrometers
(see Fig. 2a). This large spacing between ions makes each of them addressable (manipulation
by focused lasers and individual readout). In the crystal, the ions can oscillate around their
equilibrium positions. As the N ions are all coupled by the Coulomb interaction, their motion
is collective and the crystal features 3N mechanical eigen-modes of vibration. These modes are
quantized, and when the crystal is laser-cooled it is even possible to reach the ground state of
the collective vibrational modes.

Popular choices for the ions used in the experiments are Ca+, Yb+, Be+, Cd+, Mg+, etc. When
considering their internal degrees of freedom, it is possible to isolate a two-level structure and
to map the two states onto a spin-1/2 with spin states |↑〉 and |↓〉 (Fig. 2b). Depending on the
ions, they are coupled by a microwave transition (e.g. Yb+, Be+) or by an optical transition
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Fig. 2: Trapped ion platform. (a) Schematic view of a linear Paul trap and fluorescence image
of a chain of 51 Ca+ ions (figures from University of Innsbruck). (b) Two examples of encoding
of spin states on the atomic structure of the ion using optical or microwave (MW) transitions.
The extra level |e〉 coupled by a laser is used for fluorescence state detection. (c) Action of two
lasers on an ion chain, when ions i and j are both in state |↑〉. (d) Same as (c) for the two ions
in different spin states.

(e.g. Ca+). Microwave or laser pulses allow for the coherent manipulation of any superposition
of the two spin states.

To make the spins interact, one uses laser beams that induce a spin-dependent force. To see how
this works, consider two laser beams propagating perpendicularly to the chain and focused on
ions i and j (Fig. 2c,d). With a suitable choice of parameters, the force resulting from the lasers
pushes the ion in one direction or another depending on its state |↑〉 or |↓〉. As a consequence,
if the two ions are in the same state, i.e. in |↑, ↑〉 or |↓, ↓〉, they are pulled or pushed in the same
direction and their Coulomb interaction q2/rij will remain nearly unchanged (Fig. 2c). On the
contrary, if they are in different spin states, i.e. |↑, ↓〉 or |↓, ↑〉, they are pushed in two opposite
directions by a quantity δr (Fig. 2d). Their Coulomb interaction energy is now changed by an
amount:

∆VC,ij =
q2

4πε0


 1√

r2ij + 4δr2
− 1

rij


 ≈ −2

(qδr)2

4πε0r3ij
. (5)

Hence the energy shift induced by the light depends on the relative configuration of the two
spins: it realizes an Ising-type of interaction ∼ Jij σ̂

z
i σ̂

z
j , with Jij = ∆VC,ij/4. Here σ̂z =

|↑〉 〈↑| − |↓〉 〈↓| is the usual Pauli operator.

In fact, the exact derivation of the light-induced force is more involved than the argument pre-
sented above, but the idea of a state-dependent force remains valid. The laser illuminates the
whole chain perpendicularly to it. Its central frequency ω is detuned with respect to the one of
the (|↑〉 , |↓〉) transition, and it contains two frequencies ω and ω + δ, leading to an amplitude
modulation. Calculating the action of the force requires considering the quantized mechanical
modes of the ion chain. The result of the derivation (see for example [8]) is the following:

• For δ = 0, the Hamiltonian is

HXX =
∑
i,j

Jijσ̂
x
i σ̂

x
j . (6)



A2.6 A. Browaeys

digital approach, this is critical as the highest fidelity is required for the results to be meaning-
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⊥(x
2 + y2)/2 +Mω2

zz
2/2 with

ω⊥ � ωz. In practice: ω⊥/(2π) ≈ 5 MHz and ωz/(2π) ≈ 100 kHz. The distances between the
ions are set by balancing the confinement energy with the electrostatic repulsion between ions.
For two ions, this gives Mω2

z∆z/4 = q2/(4πε0∆z2), yielding ∆z = [q2/(πε0Mω2
z)]

1
3 . For

two 40Ca+ ions, ∆z ≈ 3.5µm . For larger numbers N of ions, no analytic expression exist for
the inter-ion spacings, which are numerically found to scale as [q2/(4πε0Mω2

z)]
1/3N−0.59. The

largest linear ion crystal produced contains around 100 ions separated by a few micrometers
(see Fig. 2a). This large spacing between ions makes each of them addressable (manipulation
by focused lasers and individual readout). In the crystal, the ions can oscillate around their
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to map the two states onto a spin-1/2 with spin states |↑〉 and |↓〉 (Fig. 2b). Depending on the
ions, they are coupled by a microwave transition (e.g. Yb+, Be+) or by an optical transition
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Fig. 2: Trapped ion platform. (a) Schematic view of a linear Paul trap and fluorescence image
of a chain of 51 Ca+ ions (figures from University of Innsbruck). (b) Two examples of encoding
of spin states on the atomic structure of the ion using optical or microwave (MW) transitions.
The extra level |e〉 coupled by a laser is used for fluorescence state detection. (c) Action of two
lasers on an ion chain, when ions i and j are both in state |↑〉. (d) Same as (c) for the two ions
in different spin states.

(e.g. Ca+). Microwave or laser pulses allow for the coherent manipulation of any superposition
of the two spin states.

To make the spins interact, one uses laser beams that induce a spin-dependent force. To see how
this works, consider two laser beams propagating perpendicularly to the chain and focused on
ions i and j (Fig. 2c,d). With a suitable choice of parameters, the force resulting from the lasers
pushes the ion in one direction or another depending on its state |↑〉 or |↓〉. As a consequence,
if the two ions are in the same state, i.e. in |↑, ↑〉 or |↓, ↓〉, they are pulled or pushed in the same
direction and their Coulomb interaction q2/rij will remain nearly unchanged (Fig. 2c). On the
contrary, if they are in different spin states, i.e. |↑, ↓〉 or |↓, ↑〉, they are pushed in two opposite
directions by a quantity δr (Fig. 2d). Their Coulomb interaction energy is now changed by an
amount:
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In fact, the exact derivation of the light-induced force is more involved than the argument pre-
sented above, but the idea of a state-dependent force remains valid. The laser illuminates the
whole chain perpendicularly to it. Its central frequency ω is detuned with respect to the one of
the (|↑〉 , |↓〉) transition, and it contains two frequencies ω and ω + δ, leading to an amplitude
modulation. Calculating the action of the force requires considering the quantized mechanical
modes of the ion chain. The result of the derivation (see for example [8]) is the following:
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• For δ � Jij , one gets the XY (or flip-flop, or exchange) Hamiltonian, with σ̂+ = |↑〉 〈↓|
and σ̂− = |↓〉 〈↑|:

HXY =
∑
i,j

Jij(σ̂
+
i σ̂

−
j + σ̂−

i σ̂
+
j ) . (7)

• Finally, δ ≈ Jij leads to an Ising-like Hamiltonian:

HIsing =
∑
i,j

Jijσ̂
x
i σ̂

x
j +

δ

2

∑
i

σ̂z
i . (8)

Numerical calculations show that Jij ≈ J0/|i − j|α, with α varying in practice between 0.5
and 2.5 depending on the frequency detuning δ. The coupling is thus long-range and allows
studying many-body physics in unusual regimes. The constant J0 depends on the laser power,
the frequency ω, and involves the frequencies of the mechanical modes. It can be set positive or
negative. Typically, in the experiments J0/(2π) ∼ 0.5 − 1 kHz, leading to a timescale for the
interactions in the millisecond range.

Finally, an alternative approach to prepare Coulomb crystal relies on Penning traps, which com-
bine electrostatic and magnetic fields [9]. The crystal is then a plane of ions, with a separations
also around several micrometers. Although such crystal can contain up to a few hundred ions
(thus more than the linear Paul trap), it has the drawback that it rotates at high frequency (typ-
ically 50 kHz) around an axis perpendicular to the ion plane, making local manipulations diffi-
cult. Quantum simulations of the Ising [10] and Dicke [11] models have however already been
performed in this platform.

As a conclusion on trapped ions, they implement naturally spin models and realize the quan-
tum Ising or XY Hamiltonians encountered in quantum magnetism. Importantly, the trapped
ion platform is probably the best one in terms of fidelity of single and many-ion manipula-
tions. Thanks to this good level of control, this platform has also attempted quantum simulation
following the digital approach (see Sec. 4.3 and [12]).

3.3 Neutral atoms [13, 14]

Neutral atom-based platforms are probably the richest from the point of view of quantum simu-
lation. This comes from the possibility to change the quantum statistic of the particles (fermions
or bosons), as well as the ability to map them onto spin systems. Besides, this platform is so-far
easier to scale up than many others.

When speaking about neutral atom-based platforms, it is usually understood cold (i.e. laser-
cooled) or ultra-cold atoms prepared in quantum degenerate gases (Bose-Einstein condensate
or Fermi sea). In many situations, the temperature associated to the atomic motion can be
ignored and the dominant energy scale is associated to the interactions U between the atoms.
The atom-based platforms exist in several implementations that we now briefly describe.

• Ultra-cold atoms in quantum degenerate gases. By combining laser and evaporative
cooling, a gas of atoms (alkali: Li, Na, K, Rb, Cs; alkaline-earth: Sr ; Yb, Cr, Er, Dy;
He∗, etc.) is cooled below typically 100 nK where it reaches the quantum degenerate
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Fig. 3: Neutral atom platform: optical lattices. (a) One dimensional optical lattice. (b) Three
dimensional cubic lattices obtained by interfering three pairs of one-dimensional lattices (figure
from M. Greiner’s thesis). (c) Quantum gas microscope: a high NA lens (here NA= 0.68)
monitors a plane of atoms using fluorescence imaging. Each dot in the lower right corner
corresponds to one atom. Adapted from [14].

regime. This corresponds to a phase-space density nλ3
dB ∼ 1, with n the density of the

vapor and λdB = h/
√
2πMkBT the thermal de Broglie wavelength at a temperature T .

If the atoms are bosons, the gas forms a Bose-Einstein condensate, where all the atoms
occupy the same wave function. If the atoms are fermions, one gets a Fermi sea. In
this implementation, the positions of the atoms are randomly distributed. The vapors are
confined in traps produced by static magnetic fields, by the dipole force of a laser or a
combination of both. The typical number of atoms ranges between 103 to 106.

• Ultra-cold atoms in optical lattices and quantum gas microscope. Here ultracold
atoms are held in periodic light structures, called optical lattices [14]. These lattices rely
on the dipole force exerted by a laser on an atom: a laser with intensity I and frequency
ω produces an energy shift of the atomic ground state by an amount ∝ I/(ω − ω0), with
ω0 the resonance frequency of an optical transition. If the detuning of the laser |ω−ω0| is
larger than the linewidth of the transition Γ, the action of the laser is nearly conservative,
as spontaneous emission is suppressed as I/∆2. When the intensity I(r) varies in space,
the atom is attracted towards the region of high or low intensity depending on the sign of
ω − ω0. To create periodic structures, one interferes several beams. For example, in one
dimension, two counter-propagating lasers with wave vectors k = 2π/λ produce a one-
dimensional lattice leading to a trapping potential VL(x) ∝ |eikx+ e−ikx|2 = V0 cos

2(kx),
as shown in Fig. 3(a). The spacing between the nodes or antinodes is λ/2 but it can
also be increased by changing the geometry of the interfering beams. One, two and three
dimensional lattices are commonly used (Fig. 3b). The elementary cell can be square in
2D, cubic in 3D, but also triangular, honeycomb, etc.

It is possible to load atoms in 2D and 3D lattices with exactly one atom per node or anti-
node. The most common technique consists in starting from a Bose-Einstein condensate
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• For δ � Jij , one gets the XY (or flip-flop, or exchange) Hamiltonian, with σ̂+ = |↑〉 〈↓|
and σ̂− = |↓〉 〈↑|:
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Numerical calculations show that Jij ≈ J0/|i − j|α, with α varying in practice between 0.5
and 2.5 depending on the frequency detuning δ. The coupling is thus long-range and allows
studying many-body physics in unusual regimes. The constant J0 depends on the laser power,
the frequency ω, and involves the frequencies of the mechanical modes. It can be set positive or
negative. Typically, in the experiments J0/(2π) ∼ 0.5 − 1 kHz, leading to a timescale for the
interactions in the millisecond range.

Finally, an alternative approach to prepare Coulomb crystal relies on Penning traps, which com-
bine electrostatic and magnetic fields [9]. The crystal is then a plane of ions, with a separations
also around several micrometers. Although such crystal can contain up to a few hundred ions
(thus more than the linear Paul trap), it has the drawback that it rotates at high frequency (typ-
ically 50 kHz) around an axis perpendicular to the ion plane, making local manipulations diffi-
cult. Quantum simulations of the Ising [10] and Dicke [11] models have however already been
performed in this platform.

As a conclusion on trapped ions, they implement naturally spin models and realize the quan-
tum Ising or XY Hamiltonians encountered in quantum magnetism. Importantly, the trapped
ion platform is probably the best one in terms of fidelity of single and many-ion manipula-
tions. Thanks to this good level of control, this platform has also attempted quantum simulation
following the digital approach (see Sec. 4.3 and [12]).

3.3 Neutral atoms [13, 14]

Neutral atom-based platforms are probably the richest from the point of view of quantum simu-
lation. This comes from the possibility to change the quantum statistic of the particles (fermions
or bosons), as well as the ability to map them onto spin systems. Besides, this platform is so-far
easier to scale up than many others.

When speaking about neutral atom-based platforms, it is usually understood cold (i.e. laser-
cooled) or ultra-cold atoms prepared in quantum degenerate gases (Bose-Einstein condensate
or Fermi sea). In many situations, the temperature associated to the atomic motion can be
ignored and the dominant energy scale is associated to the interactions U between the atoms.
The atom-based platforms exist in several implementations that we now briefly describe.

• Ultra-cold atoms in quantum degenerate gases. By combining laser and evaporative
cooling, a gas of atoms (alkali: Li, Na, K, Rb, Cs; alkaline-earth: Sr ; Yb, Cr, Er, Dy;
He∗, etc.) is cooled below typically 100 nK where it reaches the quantum degenerate
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Fig. 3: Neutral atom platform: optical lattices. (a) One dimensional optical lattice. (b) Three
dimensional cubic lattices obtained by interfering three pairs of one-dimensional lattices (figure
from M. Greiner’s thesis). (c) Quantum gas microscope: a high NA lens (here NA= 0.68)
monitors a plane of atoms using fluorescence imaging. Each dot in the lower right corner
corresponds to one atom. Adapted from [14].
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vapor and λdB = h/
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2πMkBT the thermal de Broglie wavelength at a temperature T .

If the atoms are bosons, the gas forms a Bose-Einstein condensate, where all the atoms
occupy the same wave function. If the atoms are fermions, one gets a Fermi sea. In
this implementation, the positions of the atoms are randomly distributed. The vapors are
confined in traps produced by static magnetic fields, by the dipole force of a laser or a
combination of both. The typical number of atoms ranges between 103 to 106.

• Ultra-cold atoms in optical lattices and quantum gas microscope. Here ultracold
atoms are held in periodic light structures, called optical lattices [14]. These lattices rely
on the dipole force exerted by a laser on an atom: a laser with intensity I and frequency
ω produces an energy shift of the atomic ground state by an amount ∝ I/(ω − ω0), with
ω0 the resonance frequency of an optical transition. If the detuning of the laser |ω−ω0| is
larger than the linewidth of the transition Γ, the action of the laser is nearly conservative,
as spontaneous emission is suppressed as I/∆2. When the intensity I(r) varies in space,
the atom is attracted towards the region of high or low intensity depending on the sign of
ω − ω0. To create periodic structures, one interferes several beams. For example, in one
dimension, two counter-propagating lasers with wave vectors k = 2π/λ produce a one-
dimensional lattice leading to a trapping potential VL(x) ∝ |eikx+ e−ikx|2 = V0 cos

2(kx),
as shown in Fig. 3(a). The spacing between the nodes or antinodes is λ/2 but it can
also be increased by changing the geometry of the interfering beams. One, two and three
dimensional lattices are commonly used (Fig. 3b). The elementary cell can be square in
2D, cubic in 3D, but also triangular, honeycomb, etc.

It is possible to load atoms in 2D and 3D lattices with exactly one atom per node or anti-
node. The most common technique consists in starting from a Bose-Einstein condensate
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or a Fermi degenerate gas and to adiabatically switch on the lattice [14] (see Sec. 4.2).
As the atoms can tunnel from one site to another, this platform realizes situations where
electrons move in crystals of various geometries. It it thus ideal to study condensed matter
situations (see below).

An important experimental breakthrough of the past decade was the development of
“quantum gas microscopes”, which combine optical lattices with large numerical aper-
ture objectives [14] (see Fig. 3c). The resolution of the objectives being on the order of
λ/2, also the typical spacing between atoms in the lattices, this tool allows for the in-situ
observation of the atoms and their local manipulations. One can thus study transport,
measure correlation functions, etc., locally. Typically, a few hundred atoms are routinely
manipulated in 2D optical lattices under a quantum gas microscope.

• Cold atoms in arrays of optical tweezers [15]. More recently, a platform complemen-
tary to optical lattices has emerged. It relies on laser beams tightly focused by a large
numerical aperture optical system. The spot size is on the order of 1 µm and this single
beam, red-detuned with respect to an optical transition of the atoms, ensures a 3D con-
finement around the focal point where the light intensity is maximum. This microscopic
dipole trap is called an optical tweezers. By placing a diffractive element before the focus-
ing lens (such as a liquid-crystal-based spatial light modulator), one obtains an array of
spots that can be arranged in almost any arbitrary 2D and 3D geometry (see Fig. 4a,c,d).
This again allows emulating condensed matter situations.

The appealing feature of the platform relies on the fact that a single tweezers can host at
most one atom for a proper choice of the parameters. To load it, one uses a cloud of laser-
cooled atoms and focuses the tweezers array inside this cloud. Atoms enter at random
in the tweezers and get trapped. When two atoms are present at the same time, a light-
induced collision expels both of them, and the process starts again. Although simpler
to implement experimentally than the quantum gas microscope, the fact that the atoms
enter at random times in the tweezers is a drawback: it results into arrays with 1/2 filling
fraction. Techniques have however been devised to move the atoms in the arrays and thus
assemble atom-by-atom atomic arrays with unit filling (Fig. 4b). They operate up to 120
atoms in 2D and 72 in 3D. In this platform, the typical distances between the atoms are
several micrometers, which ensures the ability of local addressing for manipulations and
readout.

Interaction between ultra-cold atoms. Performing quantum simulation requires interactions
between the atoms. For ultra-cold bosonic atoms (mass M ), the interaction V (r1, r2) between
two of them is described to a good approximation by a contact potential governed by one pa-
rameter a called the scattering length:

V (r1, r2) =
4π�2a
M

δ(r1 − r2) . (9)

Hence, for 2 atoms in wave functions φa,b(r), the interaction energy is

U =

∫
|φa(r1)|2V (r1, r2)|φb(r1)|2d3r1d3r2 =

4π�2a
M

∫
|φa(r)|2|φb(r)|2d3r . (10)

For two fermions in the same wave function, the interaction vanishes due to the Pauli principle.
Fermions in different spin states do however interact, with an interaction also characterized by
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Fig. 4: Neutral atom platform: optical tweezers arrays. (a) Setup to create an array of
optical tweezers. A spatial light modulator (SLM) imprints a phase pattern on the trapping
beam, resulting in the focal plane of the high NA lens into an array of tweezers. The atoms
are observed by fluorescence imaging on a sensitive camera. (b) Active sorting of the atoms
in the array results into a sub-array with unit filling. (c) Examples of fluorescence images of
2D and 3D structures (d). Each bright spot corresponds to one atom. Figures from the Institut
d’Optique.

a scattering length. Importantly, the scattering length is controllable by a magnetic field B,
a phenomenon called a Feschbach resonance. The scattering length of two atoms placed in a
magnetic field B varies around a resonance located at B0 as a(B) = abg + ∆/(B − B0). It is
thus possible to vary the interaction beween two atoms from perfect cancellation (a = 0) to a
much larger than any lengthscale in the problem (the unitary regime).

Implementation of Bose- and Fermi-Hubbard models. Let us look at the consequence of
this contact interaction for ultra-cold atoms held in optical lattices. Consider first the case of
bosons. The Hamiltonian governing the behavior of N bosons in an optical lattice contains two
terms:

HBH = −J
∑
〈i,j〉

(â†i âj + âiâ
†
j) +

U

2

∑
i=1

n̂i(n̂i − 1) , (11)

with âi(â
†
i ) the annihilation (creation) operator of an atom at site i. The first term describes

the tunneling of atoms between neighboring sites, in the tight-binding model. The second term
describes the on-site interaction when two bosons are placed on the same site of the lattice. Here
U = 4π�2a

M

∫
|φ(r)|4d3r, with φ(r) the wave function of an atom in one lattice site. In practice

U/h ≈ 1 kHz. This is the Bose-Hubbard model. In the same way, fermionic atoms held in an
optical lattice and with two internal states mapped onto the spin states (↑, ↓) directly implement
the Fermi-Hubbard Hamiltonian of Eq. (1). Thus atoms in optical lattices naturally realize two
of the basic Hamiltonians used to describe strongly correlated electronic systems in condensed
matter physics, which are still actively studied.

Implementation of spin models in optical lattices. Ultra-cold atoms in optical lattices also
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or a Fermi degenerate gas and to adiabatically switch on the lattice [14] (see Sec. 4.2).
As the atoms can tunnel from one site to another, this platform realizes situations where
electrons move in crystals of various geometries. It it thus ideal to study condensed matter
situations (see below).

An important experimental breakthrough of the past decade was the development of
“quantum gas microscopes”, which combine optical lattices with large numerical aper-
ture objectives [14] (see Fig. 3c). The resolution of the objectives being on the order of
λ/2, also the typical spacing between atoms in the lattices, this tool allows for the in-situ
observation of the atoms and their local manipulations. One can thus study transport,
measure correlation functions, etc., locally. Typically, a few hundred atoms are routinely
manipulated in 2D optical lattices under a quantum gas microscope.

• Cold atoms in arrays of optical tweezers [15]. More recently, a platform complemen-
tary to optical lattices has emerged. It relies on laser beams tightly focused by a large
numerical aperture optical system. The spot size is on the order of 1 µm and this single
beam, red-detuned with respect to an optical transition of the atoms, ensures a 3D con-
finement around the focal point where the light intensity is maximum. This microscopic
dipole trap is called an optical tweezers. By placing a diffractive element before the focus-
ing lens (such as a liquid-crystal-based spatial light modulator), one obtains an array of
spots that can be arranged in almost any arbitrary 2D and 3D geometry (see Fig. 4a,c,d).
This again allows emulating condensed matter situations.

The appealing feature of the platform relies on the fact that a single tweezers can host at
most one atom for a proper choice of the parameters. To load it, one uses a cloud of laser-
cooled atoms and focuses the tweezers array inside this cloud. Atoms enter at random
in the tweezers and get trapped. When two atoms are present at the same time, a light-
induced collision expels both of them, and the process starts again. Although simpler
to implement experimentally than the quantum gas microscope, the fact that the atoms
enter at random times in the tweezers is a drawback: it results into arrays with 1/2 filling
fraction. Techniques have however been devised to move the atoms in the arrays and thus
assemble atom-by-atom atomic arrays with unit filling (Fig. 4b). They operate up to 120
atoms in 2D and 72 in 3D. In this platform, the typical distances between the atoms are
several micrometers, which ensures the ability of local addressing for manipulations and
readout.

Interaction between ultra-cold atoms. Performing quantum simulation requires interactions
between the atoms. For ultra-cold bosonic atoms (mass M ), the interaction V (r1, r2) between
two of them is described to a good approximation by a contact potential governed by one pa-
rameter a called the scattering length:

V (r1, r2) =
4π�2a
M

δ(r1 − r2) . (9)

Hence, for 2 atoms in wave functions φa,b(r), the interaction energy is

U =

∫
|φa(r1)|2V (r1, r2)|φb(r1)|2d3r1d3r2 =

4π�2a
M

∫
|φa(r)|2|φb(r)|2d3r . (10)

For two fermions in the same wave function, the interaction vanishes due to the Pauli principle.
Fermions in different spin states do however interact, with an interaction also characterized by
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Fig. 4: Neutral atom platform: optical tweezers arrays. (a) Setup to create an array of
optical tweezers. A spatial light modulator (SLM) imprints a phase pattern on the trapping
beam, resulting in the focal plane of the high NA lens into an array of tweezers. The atoms
are observed by fluorescence imaging on a sensitive camera. (b) Active sorting of the atoms
in the array results into a sub-array with unit filling. (c) Examples of fluorescence images of
2D and 3D structures (d). Each bright spot corresponds to one atom. Figures from the Institut
d’Optique.

a scattering length. Importantly, the scattering length is controllable by a magnetic field B,
a phenomenon called a Feschbach resonance. The scattering length of two atoms placed in a
magnetic field B varies around a resonance located at B0 as a(B) = abg + ∆/(B − B0). It is
thus possible to vary the interaction beween two atoms from perfect cancellation (a = 0) to a
much larger than any lengthscale in the problem (the unitary regime).

Implementation of Bose- and Fermi-Hubbard models. Let us look at the consequence of
this contact interaction for ultra-cold atoms held in optical lattices. Consider first the case of
bosons. The Hamiltonian governing the behavior of N bosons in an optical lattice contains two
terms:

HBH = −J
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(â†i âj + âiâ
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j) +
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with âi(â
†
i ) the annihilation (creation) operator of an atom at site i. The first term describes

the tunneling of atoms between neighboring sites, in the tight-binding model. The second term
describes the on-site interaction when two bosons are placed on the same site of the lattice. Here
U = 4π�2a

M

∫
|φ(r)|4d3r, with φ(r) the wave function of an atom in one lattice site. In practice

U/h ≈ 1 kHz. This is the Bose-Hubbard model. In the same way, fermionic atoms held in an
optical lattice and with two internal states mapped onto the spin states (↑, ↓) directly implement
the Fermi-Hubbard Hamiltonian of Eq. (1). Thus atoms in optical lattices naturally realize two
of the basic Hamiltonians used to describe strongly correlated electronic systems in condensed
matter physics, which are still actively studied.

Implementation of spin models in optical lattices. Ultra-cold atoms in optical lattices also
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naturally implement spin models, such as the Heisenberg one described by the interaction
Hamiltonian HHeisenberg = J Sa · Sb for two spins Sa and Sb [16]. Consider two bosonic al-
kali atoms and two of their hyperfine ground states |↑〉 and |↓〉 (for example, for 87Rb atoms,
|↓〉 =

∣∣5S1/2, F = 1,M = −1
〉

and |↑〉 =
∣∣5S1/2, F = 1,M = 1

〉
). Place each of them on the

two sites a and b of a double-well potential, coupled with a tunneling amplitude J . We assume
that the on-site interaction U is spin-independent and that U � J . If the atoms are initially in
opposite spin states, i.e. in |↑, ↓〉a,b or |↓, ↑〉a,b, the tunneling couples them to the states |↑↓, 0〉a,b
or |0, ↑↓〉a,b with two atoms in one of the sites at an energy cost U . This off-resonant coupling
induces an energy shift −2J2/U obtained from second-order perturbation theory. If now the
atoms are in the two sites with the same spin state, e.g. |↑, ↑〉a,b, the tunneling couples them to
the states |↑↑, 0〉a,b or |0, ↑↑〉a,b with an amplitude J

√
2 due to the bosonic enhancement. The

resulting energy shift is thus −2(J
√
2)2/U . The same argument holds for the two-atom state

|↓, ↓〉a,b, and the diagonal, effective Hamiltonian describing these shifts is:

H1 = −2J2

U
(|↑, ↓〉 〈↑, ↓|+ |↓, ↑〉 〈↓, ↑|)− 4J2

U
(|↑, ↑〉 〈↑, ↑|+ |↓, ↓〉 〈↓, ↓|) . (12)

If the atoms are initially in |↑, ↓〉a,b, the tunneling also induces a spin-flip to the state |↓, ↑〉a,b
via the intermediate states |↑↓, 0〉a,b or |0, ↓↑〉a,b. In perturbation theory, the amplitude of the
spin-flip is −2J2/U , and the effective Hamiltonian is off-diagonal:

H2 = −2J2

U
(|↑, ↓〉 〈↓, ↑|+ |↓, ↑〉 〈↑, ↓|) . (13)

Introducing the spin operators Sz
a,b = (|↑〉 〈↑| − |↓〉 〈↓|)a,b/2, S+

a,b = |↑〉 〈↓|a,b and S−
a,b =

|↓〉 〈↑|a,b, the total effective Hamiltonian has the Heisenberg form, within an offset:

HHeisenberg = H1 +H2 = −4J2

U

[
Sz
aS

z
b +

1

2
(S+

a S
−
b + S−

a S
+
b )

]
= 2JexSa · Sb , (14)

with Jex = −2J2/U . This coupling favors a ferromagnetic ordering of the spins. The process
by which the hopping occurs via an off-resonant state is called super-exchange and is used to
describe the magnetism of ionic solids such as MnO and CuO. Starting from the Fermi-Hubbard
Hamiltonian of Eq. (1), the same line of arguments for two spin states of fermionic atoms
(e.g. 6Li) also leads to a Heisenberg spin Hamiltonian, but the coupling is now Jex = 2J2/U ,
i.e. favors an anti-ferromagnetic order. This comes from: (i) the Pauli blockade that prevents
the coupling of, e.g., |↑, ↑〉a,b to |↑↑, 0〉a,b or |0, ↑↑〉a,b, and (ii) the fact that the spin-flip from
|↑, ↓〉a,b to |↓, ↑〉a,b amounts to exchanging the two fermions, which leads to a sign change in the
coupling.

Some atoms used in the experiments also possess a strong magnetic moment µ in their ground
state. This is the case of Cr (µ = 6µB), Er (µ = 7µB) and Dy (µ = 10µB). Consequently, on
top of the contact interaction described by the scattering length, they also interact by magnetic
dipole interaction:

Hmag =
µ0

4πr3
[µ1 · µ2 − 3(µ1 · r̂)(µ1 · r̂)] , (15)

for two atoms separated by a distance r. The energy scale µ0µ
2/(4πhr3) associated to this

interaction is rather small, around 10 Hz for r = 500 nm, the typical spacing between atoms
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in an optical lattice. To observe the influence of this magnetic interaction, one usually sup-
presses the contact interaction using a Feschbach resonance. Finally, as the magnetic moment
is proportional to the spin operator, the Hamiltonian (15) also allows implementing spin models.

Rydberg quantum simulator. In platforms based on tweezers arrays, the separations between
the atoms are on the order of a few micrometers. At these distances all the interactions between
atoms mentioned above are negligible. To make them interact at such large distances, one
uses Rydberg states, i.e. states with large principal quantum numbers n (in practice 50 ≤ n ≤
100) [15]. When in such a state, the atoms feature two important properties. First, their lifetime,
scaling as n3, is much longer than for low lying transitions (typically in the 100µs range for
n ≈ 50). Second, they exhibit large electric dipole moments between states n and n − 1 with
opposite parity, scaling as n2. This leads to large interaction strengths V , corresponding to
frequencies V/h � 1MHz for n ≈ 50 at distances around 5µm. The timescale associated
with this Rydberg-based interaction is thus sub-microsecond. Ensembles of atoms in arrays of
tweezers and excited to Rydberg states naturally implement Ising and XY models, as for the
ions, and constitutes a “Rydberg quantum simulator”, as we now describe.

Consider first the case where two atoms are excited to the same Rydberg state |r〉. There, the
dipole-dipole interaction leads to the van der Waals interaction, which induces an energy shift
of the pair state |rr〉 scaling as C6/R

6. The van der Waals C6 coefficient varies as n11, meaning
that placing two atoms in, e.g., Rydberg state n = 50 enhances the interaction by 11 orders of
magnitude. This shift occurs only when both atoms are excited to the Rydberg state. Mapping
the ground and Rydberg states |g〉 and |r〉 of each atom onto a spin 1/2 following |↓〉 = |g〉 and
|↑〉 = |r〉, the Hamiltonian of an ensemble of atoms driven by a coherent laser (Rabi frequency
Ω, frequency detuning ∆) is

H =
�Ω
2

∑
i

σ̂x
i − �∆

∑
i

n̂i +
∑
i<j

Vijn̂in̂j, with Vij =
C6

R6
ij

. (16)

Here n̂i is the operator counting the number of Rydberg excitation (0 or 1) at site i, related to
the σ̂z

i Pauli matrix by n̂i = (σ̂z
i + 1)/2. Hence, Eq. (16) has the form of the quantum Ising

model, with a transverse field B⊥ ∝ Ω, a longitudinal field B|| ∝ −∆ and Ising couplings Jij
decaying as 1/R6

ij with the distance. The Hamiltonian (16) assumes that the excitation laser
covers uniformly the atomic array, but owing to the single-site addressability, the detunings and
Rabi frequency can be made site dependent by adding local laser control.

Consider now the case where the atoms are prepared in two different Rydberg states that are
dipole-coupled, such as |nS〉 and |nP 〉, separated by a transition frequency typically in the
10 GHz range. There, the dipole-dipole interaction gives rise to a coherent exchange of the
internal states of the atoms and the interaction potential scales as C3/R

3, with C3 ∝ n4. The
mapping onto a spin-1/2 model is then |↓〉 = |nS〉 and |↑〉 = |nP 〉. Microwave radiation can
be used to manipulate the spin and thus acts as an external magnetic field. The Hamiltonian for
a system of atoms then reads:

H =
�Ωµw

2

∑
i

σ̂x
i −

�∆µw

2

∑
i

σ̂z
i +

∑
i �=j

C3

R3
ij

(
σ̂+
i σ̂

−
j + σ̂−

i σ̂
+
j

)
, (17)

which is the XY spin Hamiltonian with transverse and longitudinal fields given by the Rabi
frequency Ωµw and the detuning ∆µw of the microwave field.
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naturally implement spin models, such as the Heisenberg one described by the interaction
Hamiltonian HHeisenberg = J Sa · Sb for two spins Sa and Sb [16]. Consider two bosonic al-
kali atoms and two of their hyperfine ground states |↑〉 and |↓〉 (for example, for 87Rb atoms,
|↓〉 =

∣∣5S1/2, F = 1,M = −1
〉

and |↑〉 =
∣∣5S1/2, F = 1,M = 1
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). Place each of them on the

two sites a and b of a double-well potential, coupled with a tunneling amplitude J . We assume
that the on-site interaction U is spin-independent and that U � J . If the atoms are initially in
opposite spin states, i.e. in |↑, ↓〉a,b or |↓, ↑〉a,b, the tunneling couples them to the states |↑↓, 0〉a,b
or |0, ↑↓〉a,b with two atoms in one of the sites at an energy cost U . This off-resonant coupling
induces an energy shift −2J2/U obtained from second-order perturbation theory. If now the
atoms are in the two sites with the same spin state, e.g. |↑, ↑〉a,b, the tunneling couples them to
the states |↑↑, 0〉a,b or |0, ↑↑〉a,b with an amplitude J

√
2 due to the bosonic enhancement. The

resulting energy shift is thus −2(J
√
2)2/U . The same argument holds for the two-atom state

|↓, ↓〉a,b, and the diagonal, effective Hamiltonian describing these shifts is:
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U
(|↑, ↑〉 〈↑, ↑|+ |↓, ↓〉 〈↓, ↓|) . (12)

If the atoms are initially in |↑, ↓〉a,b, the tunneling also induces a spin-flip to the state |↓, ↑〉a,b
via the intermediate states |↑↓, 0〉a,b or |0, ↓↑〉a,b. In perturbation theory, the amplitude of the
spin-flip is −2J2/U , and the effective Hamiltonian is off-diagonal:

H2 = −2J2

U
(|↑, ↓〉 〈↓, ↑|+ |↓, ↑〉 〈↑, ↓|) . (13)

Introducing the spin operators Sz
a,b = (|↑〉 〈↑| − |↓〉 〈↓|)a,b/2, S+

a,b = |↑〉 〈↓|a,b and S−
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|↓〉 〈↑|a,b, the total effective Hamiltonian has the Heisenberg form, within an offset:

HHeisenberg = H1 +H2 = −4J2

U

[
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z
b +
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2
(S+
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−
b + S−
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+
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]
= 2JexSa · Sb , (14)

with Jex = −2J2/U . This coupling favors a ferromagnetic ordering of the spins. The process
by which the hopping occurs via an off-resonant state is called super-exchange and is used to
describe the magnetism of ionic solids such as MnO and CuO. Starting from the Fermi-Hubbard
Hamiltonian of Eq. (1), the same line of arguments for two spin states of fermionic atoms
(e.g. 6Li) also leads to a Heisenberg spin Hamiltonian, but the coupling is now Jex = 2J2/U ,
i.e. favors an anti-ferromagnetic order. This comes from: (i) the Pauli blockade that prevents
the coupling of, e.g., |↑, ↑〉a,b to |↑↑, 0〉a,b or |0, ↑↑〉a,b, and (ii) the fact that the spin-flip from
|↑, ↓〉a,b to |↓, ↑〉a,b amounts to exchanging the two fermions, which leads to a sign change in the
coupling.

Some atoms used in the experiments also possess a strong magnetic moment µ in their ground
state. This is the case of Cr (µ = 6µB), Er (µ = 7µB) and Dy (µ = 10µB). Consequently, on
top of the contact interaction described by the scattering length, they also interact by magnetic
dipole interaction:

Hmag =
µ0

4πr3
[µ1 · µ2 − 3(µ1 · r̂)(µ1 · r̂)] , (15)

for two atoms separated by a distance r. The energy scale µ0µ
2/(4πhr3) associated to this

interaction is rather small, around 10 Hz for r = 500 nm, the typical spacing between atoms
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in an optical lattice. To observe the influence of this magnetic interaction, one usually sup-
presses the contact interaction using a Feschbach resonance. Finally, as the magnetic moment
is proportional to the spin operator, the Hamiltonian (15) also allows implementing spin models.

Rydberg quantum simulator. In platforms based on tweezers arrays, the separations between
the atoms are on the order of a few micrometers. At these distances all the interactions between
atoms mentioned above are negligible. To make them interact at such large distances, one
uses Rydberg states, i.e. states with large principal quantum numbers n (in practice 50 ≤ n ≤
100) [15]. When in such a state, the atoms feature two important properties. First, their lifetime,
scaling as n3, is much longer than for low lying transitions (typically in the 100µs range for
n ≈ 50). Second, they exhibit large electric dipole moments between states n and n − 1 with
opposite parity, scaling as n2. This leads to large interaction strengths V , corresponding to
frequencies V/h � 1MHz for n ≈ 50 at distances around 5µm. The timescale associated
with this Rydberg-based interaction is thus sub-microsecond. Ensembles of atoms in arrays of
tweezers and excited to Rydberg states naturally implement Ising and XY models, as for the
ions, and constitutes a “Rydberg quantum simulator”, as we now describe.

Consider first the case where two atoms are excited to the same Rydberg state |r〉. There, the
dipole-dipole interaction leads to the van der Waals interaction, which induces an energy shift
of the pair state |rr〉 scaling as C6/R

6. The van der Waals C6 coefficient varies as n11, meaning
that placing two atoms in, e.g., Rydberg state n = 50 enhances the interaction by 11 orders of
magnitude. This shift occurs only when both atoms are excited to the Rydberg state. Mapping
the ground and Rydberg states |g〉 and |r〉 of each atom onto a spin 1/2 following |↓〉 = |g〉 and
|↑〉 = |r〉, the Hamiltonian of an ensemble of atoms driven by a coherent laser (Rabi frequency
Ω, frequency detuning ∆) is

H =
�Ω
2

∑
i

σ̂x
i − �∆

∑
i

n̂i +
∑
i<j

Vijn̂in̂j, with Vij =
C6

R6
ij

. (16)

Here n̂i is the operator counting the number of Rydberg excitation (0 or 1) at site i, related to
the σ̂z

i Pauli matrix by n̂i = (σ̂z
i + 1)/2. Hence, Eq. (16) has the form of the quantum Ising

model, with a transverse field B⊥ ∝ Ω, a longitudinal field B|| ∝ −∆ and Ising couplings Jij
decaying as 1/R6

ij with the distance. The Hamiltonian (16) assumes that the excitation laser
covers uniformly the atomic array, but owing to the single-site addressability, the detunings and
Rabi frequency can be made site dependent by adding local laser control.

Consider now the case where the atoms are prepared in two different Rydberg states that are
dipole-coupled, such as |nS〉 and |nP 〉, separated by a transition frequency typically in the
10 GHz range. There, the dipole-dipole interaction gives rise to a coherent exchange of the
internal states of the atoms and the interaction potential scales as C3/R

3, with C3 ∝ n4. The
mapping onto a spin-1/2 model is then |↓〉 = |nS〉 and |↑〉 = |nP 〉. Microwave radiation can
be used to manipulate the spin and thus acts as an external magnetic field. The Hamiltonian for
a system of atoms then reads:

H =
�Ωµw

2

∑
i

σ̂x
i −

�∆µw

2

∑
i

σ̂z
i +

∑
i �=j

C3

R3
ij

(
σ̂+
i σ̂

−
j + σ̂−

i σ̂
+
j

)
, (17)

which is the XY spin Hamiltonian with transverse and longitudinal fields given by the Rabi
frequency Ωµw and the detuning ∆µw of the microwave field.
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Fig. 5: Quantum circuit platform. (a) Example of a quantum circuit based on a Cooper-pair
box. It consists of two Josephson junctions in a loop (SQUID) placed between two supercon-
ducting islands. This device is patterned on a chip and can be coupled to a microwave guide
also patterned on the chip. Figures from [17]. (b) The non-linear inductance of the Josephson
junction results into an effective sinusoidal potential as a function of the flux through the loop.

Ultra-cold molecule-based platform. To conclude this description of the atom-based plat-
forms, one must cite a related platform manipulating ultra-cold polar molecules such as KRb,
LiCs, CaF [14]. They possess electric dipole moments, which can be aligned and enhanced us-
ing DC electric fields. This results into a dipole-dipole interaction, which has the form given by
Eq. (15), replacing the magnetic dipoles by the electric dipoles. The molecules can be trapped
either in optical lattices or in arrays of tweezers. They also implement spin models with XY
and Ising-like terms in the interaction Hamiltonian [14].

3.4 Quantum circuits [17]

Quantum circuit-based platforms have made impressive progress over the last decade, culminat-
ing with the recent demonstration of a quantum computation with 53 connected circuits [18].
This platform exists in various implementations (phase, charge, flux quantum bits). They all
rely on three interconnected ingredients: (i) the pairing of electrons into Cooper pairs (charge
2e) at low temperature in some metallic conductors; (ii) the superconductivity which allows the
Cooper pairs to propagate almost without resistivity through the conductors; (iii) a Josephson
Junction, which provides a non-linear inductance.

Consider one of the simplest case to understand, called a Cooper-pair box, represented in
Fig. 5(a) (today, a popular implementation, the transmon qubit, is a variant of the Cooper-
pair box). It consists of two Josephson junctions in a loop placed between two superconducting
islands. The Cooper pairs have an amplitude EJ to tunnel through the junctions, and the flux
through the loop φ is controllable by external means (e.g. external potentials). The junction
also acts as a capacitor C. The Hamiltonian describing this situation can been written in the
limit (2e)2/C � EJ [19]

HJ =
Q2

2C
− EJ cos

(
2π

φ

φ0

)
. (18)
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with Q the charge difference between the two islands, and φ0 = h/(2e). As the induction laws
giving the voltage drop between the islands is φ̇ = −Q/C, the Hamiltonian (18) is analogous
to the one of a mechanical pendulum in a potential V (φ) = −EJ cos

(
2π φ

φ0

)
(Fig. 5b). It is

non-harmonic for large fluxes.

When quantizing this non-linear oscillator, energy levels appear, with a frequency separation
between the two lowest states ω01 =

√
(EJ/�2)(2e)2/C. For a typical experimental realizations

using transmons, ω01/(2π) ≈ 5 GHz. The non-linearity is weak, as the second energy spacing
ω12 differs from ω01 by only about 2π × 200 MHz. For the quantum treatment to be relevant,
one has to work at low temperature to avoid thermally populating the excited states. In practice,
this means operating at a temperature lower than �ω01/kB ≈ 100 mK. These experiments thus
operate in a cryogenic environment.

Let us consider first the case where we isolate the two lowest levels, and let us map them onto
a spin-1/2: |↓〉 = |n = 0〉 and |↑〉 = |n = 1〉. A microwave tuned near the frequency ω01 drives
the transition and the corresponding Hamiltonian is �Ω(σ̂++ σ̂−)/2, with Ω the Rabi frequency,
σ̂+ = |↑〉 〈↓| and σ̂− = |↓〉 〈↑|. Two such circuits can also be coupled together by connecting
them by a microwave guide. Consider the mode of the waveguide with the frequency ω the
closest to the resonance frequency ω01 of the two-level system. Its quantized electric field is
Ê =

√
�ω/(2ε0V ) (â+ â†) (V is the mode volume). The two coupled circuits thus implement

the Jaynes-Cumming Hamiltonian:

HJC = �ω01(σ̂
z
1 + σ̂z

2) + �ω â†â+ �g(σ̂+
1 + σ̂−

1 + σ̂+
2 + σ̂−

2 )(â+ â†) , (19)

with g the coupling constant between the circuits and the waveguide, which acts as a cavity. If
the waveguide cavity is detuned by ∆ = ω − ω01 so that |∆| � g, it is possible to eliminate
the field and obtain an effective Hamiltonian containing only the circuits’ degrees of freedom.
Consider the two circuits in opposite state and an empty waveguide, i.e. the (circuits + field)
state |↑, ↓, 0〉. The first circuit can off-resonantly drop a photon in the cavity waveguide, which
gets absorbed by the second circuit, leading to |↓, ↑, 0〉 via the intermediate state |↓, ↓, 1〉 shifted
in energy by �∆. As for the derivation of the Heisenberg model for atoms in optical lattices
(Eq. 14), perturbation theory gives the amplitude of this spin-flip process: �g2/∆. The effective
coupling Hamiltonian is now:

Heff =
�g2

∆
(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 ) . (20)

This is the coupling needed to implement the XY spin model introduced earlier.

Interestingly, the intrinsic non-linearity introduced by the Josephson junctions also allows a
mapping onto the Bose-Hubbard model. To understand this, let us expand the cosine in Eq. (18)
up to fourth order, and write the flux as a quantized operator φ̂ ∝ b̂+ b̂†, with b̂ (b̂†) the annihi-
lation (creation) operator of a flux quantum. The expansion leads to

HJ ≈ Q̂2

2C
+

4π2EJ

2φ2
0

φ̂2 − 4π4EJ

φ4
0

φ̂4 = �ω01b̂
†b̂+ Un̂(n̂− 1) , (21)

with U = 4π4EJ , n̂ = b̂†b̂, using [b̂, b̂†] = 1 and neglecting offset terms when restricting to
up to n = 2 excitations. In the language of creation and annihilation operators, the effective
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Fig. 5: Quantum circuit platform. (a) Example of a quantum circuit based on a Cooper-pair
box. It consists of two Josephson junctions in a loop (SQUID) placed between two supercon-
ducting islands. This device is patterned on a chip and can be coupled to a microwave guide
also patterned on the chip. Figures from [17]. (b) The non-linear inductance of the Josephson
junction results into an effective sinusoidal potential as a function of the flux through the loop.

Ultra-cold molecule-based platform. To conclude this description of the atom-based plat-
forms, one must cite a related platform manipulating ultra-cold polar molecules such as KRb,
LiCs, CaF [14]. They possess electric dipole moments, which can be aligned and enhanced us-
ing DC electric fields. This results into a dipole-dipole interaction, which has the form given by
Eq. (15), replacing the magnetic dipoles by the electric dipoles. The molecules can be trapped
either in optical lattices or in arrays of tweezers. They also implement spin models with XY
and Ising-like terms in the interaction Hamiltonian [14].

3.4 Quantum circuits [17]

Quantum circuit-based platforms have made impressive progress over the last decade, culminat-
ing with the recent demonstration of a quantum computation with 53 connected circuits [18].
This platform exists in various implementations (phase, charge, flux quantum bits). They all
rely on three interconnected ingredients: (i) the pairing of electrons into Cooper pairs (charge
2e) at low temperature in some metallic conductors; (ii) the superconductivity which allows the
Cooper pairs to propagate almost without resistivity through the conductors; (iii) a Josephson
Junction, which provides a non-linear inductance.

Consider one of the simplest case to understand, called a Cooper-pair box, represented in
Fig. 5(a) (today, a popular implementation, the transmon qubit, is a variant of the Cooper-
pair box). It consists of two Josephson junctions in a loop placed between two superconducting
islands. The Cooper pairs have an amplitude EJ to tunnel through the junctions, and the flux
through the loop φ is controllable by external means (e.g. external potentials). The junction
also acts as a capacitor C. The Hamiltonian describing this situation can been written in the
limit (2e)2/C � EJ [19]

HJ =
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2C
− EJ cos

(
2π
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with Q the charge difference between the two islands, and φ0 = h/(2e). As the induction laws
giving the voltage drop between the islands is φ̇ = −Q/C, the Hamiltonian (18) is analogous
to the one of a mechanical pendulum in a potential V (φ) = −EJ cos

(
2π φ
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)
(Fig. 5b). It is

non-harmonic for large fluxes.

When quantizing this non-linear oscillator, energy levels appear, with a frequency separation
between the two lowest states ω01 =
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(EJ/�2)(2e)2/C. For a typical experimental realizations

using transmons, ω01/(2π) ≈ 5 GHz. The non-linearity is weak, as the second energy spacing
ω12 differs from ω01 by only about 2π × 200 MHz. For the quantum treatment to be relevant,
one has to work at low temperature to avoid thermally populating the excited states. In practice,
this means operating at a temperature lower than �ω01/kB ≈ 100 mK. These experiments thus
operate in a cryogenic environment.

Let us consider first the case where we isolate the two lowest levels, and let us map them onto
a spin-1/2: |↓〉 = |n = 0〉 and |↑〉 = |n = 1〉. A microwave tuned near the frequency ω01 drives
the transition and the corresponding Hamiltonian is �Ω(σ̂++ σ̂−)/2, with Ω the Rabi frequency,
σ̂+ = |↑〉 〈↓| and σ̂− = |↓〉 〈↑|. Two such circuits can also be coupled together by connecting
them by a microwave guide. Consider the mode of the waveguide with the frequency ω the
closest to the resonance frequency ω01 of the two-level system. Its quantized electric field is
Ê =
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the Jaynes-Cumming Hamiltonian:
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with g the coupling constant between the circuits and the waveguide, which acts as a cavity. If
the waveguide cavity is detuned by ∆ = ω − ω01 so that |∆| � g, it is possible to eliminate
the field and obtain an effective Hamiltonian containing only the circuits’ degrees of freedom.
Consider the two circuits in opposite state and an empty waveguide, i.e. the (circuits + field)
state |↑, ↓, 0〉. The first circuit can off-resonantly drop a photon in the cavity waveguide, which
gets absorbed by the second circuit, leading to |↓, ↑, 0〉 via the intermediate state |↓, ↓, 1〉 shifted
in energy by �∆. As for the derivation of the Heisenberg model for atoms in optical lattices
(Eq. 14), perturbation theory gives the amplitude of this spin-flip process: �g2/∆. The effective
coupling Hamiltonian is now:

Heff =
�g2

∆
(σ̂+

1 σ̂
−
2 + σ̂−

1 σ̂
+
2 ) . (20)

This is the coupling needed to implement the XY spin model introduced earlier.

Interestingly, the intrinsic non-linearity introduced by the Josephson junctions also allows a
mapping onto the Bose-Hubbard model. To understand this, let us expand the cosine in Eq. (18)
up to fourth order, and write the flux as a quantized operator φ̂ ∝ b̂+ b̂†, with b̂ (b̂†) the annihi-
lation (creation) operator of a flux quantum. The expansion leads to

HJ ≈ Q̂2

2C
+

4π2EJ

2φ2
0

φ̂2 − 4π4EJ

φ4
0

φ̂4 = �ω01b̂
†b̂+ Un̂(n̂− 1) , (21)

with U = 4π4EJ , n̂ = b̂†b̂, using [b̂, b̂†] = 1 and neglecting offset terms when restricting to
up to n = 2 excitations. In the language of creation and annihilation operators, the effective
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Fig. 6: Polaritonic platform. (a) Quantum well (QW) containing one exciton placed in the
middle of a cavity made of Bragg mirrors. Figure from [20]. (b) (Left) Calculated energy
spectrum EL,U(k) for the upper and lower polaritons resulting from the coupling between the
excitons and the cavity field (parameters: Ω/[Eph(0) − EX(0)] = 1). (Right) Light intensity
measured on a sensitive camera placed in the far-field of a QW pumped by a laser: the spa-
tial intensity distribution directly maps the relation dispersion EL,U(k). (c) Micropillar cavity
containing a quantum well. (d) Radial intensity distribution for the two lowest modes of the
electromagnetic field inside two coupled micropillars. (e) Examples of arrays of micropillars
realizing a tight-binding model. Figures (b)-(e) from [21].

exchange Hamiltonian (20) takes the form �g2
∆
(b̂+1 b̂2 + b̂1b̂

+
2 ). If now N circuits are coupled by

waveguides (nearest-neighbor couplings), one obtains the Bose-Hubbard Hamiltonian:

HBH =
�g2

∆

∑
〈i,j〉

(b̂†i b̂j + b̂ib̂
†
j) + U

∑
i=1

n̂i(n̂i − 1) . (22)

For a long time, people were skeptical about the scalability of the quantum circuit-based ap-
proach. The recent demonstration of a quantum algorithm with up to 53 connected circuits [18]
indicates that this platform now has the potential to scale up. The high degree of control
achieved by the circuit-based platforms also allows for digital quantum simulation.

3.5 Quantum fluids of light with polaritons in semiconductor cavities [20]

This platform consists of hybrid particles, called polaritons, with photonic and matter compo-
nents. It combines excitons in a semi-conductor material with photons confined in a high finesse
cavity in the strong coupling regime. As the light leaks out of the cavity, the polaritons are very
short-lived. Hence the system needs to be continuously pumped by a laser. Contrarily to the
platforms described in the previous sections, this one is intrinsically dissipative and must oper-
ate under the drive of a laser. It is therefore an ideal platform to perform quantum simulation of
driven dissipative systems.

Quantum Simulation A2.17

The first ingredient of the platform is a cavity of length L made of two Bragg mirrors sur-
rounding a semi-conductor material of refractive index ncav. Along the cavity axis (Oz) the
wavevector of the light is quantized: kz = pπ/L (p is an integer). The total wavevector is thus
k =

√
k2
‖ + (pπ/L)2. Expanding around low k‖/kz yields a quadratic dispersion relation

Eph(k‖) = �ω(k‖) =
�kc
ncav

= C +
�2k2

‖

2Mph

, (23)

with Mph = pπ�ncav/(Lc) the effective mass of the photon in the plane parallel to the mirrors.

The second ingredient is an exciton. It is a bound state made of an electron excited to the
conduction band and a hole in the valence bound in a semiconductor material (e.g. in InGaAs,
with gap energy 1.35 eV). If the semiconductor where the exciton is formed is placed between
two different semi-conductors with larger gap (e.g. GaAs, with gap energy 1.45 eV) separated
by a distance d, perpendicular to the (Oz) axis, the exciton is confined in the layer of thickness
d in the z direction with a wave function φn(z). This arrangement forms a quantum well (QW),
with the exciton free to move in the plane perpendicular to (Oz). The wave function of the
external degree of freedom of the exciton in the QW is thus ψX(r, z) = φn(z) exp(iK‖ · r),
with an energy EX = �2K2

‖/(2MX) and the exciton mass MX � Mph.

Let us now place the quantum well inside the cavity. The electric dipole moment of the exciton
couples to the cavity field, and the coupled exciton-cavity system is described by the Jaynes-
Cumming Hamiltonian:

HX−cav = Eph(k) â
†
kâk + EX(k) b̂

†
kb̂k +

�Ω
2
(â†kb̂k + b̂†kâk) , (24)

with k the wavevector in the plane perpendicular to (Oz), Ω the Rabi frequency associated to the
exciton-cavity coupling and (âk, â

†
k), (b̂k, b̂

†
k) the bosonic operators associated to the photons

and excitons respectively. The lowest energy eigenstates of the Hamiltonian mix one photon
and one exciton:

|polL〉 = cos(θk) |X〉+ sin(θk) |ph〉 ; |polU〉 = sin(θk) |X〉 − cos(θk) |ph〉 , (25)

with tan(2θk) = Ω/[EX(k) − Eph(k)]. The corresponding eigen-energies EL,U(k) are repre-
sented in Fig. 6(b). These two states, called Lower and Upper Polaritons, behave as hybrid
particles with momentum k. Their mass is adjustable by changing the detuning between the
cavity and the exciton, e.g., 1/ML = cos(θk)

2/MX + sin(θk)
2/Mph. Through its photonic com-

ponent, the particle emits light that exits the cavity. The k‖-component of the light is conserved,
meaning that light intensity pattern in the far-field directly maps onto the dispersion relation of
the polariton EL,U(k‖), as shown in Fig. 6(b).

When the pumping intensity is large enough, several polaritons can be prepared in the system,
that now interact via their exciton component. The interaction between two excitons results
from their Coulomb interaction. It can be described by a contact interaction VXXδ(r) with
VXX = 3e2aB/ε for two excitons of the same spin (aB is the 2D exciton Bohr radius, and ε
is the dielectric constant of the QW material). Hence the interaction between, e.g., two lower
polaritons has a contact constant g = VXX cos4(θk). This interaction is usually quite weak and is
treated in the mean-field approach. Therefore, an ensemble of interacting polaritons can also be
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Fig. 6: Polaritonic platform. (a) Quantum well (QW) containing one exciton placed in the
middle of a cavity made of Bragg mirrors. Figure from [20]. (b) (Left) Calculated energy
spectrum EL,U(k) for the upper and lower polaritons resulting from the coupling between the
excitons and the cavity field (parameters: Ω/[Eph(0) − EX(0)] = 1). (Right) Light intensity
measured on a sensitive camera placed in the far-field of a QW pumped by a laser: the spa-
tial intensity distribution directly maps the relation dispersion EL,U(k). (c) Micropillar cavity
containing a quantum well. (d) Radial intensity distribution for the two lowest modes of the
electromagnetic field inside two coupled micropillars. (e) Examples of arrays of micropillars
realizing a tight-binding model. Figures (b)-(e) from [21].

exchange Hamiltonian (20) takes the form �g2
∆
(b̂+1 b̂2 + b̂1b̂

+
2 ). If now N circuits are coupled by

waveguides (nearest-neighbor couplings), one obtains the Bose-Hubbard Hamiltonian:
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For a long time, people were skeptical about the scalability of the quantum circuit-based ap-
proach. The recent demonstration of a quantum algorithm with up to 53 connected circuits [18]
indicates that this platform now has the potential to scale up. The high degree of control
achieved by the circuit-based platforms also allows for digital quantum simulation.

3.5 Quantum fluids of light with polaritons in semiconductor cavities [20]

This platform consists of hybrid particles, called polaritons, with photonic and matter compo-
nents. It combines excitons in a semi-conductor material with photons confined in a high finesse
cavity in the strong coupling regime. As the light leaks out of the cavity, the polaritons are very
short-lived. Hence the system needs to be continuously pumped by a laser. Contrarily to the
platforms described in the previous sections, this one is intrinsically dissipative and must oper-
ate under the drive of a laser. It is therefore an ideal platform to perform quantum simulation of
driven dissipative systems.
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The first ingredient of the platform is a cavity of length L made of two Bragg mirrors sur-
rounding a semi-conductor material of refractive index ncav. Along the cavity axis (Oz) the
wavevector of the light is quantized: kz = pπ/L (p is an integer). The total wavevector is thus
k =

√
k2
‖ + (pπ/L)2. Expanding around low k‖/kz yields a quadratic dispersion relation

Eph(k‖) = �ω(k‖) =
�kc
ncav

= C +
�2k2

‖

2Mph

, (23)

with Mph = pπ�ncav/(Lc) the effective mass of the photon in the plane parallel to the mirrors.

The second ingredient is an exciton. It is a bound state made of an electron excited to the
conduction band and a hole in the valence bound in a semiconductor material (e.g. in InGaAs,
with gap energy 1.35 eV). If the semiconductor where the exciton is formed is placed between
two different semi-conductors with larger gap (e.g. GaAs, with gap energy 1.45 eV) separated
by a distance d, perpendicular to the (Oz) axis, the exciton is confined in the layer of thickness
d in the z direction with a wave function φn(z). This arrangement forms a quantum well (QW),
with the exciton free to move in the plane perpendicular to (Oz). The wave function of the
external degree of freedom of the exciton in the QW is thus ψX(r, z) = φn(z) exp(iK‖ · r),
with an energy EX = �2K2

‖/(2MX) and the exciton mass MX � Mph.

Let us now place the quantum well inside the cavity. The electric dipole moment of the exciton
couples to the cavity field, and the coupled exciton-cavity system is described by the Jaynes-
Cumming Hamiltonian:

HX−cav = Eph(k) â
†
kâk + EX(k) b̂

†
kb̂k +

�Ω
2
(â†kb̂k + b̂†kâk) , (24)

with k the wavevector in the plane perpendicular to (Oz), Ω the Rabi frequency associated to the
exciton-cavity coupling and (âk, â

†
k), (b̂k, b̂

†
k) the bosonic operators associated to the photons

and excitons respectively. The lowest energy eigenstates of the Hamiltonian mix one photon
and one exciton:

|polL〉 = cos(θk) |X〉+ sin(θk) |ph〉 ; |polU〉 = sin(θk) |X〉 − cos(θk) |ph〉 , (25)

with tan(2θk) = Ω/[EX(k) − Eph(k)]. The corresponding eigen-energies EL,U(k) are repre-
sented in Fig. 6(b). These two states, called Lower and Upper Polaritons, behave as hybrid
particles with momentum k. Their mass is adjustable by changing the detuning between the
cavity and the exciton, e.g., 1/ML = cos(θk)

2/MX + sin(θk)
2/Mph. Through its photonic com-

ponent, the particle emits light that exits the cavity. The k‖-component of the light is conserved,
meaning that light intensity pattern in the far-field directly maps onto the dispersion relation of
the polariton EL,U(k‖), as shown in Fig. 6(b).

When the pumping intensity is large enough, several polaritons can be prepared in the system,
that now interact via their exciton component. The interaction between two excitons results
from their Coulomb interaction. It can be described by a contact interaction VXXδ(r) with
VXX = 3e2aB/ε for two excitons of the same spin (aB is the 2D exciton Bohr radius, and ε
is the dielectric constant of the QW material). Hence the interaction between, e.g., two lower
polaritons has a contact constant g = VXX cos4(θk). This interaction is usually quite weak and is
treated in the mean-field approach. Therefore, an ensemble of interacting polaritons can also be
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viewed as a fluid of interacting photons (especially in situation where they form a Bose-Einstein
condensate), hence the name quantum fluid of light.

It is possible to confine the polaritons in 3D and to arrange them in arrays of various geometries
in order to emulate electrons in lattices. To do so, one starts from micropillar cavities with the
QW layer in the middle (Fig. 6c). The small radial size of the pillars now ensures a 3D confine-
ment of the polaritons. Placing two micropillars close to each other, the solution of Maxwell’s
equations in the resulting cavity presents new eigenmodes that are delocalized on the two pillars
as shown in Fig. 6(d), and with energy difference ∆E. Conversely, these eigenmodes can be
seen as resulting from the symmetric and anti-symmetric combinations of two modes localized
in each micropillar with a coupling amplitude J = ∆E/�. Hence this coupled micropillars
cavity is mapped onto a two coupled-wells problem (with states |L〉 and |R〉) described by the
Hamiltonian H = −J(|L〉 〈R|+ |R〉 〈L|) in the tight-binding limit. Nanotechnology techniques
now allow fabricating arrays of micropillars, as illustrated by a few examples in Fig. 6(e):
benzene-like structures, 1D chain, honeycomb lattice, etc. These 1D or 2D periodic structures
are characterized by band-structures with dispersion relations E(k), which can be directly visu-
alized by monitoring the light emitted in the far-field, as in Fig. 6(b). If the number of excitons
in the structure is large enough, they interact, although at the moment only in the mean-field.
One important current goal for this platforms is to increase the interactions between polaritons
to reach the correlated regime.

3.6 Other platforms

Many other platforms are considered for quantum simulation, such as free space photons [22]
nuclear spins, semi-conductor quantum dots, NV-centers, etc., with the list growing regu-
larly [1].

4 Examples of quantum simulations

Many problems can be studied using the quantum simulation approach. These include: quantum
magnetism, quantum chemistry, quantum transport, topological matter, high energy physics, lat-
tice gauge theories, cosmology, etc. [1]. New ranges of applicability appear regularly. In this
Section, we illustrate the concepts introduced in the first two sections on a few recent exper-
iments related to the applications mentioned above, using the platforms described in Sec. 3.
Here again we will not attempt to be exhaustive. In a biased way, most of the examples will
belong to atomic-based platforms and will illustrate the analog approach to quantum simulation
as it is currently the most advanced.

4.1 Out-of-equilibrium dynamics

One of the simplest ways to study many-body physics questions with a quantum simulator
consists in placing it out-of-equilibrium. This is usually achieved by varying abruptly one
parameter of the Hamiltonian (a process called a “quench”), after its preparation in a state easy
to access, and monitoring the ensuing dynamics. This dynamics is very challenging to calculate
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Fig. 7: Out-of-equilibrium experiments. (a) Dynamics in the Ising-like model using a Ryd-
berg quantum simulator implementing a chain with periodic boundary conditions. (Left) Dy-
namics of the fraction fR of atoms excited to a Rydberg state equivalent to the average mag-
netization 〈σ̂z〉 as a function of time τ in unit of Ω. (Right) Pair correlation function given
by Eq. (27) for Ωτ = 0.3. For both figures the solid lines are the ab-initio solutions of the
Schrödinger equation. Figures from [23]. (b) Dynamics of the Bose-Hubbard model after sud-
denly turning on the tunneling between lattices sites in a 1D array with only the even sites
initially filled. Measured mean occupation 〈nodd〉 of the odd sites as a function of the time in
unit of the tunneling constant J/�. The solid lines are the results of a t-DMRG calculation
including the residual imperfections of the experiment. Solid line: nearest neighbor hoppings
only. Dashed line: includes also next-nearest neighbor hoppings. Figure from [25].

by traditional methods, as it involves the knowledge of the full spectrum of the Hamiltonian
(see below). Out-of-equilibrium situations are therefore ideal testbeds for a quantum simulation
approach.

To see how the dynamics involves the spectrum, consider a many-body Hamiltonian HMB and
denote |ψα〉 the eigenstates and Eα the corresponding eigen-energies. The initial state of the
simulator |ψ(0)〉 right after the quench is |ψ(0)〉 =

∑
α cα |ψα〉. After a time t, the system

driven by HMB evolves as |ψ(t)〉 =
∑

α cαe
−iEαt/� |ψα〉. Hence, the expectation value of an

observable Ô is

〈Ô〉 = 〈ψ(t)| Ô |ψ(t)〉 =
∑
α,α′

cαc
∗
α′ 〈ψα′ | Ô |ψα〉 e−

i
� (Eα−Eα′ )t . (26)

This shows that the evolution of the expectation value of the observable results from the inter-
ference of all the eigen-frequencies of the Hamiltonian.

Let us illustrate the out-of-equlibrium approach on a few examples.

Dynamics in the quantum Ising model. The first one uses the mapping of spin models onto
ensembles of atoms interacting by the van der Waals interaction when excited to Rydberg states
(Rydberg quantum simulator). The experiment, done at the Institut d’Optique, relies on a chain
of atoms held in optical tweezers, wrapped on itself to realize periodic boundary conditions [23]
(see Fig. 7a). We use Rydberg states to mediate the interaction and implement the Ising-like
Hamiltonian of Eq. (16). The Rydberg excitation laser mimicking the magnetic field is applied
at resonance (∆ = 0), after having prepared the atoms in their ground state (i.e. spin |↓〉). We
then measure two quantities relevant to the study of spin systems. First, the average magnetiza-
tion 〈σz〉 =

∑
i〈σz

i 〉/N , related to the average number of atoms excited to the Rydberg states,
or equivalently in the spin state |↑〉. We observe an oscillatory evolution of the magnetization,
as shown in Fig 7(a). In particular the system seems to equilibrate at long time. Second, we
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viewed as a fluid of interacting photons (especially in situation where they form a Bose-Einstein
condensate), hence the name quantum fluid of light.

It is possible to confine the polaritons in 3D and to arrange them in arrays of various geometries
in order to emulate electrons in lattices. To do so, one starts from micropillar cavities with the
QW layer in the middle (Fig. 6c). The small radial size of the pillars now ensures a 3D confine-
ment of the polaritons. Placing two micropillars close to each other, the solution of Maxwell’s
equations in the resulting cavity presents new eigenmodes that are delocalized on the two pillars
as shown in Fig. 6(d), and with energy difference ∆E. Conversely, these eigenmodes can be
seen as resulting from the symmetric and anti-symmetric combinations of two modes localized
in each micropillar with a coupling amplitude J = ∆E/�. Hence this coupled micropillars
cavity is mapped onto a two coupled-wells problem (with states |L〉 and |R〉) described by the
Hamiltonian H = −J(|L〉 〈R|+ |R〉 〈L|) in the tight-binding limit. Nanotechnology techniques
now allow fabricating arrays of micropillars, as illustrated by a few examples in Fig. 6(e):
benzene-like structures, 1D chain, honeycomb lattice, etc. These 1D or 2D periodic structures
are characterized by band-structures with dispersion relations E(k), which can be directly visu-
alized by monitoring the light emitted in the far-field, as in Fig. 6(b). If the number of excitons
in the structure is large enough, they interact, although at the moment only in the mean-field.
One important current goal for this platforms is to increase the interactions between polaritons
to reach the correlated regime.

3.6 Other platforms

Many other platforms are considered for quantum simulation, such as free space photons [22]
nuclear spins, semi-conductor quantum dots, NV-centers, etc., with the list growing regu-
larly [1].

4 Examples of quantum simulations

Many problems can be studied using the quantum simulation approach. These include: quantum
magnetism, quantum chemistry, quantum transport, topological matter, high energy physics, lat-
tice gauge theories, cosmology, etc. [1]. New ranges of applicability appear regularly. In this
Section, we illustrate the concepts introduced in the first two sections on a few recent exper-
iments related to the applications mentioned above, using the platforms described in Sec. 3.
Here again we will not attempt to be exhaustive. In a biased way, most of the examples will
belong to atomic-based platforms and will illustrate the analog approach to quantum simulation
as it is currently the most advanced.

4.1 Out-of-equilibrium dynamics

One of the simplest ways to study many-body physics questions with a quantum simulator
consists in placing it out-of-equilibrium. This is usually achieved by varying abruptly one
parameter of the Hamiltonian (a process called a “quench”), after its preparation in a state easy
to access, and monitoring the ensuing dynamics. This dynamics is very challenging to calculate
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Fig. 7: Out-of-equilibrium experiments. (a) Dynamics in the Ising-like model using a Ryd-
berg quantum simulator implementing a chain with periodic boundary conditions. (Left) Dy-
namics of the fraction fR of atoms excited to a Rydberg state equivalent to the average mag-
netization 〈σ̂z〉 as a function of time τ in unit of Ω. (Right) Pair correlation function given
by Eq. (27) for Ωτ = 0.3. For both figures the solid lines are the ab-initio solutions of the
Schrödinger equation. Figures from [23]. (b) Dynamics of the Bose-Hubbard model after sud-
denly turning on the tunneling between lattices sites in a 1D array with only the even sites
initially filled. Measured mean occupation 〈nodd〉 of the odd sites as a function of the time in
unit of the tunneling constant J/�. The solid lines are the results of a t-DMRG calculation
including the residual imperfections of the experiment. Solid line: nearest neighbor hoppings
only. Dashed line: includes also next-nearest neighbor hoppings. Figure from [25].

by traditional methods, as it involves the knowledge of the full spectrum of the Hamiltonian
(see below). Out-of-equilibrium situations are therefore ideal testbeds for a quantum simulation
approach.

To see how the dynamics involves the spectrum, consider a many-body Hamiltonian HMB and
denote |ψα〉 the eigenstates and Eα the corresponding eigen-energies. The initial state of the
simulator |ψ(0)〉 right after the quench is |ψ(0)〉 =

∑
α cα |ψα〉. After a time t, the system

driven by HMB evolves as |ψ(t)〉 =
∑

α cαe
−iEαt/� |ψα〉. Hence, the expectation value of an

observable Ô is

〈Ô〉 = 〈ψ(t)| Ô |ψ(t)〉 =
∑
α,α′

cαc
∗
α′ 〈ψα′ | Ô |ψα〉 e−

i
� (Eα−Eα′ )t . (26)

This shows that the evolution of the expectation value of the observable results from the inter-
ference of all the eigen-frequencies of the Hamiltonian.

Let us illustrate the out-of-equlibrium approach on a few examples.

Dynamics in the quantum Ising model. The first one uses the mapping of spin models onto
ensembles of atoms interacting by the van der Waals interaction when excited to Rydberg states
(Rydberg quantum simulator). The experiment, done at the Institut d’Optique, relies on a chain
of atoms held in optical tweezers, wrapped on itself to realize periodic boundary conditions [23]
(see Fig. 7a). We use Rydberg states to mediate the interaction and implement the Ising-like
Hamiltonian of Eq. (16). The Rydberg excitation laser mimicking the magnetic field is applied
at resonance (∆ = 0), after having prepared the atoms in their ground state (i.e. spin |↓〉). We
then measure two quantities relevant to the study of spin systems. First, the average magnetiza-
tion 〈σz〉 =

∑
i〈σz

i 〉/N , related to the average number of atoms excited to the Rydberg states,
or equivalently in the spin state |↑〉. We observe an oscillatory evolution of the magnetization,
as shown in Fig 7(a). In particular the system seems to equilibrate at long time. Second, we
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use the ability to measure the state of each atom after an evolution time to reconstruct the the
spin-spin correlation function g(2)(k), which is the probability to find a Rydberg excitation at
site j when one is already present at site i:

g(2)(k) =
〈nini+k〉
〈ni〉〈ni+k〉

. (27)

This correlation function varies as a function of time. It is represented in Fig 7(a) for a particular
evolution time. It exhibits a shape characteristic of the correlation function observed in a liquid,
with a suppressed probability of excitation of two nearby atoms due the the strong energy cost
associated to it. The solid lines in the figures are the results of ab-initio calculations using
the Schrödinger equation with no adjustable parameters. The good agreement between theory
and data obtained in a regime where benchmarking against exact diagonalization is possible
validates the experimental platform. We also considered an array of 7 × 7, for which an exact
diagonalization is not possible [24]. In this regime, we cross validate the approximate theory
with the accuracy of the experimental implementation of the model Hamiltonian.

Dynamics in the Bose-Hubbard model. As a second experiment, we discuss a quantum
quench experiment performed on the 1D Bose-Hubbard model in the group of I. Bloch [25].
They initialized a one-dimensional lattice so that only the even sites are filled with exactly one
atom. The lattice depth is initially large to suppress tunneling between the sites. They suddenly
switch on the tunneling by reducing the depth and measure after an evolution time t the occu-
pation number nodd in the odd sites initially empty. The system is driven both by the tunneling
J and the on-site interaction U . They observe also a damped oscillatory behavior (see Fig. 7b),
that they compare with a state-of-the-art t-DMRG calculations including all the knowledge of
the system’s parameters. Here also the agreement between theory and experiment is very good
at short time. Interestingly, for the largest number of atoms (N ≈ 43), the theory can not calcu-
late the evolution after a certain duration, showing that the quantum simulator gives access to
timescales and regimes (here the steady-state) not accessible to the theory.

Equilibrium of closed systems and many-body localization. In the two experiments de-
scribed above, the systems evolve towards a steady-state that can not be explained by imperfec-
tions of the experiment, but results from the beat-notes of the eigen-frequencies of the many-
body Hamiltonian (Eq. 26). This equilibration is therefore a genuine many-body effect. The
appearance of a steady-state at long time hence raises the question of how closed many-body
systems (as are the two implementations described above) relax to equilibrium. The principle of
maximum entropy specifies what should be the equilibrium state but not how the system reaches
it. It was assumed for a long time that the equilibrium state of a many-body system obeys the
Eigenstate Thermalization Hypothesis (ETH). The hypothesis states that when considering a
subpart A of the system and tracing over the degrees of freedom of the complementary subpart,
the resulting density matrix of A, ρA, should be thermal, i.e. ρA ∝ exp[−βHA]. The system
thus acts as his own bath. It was later realized that this may not always be true. For example, by
adding some disorder in the system (in a sense described below), the many-body system may
retain the memory of its initial state and never thermalize. This effect is called Many-Body
Localization (MBL) and can be seen as the extension of Anderson localization for interacting
systems. Quantum simulators are ideal platforms to investigate MBL, as they allow controlling
the degree of disorder. Let us describe two recent experiments investigating MBL in one and
two dimensions respectively.

In the first experiment, the group of C. Monroe in the US used a chain of 10 ions implementing
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Fig. 8: Many-Body localization experiments. (a) (Upper) Chain of 10 ions with random shifts
of the resonant frequency of the (|↓〉 , |↑〉) transition. (Lower) Expectation value of the magne-
tization 〈σz

i 〉 for small (left) or large (right) disorder as a function of time. Figures from [26].
(b) MBL in a 2D square array with random disorder from site-to-site. (Upper) Fluorescence
images obtained with a quantum gas microscope of the atomic distribution at the start (t = 0)
and after an evolution time t = 93 τ (τ = �/J), for small and large disorders. (Lower) Normal-
ized imbalance I = (NL −NR)/(NL +NR) after a time t = 187 τ as a function of the disorder
amplitude ∆/J . Figures from [27].

the Ising model in a transverse magnetic field in the way described in Sec. 3.2 [26]. Using extra
laser beams they could imprint a random dispersion on the resonance frequencies of each ion
(see Fig. 8a), thus adding to the Hamiltonian a term of the form

∑
i Diσ̂

z
i . Here, the Di’s are

sampled from a uniform random distribution ranging from −W to W . They initialized the ion
chain in the Néel state |↑, ↓, ↑, ↓, ↑, ↓, ↑, ↓, ↑, ↓〉 and let it evolve after turning on the coupling
constantsJij between the ions. They observed the subsequent evolution of the expectation values
〈σ̂z

i 〉 of each ion for different degrees of disorder set by W . The results are presented in Fig. 8(a):
for W = 0, the system does relax and they could check by measuring the density matrix locally
that the ETH is valid in this case. On the contrary, for W �= 0, the ions do not relax towards
〈σ̂z

i 〉 = 0 but rather keep track of their initial state. This is the signature of MBL and of the
violation of the ETH. With 10 ions, the system is numerically easy to calculate. However, this
experiment is a nice illustration of the power of a quantum simulator: it provides new tools (e.g.
controllable disorder) and new probes (e.g. local tomography of the state) that allows one to
think in a different way about those systems.

Many open questions remain about MBL. Among them was the one of the existence in 2D of a
transition between localized and non-localized states as a function of the strength of the disorder.
The answer was obtained experimentally in 2016 by using a quantum simulator based on a
quantum gas microscope [27]. In this work, the group of I. Bloch and C. Gross demonstrated
that a transition does occur, and more, they were able to measure its position in terms of disorder
strength, in a regime inaccessible to the theory. Hence their experiment is in fact the quantum
simulation of the MBL transition in 2D, with a machine that “calculates” some parameters
of the transition. The experiment relied on a 2D optical lattices. They filled the lattice sites
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use the ability to measure the state of each atom after an evolution time to reconstruct the the
spin-spin correlation function g(2)(k), which is the probability to find a Rydberg excitation at
site j when one is already present at site i:

g(2)(k) =
〈nini+k〉
〈ni〉〈ni+k〉

. (27)

This correlation function varies as a function of time. It is represented in Fig 7(a) for a particular
evolution time. It exhibits a shape characteristic of the correlation function observed in a liquid,
with a suppressed probability of excitation of two nearby atoms due the the strong energy cost
associated to it. The solid lines in the figures are the results of ab-initio calculations using
the Schrödinger equation with no adjustable parameters. The good agreement between theory
and data obtained in a regime where benchmarking against exact diagonalization is possible
validates the experimental platform. We also considered an array of 7 × 7, for which an exact
diagonalization is not possible [24]. In this regime, we cross validate the approximate theory
with the accuracy of the experimental implementation of the model Hamiltonian.

Dynamics in the Bose-Hubbard model. As a second experiment, we discuss a quantum
quench experiment performed on the 1D Bose-Hubbard model in the group of I. Bloch [25].
They initialized a one-dimensional lattice so that only the even sites are filled with exactly one
atom. The lattice depth is initially large to suppress tunneling between the sites. They suddenly
switch on the tunneling by reducing the depth and measure after an evolution time t the occu-
pation number nodd in the odd sites initially empty. The system is driven both by the tunneling
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the system’s parameters. Here also the agreement between theory and experiment is very good
at short time. Interestingly, for the largest number of atoms (N ≈ 43), the theory can not calcu-
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timescales and regimes (here the steady-state) not accessible to the theory.

Equilibrium of closed systems and many-body localization. In the two experiments de-
scribed above, the systems evolve towards a steady-state that can not be explained by imperfec-
tions of the experiment, but results from the beat-notes of the eigen-frequencies of the many-
body Hamiltonian (Eq. 26). This equilibration is therefore a genuine many-body effect. The
appearance of a steady-state at long time hence raises the question of how closed many-body
systems (as are the two implementations described above) relax to equilibrium. The principle of
maximum entropy specifies what should be the equilibrium state but not how the system reaches
it. It was assumed for a long time that the equilibrium state of a many-body system obeys the
Eigenstate Thermalization Hypothesis (ETH). The hypothesis states that when considering a
subpart A of the system and tracing over the degrees of freedom of the complementary subpart,
the resulting density matrix of A, ρA, should be thermal, i.e. ρA ∝ exp[−βHA]. The system
thus acts as his own bath. It was later realized that this may not always be true. For example, by
adding some disorder in the system (in a sense described below), the many-body system may
retain the memory of its initial state and never thermalize. This effect is called Many-Body
Localization (MBL) and can be seen as the extension of Anderson localization for interacting
systems. Quantum simulators are ideal platforms to investigate MBL, as they allow controlling
the degree of disorder. Let us describe two recent experiments investigating MBL in one and
two dimensions respectively.

In the first experiment, the group of C. Monroe in the US used a chain of 10 ions implementing
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Fig. 8: Many-Body localization experiments. (a) (Upper) Chain of 10 ions with random shifts
of the resonant frequency of the (|↓〉 , |↑〉) transition. (Lower) Expectation value of the magne-
tization 〈σz

i 〉 for small (left) or large (right) disorder as a function of time. Figures from [26].
(b) MBL in a 2D square array with random disorder from site-to-site. (Upper) Fluorescence
images obtained with a quantum gas microscope of the atomic distribution at the start (t = 0)
and after an evolution time t = 93 τ (τ = �/J), for small and large disorders. (Lower) Normal-
ized imbalance I = (NL −NR)/(NL +NR) after a time t = 187 τ as a function of the disorder
amplitude ∆/J . Figures from [27].

the Ising model in a transverse magnetic field in the way described in Sec. 3.2 [26]. Using extra
laser beams they could imprint a random dispersion on the resonance frequencies of each ion
(see Fig. 8a), thus adding to the Hamiltonian a term of the form
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sampled from a uniform random distribution ranging from −W to W . They initialized the ion
chain in the Néel state |↑, ↓, ↑, ↓, ↑, ↓, ↑, ↓, ↑, ↓〉 and let it evolve after turning on the coupling
constantsJij between the ions. They observed the subsequent evolution of the expectation values
〈σ̂z

i 〉 of each ion for different degrees of disorder set by W . The results are presented in Fig. 8(a):
for W = 0, the system does relax and they could check by measuring the density matrix locally
that the ETH is valid in this case. On the contrary, for W �= 0, the ions do not relax towards
〈σ̂z

i 〉 = 0 but rather keep track of their initial state. This is the signature of MBL and of the
violation of the ETH. With 10 ions, the system is numerically easy to calculate. However, this
experiment is a nice illustration of the power of a quantum simulator: it provides new tools (e.g.
controllable disorder) and new probes (e.g. local tomography of the state) that allows one to
think in a different way about those systems.

Many open questions remain about MBL. Among them was the one of the existence in 2D of a
transition between localized and non-localized states as a function of the strength of the disorder.
The answer was obtained experimentally in 2016 by using a quantum simulator based on a
quantum gas microscope [27]. In this work, the group of I. Bloch and C. Gross demonstrated
that a transition does occur, and more, they were able to measure its position in terms of disorder
strength, in a regime inaccessible to the theory. Hence their experiment is in fact the quantum
simulation of the MBL transition in 2D, with a machine that “calculates” some parameters
of the transition. The experiment relied on a 2D optical lattices. They filled the lattice sites
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with individual atoms in a semi-circular region, with a sharp boundary (see Fig. 8b). They
could control the initial filling fraction. The lattice depth was initially large so that tunneling is
frozen. On top of the lattice, they projected a random light intensity pattern, which adds to the
Bose-Hubbard Hamiltonian of Eq. (11) a term

∑
i δin̂i, with the δi randomly distributed over

a distribution of width ∆. At a given time they decreased the lattice depth to induce tunneling
between the sites. After some time they measure the imbalance I = (NL − NR)/(NL + NR)
between the left region of the circle initially filled and the right region initially empty. For low
disorder ∆ � J, U , they found that the atoms occupy the full circle at long time and that the
imbalance converges to zero. However, for a ratio ∆/J larger than a critical value ∆c/J , the
imbalance does not converge to zero any longer, but to a finite value, indicating that the systems
retains the memory of its initial preparation. This demonstrates the existence of a transition
between many-body localized and delocalized states in 2D. Moreover the value of the transition
is “calculated” by the simulator and found to be ∆c/J ≈ 5.5 for the largest initial filling. This
regime, where ∆ ∼ U ∼ J is inaccessible numerically for the number of atoms used in the
experiment (125), thus showing the power of the quantum simulation approach. Many-body
localization has also been recently investigated with up to 21 quantum circuits [28].

Propagation of correlations and Lieb-Robinson bound. To finish this section on out-of-
equilibrium dynamics, let us discuss the question of the speed at which the correlations between
the particles build up during the evolution. We will mainly discuss this problem in relation with
the XY spin model, described by a flip-flop interaction Jij(σ̂

+
i σ̂

−
j + σ̂−

i σ̂
+
j ). The first thing to

realize is that one can think of this flip-flop term as leading to the transport of a spin excitation
|↑〉, which now acts as a quasi-particle. With this image in mind, the XY model is well adapted
to study the transport properties of this quasi particle. Importantly, this spin excitation can
also interact when placing several of them in the same chain. The question of the propagation
speed of the correlations was first considered from a mathematical point of view by Lieb and
Robinson [29]. They found that the connected correlation function for, e.g., the σz

i operators
Cij(t) = 〈σz

i (t)σ
z
j (t)〉 − 〈σz

i (t)〉〈σz
j (t)〉 was bounded:

|Cij(t)| ≤ A exp[−(|i− j| − 2vLRt)/ξ] , (28)

with vLR the Lieb-Robinson velocity, related to the coupling constant between the sites. For
example, for the Ising model with nearest neighbor interaction J , vLR = 6eJ . This bound thus
predicts the equivalent of a “light-cone”, but with the boundary of the cone being exponentially
soft over a distance ξ. For short-range interactions, the Lieb-Robinson bound is well understood.
However the case of long-range to infinite range interactions is much less clear. Although this
may look like a mathematical problem, as no interaction is infinite range, this question can now
be investigated experimentally by quantum simulators based on ions (Sec. 3.2). This points
out again one of the virtue of the quantum simulation approach presented in the Introduction:
although the problem of Lieb Robinson could be explored numerically to up ∼ 30 ions, the
existence of an experimental realization makes it look much less like an exotic mathematical
problem. The simulator thus acts as a trigger for a more in-depth investigation prone to an
experimental validation.

Two experiments using chains containing around 10 ions explored the Lieb-Robinson bound
for long-range interaction [30, 31]. They placed the chain out of equilibrium by either a global
quench induced by suddenly switching on the interactions between the spins with a laser [30],
or a local quench by exciting one ion in state |↑〉, all the others being in |↓〉 [31]. After some
evolution time, they measured both the magnetization σz

i (t) for each ion and the connected
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Fig. 9: Transport and Lieb-Robinson bound. (a) Principle of the experiment studying the
transport of excitations and the buildup of correlations in a chain of 15 ions implementing the
XY spin model with coupling constant Jij ∝ 1/|i − j|α. The spin of the central ion is flipped
to |↑〉, all the others being in |↓〉. (b) After an evolution time t the magnetization of each ion is
measured and plotted in a 2D map for two values of α. The case α ≈ 1.4 shows the appearance
of a “light-cone” for the propagation of the magnetization (edge in red dashed lines). On the
contrary, the case α = 0.75 indicates the violation of the light-cone picture. Figures (a) and
(b) from [30]. (c) (Upper) Propagation of the correlations Ci,i+r(t) following a global quench
(α = 0.63). The white solid line is the light-cone boundary defined as the time it takes for a
correlation of a fixed amplitude (here Ci,i+r = 0.1Cmax

i,i+r) to reach a given distance r. (Lower)
Velocity of the boudary dr/dt as a function of time. The Lieb-Robinson limit is rapidly violated.
Figures from [31].

correlation function Cij(t) (see Fig. 9). They performed the experiment for various power law
of the coupling constant: Jij ∝ 1/|i − j|α, with α ranging from 0.5 to 2. They could observe
that for α ≥ 1, the Lieb-Robinson cone exist, while it disappears for α ≤ 1. In this last regime,
the Lieb-Robinson bound (28) is violated, and the speed at which the correlations build up is
larger than vLR.

4.2 Adiabatic preparation of ground states and quantum phase transition

The second way to study many-body systems consists in preparing them in their ground state,
and then study their properties. Contrarily to the out-of-equilibrium case, here, only the low
part of the energy spectrum of the Hamiltonian is relevant. To prepare this ground state, one
usually applies and adiabatic approach, which amounts to slowly varying the parameters of the
Hamiltonian to drive the system in the many-body ground state. Let us assume that one wants
to reach the ground state of a particular Hamiltonian HMB, starting from an Hamiltonian H0

whose ground state |ψini〉 is easy to prepare. Varying a parameter λ(t) between 0 and 1 allows
changing the total Hamiltonian from H0 to HMB:

H(t) = (1− λ(t))H0 + λ(t)HMB . (29)

Provided that λ(t) varies slowly enough, the state of the system continuously changes from
|ψini〉 to the desired |ψMB〉. This statement is valid if the ground state energy of H(t) is at
all time separated from the first excited state by a gap ∆E(t) = E1(t) − E0(t) to prevent the
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with individual atoms in a semi-circular region, with a sharp boundary (see Fig. 8b). They
could control the initial filling fraction. The lattice depth was initially large so that tunneling is
frozen. On top of the lattice, they projected a random light intensity pattern, which adds to the
Bose-Hubbard Hamiltonian of Eq. (11) a term
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a distribution of width ∆. At a given time they decreased the lattice depth to induce tunneling
between the sites. After some time they measure the imbalance I = (NL − NR)/(NL + NR)
between the left region of the circle initially filled and the right region initially empty. For low
disorder ∆ � J, U , they found that the atoms occupy the full circle at long time and that the
imbalance converges to zero. However, for a ratio ∆/J larger than a critical value ∆c/J , the
imbalance does not converge to zero any longer, but to a finite value, indicating that the systems
retains the memory of its initial preparation. This demonstrates the existence of a transition
between many-body localized and delocalized states in 2D. Moreover the value of the transition
is “calculated” by the simulator and found to be ∆c/J ≈ 5.5 for the largest initial filling. This
regime, where ∆ ∼ U ∼ J is inaccessible numerically for the number of atoms used in the
experiment (125), thus showing the power of the quantum simulation approach. Many-body
localization has also been recently investigated with up to 21 quantum circuits [28].

Propagation of correlations and Lieb-Robinson bound. To finish this section on out-of-
equilibrium dynamics, let us discuss the question of the speed at which the correlations between
the particles build up during the evolution. We will mainly discuss this problem in relation with
the XY spin model, described by a flip-flop interaction Jij(σ̂
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realize is that one can think of this flip-flop term as leading to the transport of a spin excitation
|↑〉, which now acts as a quasi-particle. With this image in mind, the XY model is well adapted
to study the transport properties of this quasi particle. Importantly, this spin excitation can
also interact when placing several of them in the same chain. The question of the propagation
speed of the correlations was first considered from a mathematical point of view by Lieb and
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with vLR the Lieb-Robinson velocity, related to the coupling constant between the sites. For
example, for the Ising model with nearest neighbor interaction J , vLR = 6eJ . This bound thus
predicts the equivalent of a “light-cone”, but with the boundary of the cone being exponentially
soft over a distance ξ. For short-range interactions, the Lieb-Robinson bound is well understood.
However the case of long-range to infinite range interactions is much less clear. Although this
may look like a mathematical problem, as no interaction is infinite range, this question can now
be investigated experimentally by quantum simulators based on ions (Sec. 3.2). This points
out again one of the virtue of the quantum simulation approach presented in the Introduction:
although the problem of Lieb Robinson could be explored numerically to up ∼ 30 ions, the
existence of an experimental realization makes it look much less like an exotic mathematical
problem. The simulator thus acts as a trigger for a more in-depth investigation prone to an
experimental validation.

Two experiments using chains containing around 10 ions explored the Lieb-Robinson bound
for long-range interaction [30, 31]. They placed the chain out of equilibrium by either a global
quench induced by suddenly switching on the interactions between the spins with a laser [30],
or a local quench by exciting one ion in state |↑〉, all the others being in |↓〉 [31]. After some
evolution time, they measured both the magnetization σz

i (t) for each ion and the connected
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Fig. 9: Transport and Lieb-Robinson bound. (a) Principle of the experiment studying the
transport of excitations and the buildup of correlations in a chain of 15 ions implementing the
XY spin model with coupling constant Jij ∝ 1/|i − j|α. The spin of the central ion is flipped
to |↑〉, all the others being in |↓〉. (b) After an evolution time t the magnetization of each ion is
measured and plotted in a 2D map for two values of α. The case α ≈ 1.4 shows the appearance
of a “light-cone” for the propagation of the magnetization (edge in red dashed lines). On the
contrary, the case α = 0.75 indicates the violation of the light-cone picture. Figures (a) and
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correlation function Cij(t) (see Fig. 9). They performed the experiment for various power law
of the coupling constant: Jij ∝ 1/|i − j|α, with α ranging from 0.5 to 2. They could observe
that for α ≥ 1, the Lieb-Robinson cone exist, while it disappears for α ≤ 1. In this last regime,
the Lieb-Robinson bound (28) is violated, and the speed at which the correlations build up is
larger than vLR.

4.2 Adiabatic preparation of ground states and quantum phase transition

The second way to study many-body systems consists in preparing them in their ground state,
and then study their properties. Contrarily to the out-of-equilibrium case, here, only the low
part of the energy spectrum of the Hamiltonian is relevant. To prepare this ground state, one
usually applies and adiabatic approach, which amounts to slowly varying the parameters of the
Hamiltonian to drive the system in the many-body ground state. Let us assume that one wants
to reach the ground state of a particular Hamiltonian HMB, starting from an Hamiltonian H0

whose ground state |ψini〉 is easy to prepare. Varying a parameter λ(t) between 0 and 1 allows
changing the total Hamiltonian from H0 to HMB:

H(t) = (1− λ(t))H0 + λ(t)HMB . (29)

Provided that λ(t) varies slowly enough, the state of the system continuously changes from
|ψini〉 to the desired |ψMB〉. This statement is valid if the ground state energy of H(t) is at
all time separated from the first excited state by a gap ∆E(t) = E1(t) − E0(t) to prevent the
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excitation of the system during the preparation. The validity condition for the sweep to be
adiabatic is (see [32], Eqs. from (35.21), p. 289):

| 〈ψ1(t)|
dH

dt
|ψ0(t)〉 | �

∆E(t)2

�
, (30)

with |ψ0(t)〉 (|ψ1(t)〉) the instantaneous ground and first excited states.

Preparation of a Mott insulator phase. This adiabatic procedure is in fact the one used to
prepare one atom per site in an optical lattice starting from a Bose-Einstein condensate [13]. The
Bose-Hubbard Hamiltonian features a quantum phase transition (called the superfluid-insulator
Mott transition) at a critical value (U/J)c between a superfluid phase for U/J < (U/J)c and an
insulating phase for U/J > (U/J)c. This insulating phase corresponds to the situation where
exactly one atom is placed at the sites of the lattices. Indeed, for U � J , emptying one site
and placing two atoms on the neighboring one has an energy cost of U , and corresponds to the
first excited state. Thus starting from a Bose-Einstein condensate and gradually increasing the
lattice depth drives the system from the ground state at low U/J (atoms delocalized over the
sites), to the ground state consisting of one atom per site (see however the discussion below
about the phase transition).

Adiabatic preparation of an Ising anti-ferromagnet on a Rydberg simulator. As a second
example, consider the Ising model in a transverse magnetic field emulated by an ensemble of
atoms in arrays of tweezers driven by a laser, and in van der Waals interaction when in Rydberg
states, as described in Sec. 3.3 and Eq. (16). Figure 10(a) presents the generic phase diagram
for this Hamiltonian at zero temperature and for spins placed on a chain or on two-dimensional
square arrays. In the case of nearest-neighbor couplings only (Vi,i+1 = V and 0 otherwise)
and with V > 0, so that the interactions favor anti-ferromagnetic ordering, the phase diagram
consists of two regions: a paramagnetic (PM) and an anti-ferromagnetic (AF) one, separated by
a quantum phase transition (see below). Two limiting cases are easy to understand: for Ω,∆ �
V , the ground state is paramagnetic, i.e. the spins align along the effective magnetic field; for
Ω = 0, the phases results from the minimization of the energy of the classical configuration.
When we relax the constraint of nearest-neighbor couplings only (as is the case for a van der
Waals interaction) the phase diagram exhibits several phases around the line separating the
PM from the AF phases. For example, on a chain, if Vi,i+1, Vi,i+2 � ∆ � Ω � Vi,i+3, the
ground state corresponds to one excitation separated by two ground state atoms (Z3 symmetry).
Similarly, Vi,i+1, Vi,i+2, Vi,i+3 � ∆ � Ω � Vi,i+4 leads to a phase with Z4-symmetry, and so
on. By controlling the detuning ∆ and Rabi frequency Ω, one can explore the phase diagram of
this Ising model.

Several recent experiments explored this approach. For example, the group of M. Lukin in Har-
vard investigated the one-dimensional case [33] with up to 51 atoms. The idea of the experiment
is to start from an initial state where all the atoms are prepared in their ground state (|↓〉). Then,
by sweeping the Rabi frequency Ω(t) and detuning ∆(t), the system is driven adiabatically in
the ground state of the interacting ensemble for a given final value of Ω and ∆. They could
access several Zn phases by controlling the final ratio of Ω/Vi,i+1, as shown in Fig. 10(b). Our
group at the Institut d’Optique [34] and the group of W. Bakr in Princeton [35] explored the
two-dimensional case using respectively atoms in arrays of tweezers (36 atoms) and in optical
lattices (200 atoms) both with square unit cells. The procedure is the same as in the one-
dimensional case. Both groups observed the appearance of antiferromagnetic correlations (see
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Fig. 10: Adiabatic preparation and quantum phase transition. (a) Schematic phase dia-
gram of the quantum Ising model of Eq. (16) for a 2D square or a 1D chain of atoms interacting
via the van der Waals interaction, showing the paramagnetic (PM) and antiferromagnetic (AF)
phases. Here VNN = C6/a

6, with a the spacing between atoms (we take C6 > 0). The right
side is a zoom of the phase diagram around the critical point (Ω = 0,∆ = 0), for the 1D
chain. (b) Adiabatic preparation of the ground state of a 13-atom chain in a Rydberg quantum
simulator [33] for various values of Ω/VNN: this gives an excitation every second site, every
third site, or every fourth site, corresponding to different ordered phases Zn. (c) Antiferromag-
netic spin-spin correlation function in two dimensional square tweezers arrays of atoms after
adiabatic preparation for the experiment of Ref. [34]. (d) Antiferromagnetic correlation length
ξ obtained in a chain of 51 atoms of a Rydberg quantum simulator as function of the detuning
sweep rate [36]. The slope gives access to critical exponents characterizing the quantum phase
transition.
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excitation of the system during the preparation. The validity condition for the sweep to be
adiabatic is (see [32], Eqs. from (35.21), p. 289):

| 〈ψ1(t)|
dH

dt
|ψ0(t)〉 | �

∆E(t)2

�
, (30)

with |ψ0(t)〉 (|ψ1(t)〉) the instantaneous ground and first excited states.

Preparation of a Mott insulator phase. This adiabatic procedure is in fact the one used to
prepare one atom per site in an optical lattice starting from a Bose-Einstein condensate [13]. The
Bose-Hubbard Hamiltonian features a quantum phase transition (called the superfluid-insulator
Mott transition) at a critical value (U/J)c between a superfluid phase for U/J < (U/J)c and an
insulating phase for U/J > (U/J)c. This insulating phase corresponds to the situation where
exactly one atom is placed at the sites of the lattices. Indeed, for U � J , emptying one site
and placing two atoms on the neighboring one has an energy cost of U , and corresponds to the
first excited state. Thus starting from a Bose-Einstein condensate and gradually increasing the
lattice depth drives the system from the ground state at low U/J (atoms delocalized over the
sites), to the ground state consisting of one atom per site (see however the discussion below
about the phase transition).

Adiabatic preparation of an Ising anti-ferromagnet on a Rydberg simulator. As a second
example, consider the Ising model in a transverse magnetic field emulated by an ensemble of
atoms in arrays of tweezers driven by a laser, and in van der Waals interaction when in Rydberg
states, as described in Sec. 3.3 and Eq. (16). Figure 10(a) presents the generic phase diagram
for this Hamiltonian at zero temperature and for spins placed on a chain or on two-dimensional
square arrays. In the case of nearest-neighbor couplings only (Vi,i+1 = V and 0 otherwise)
and with V > 0, so that the interactions favor anti-ferromagnetic ordering, the phase diagram
consists of two regions: a paramagnetic (PM) and an anti-ferromagnetic (AF) one, separated by
a quantum phase transition (see below). Two limiting cases are easy to understand: for Ω,∆ �
V , the ground state is paramagnetic, i.e. the spins align along the effective magnetic field; for
Ω = 0, the phases results from the minimization of the energy of the classical configuration.
When we relax the constraint of nearest-neighbor couplings only (as is the case for a van der
Waals interaction) the phase diagram exhibits several phases around the line separating the
PM from the AF phases. For example, on a chain, if Vi,i+1, Vi,i+2 � ∆ � Ω � Vi,i+3, the
ground state corresponds to one excitation separated by two ground state atoms (Z3 symmetry).
Similarly, Vi,i+1, Vi,i+2, Vi,i+3 � ∆ � Ω � Vi,i+4 leads to a phase with Z4-symmetry, and so
on. By controlling the detuning ∆ and Rabi frequency Ω, one can explore the phase diagram of
this Ising model.

Several recent experiments explored this approach. For example, the group of M. Lukin in Har-
vard investigated the one-dimensional case [33] with up to 51 atoms. The idea of the experiment
is to start from an initial state where all the atoms are prepared in their ground state (|↓〉). Then,
by sweeping the Rabi frequency Ω(t) and detuning ∆(t), the system is driven adiabatically in
the ground state of the interacting ensemble for a given final value of Ω and ∆. They could
access several Zn phases by controlling the final ratio of Ω/Vi,i+1, as shown in Fig. 10(b). Our
group at the Institut d’Optique [34] and the group of W. Bakr in Princeton [35] explored the
two-dimensional case using respectively atoms in arrays of tweezers (36 atoms) and in optical
lattices (200 atoms) both with square unit cells. The procedure is the same as in the one-
dimensional case. Both groups observed the appearance of antiferromagnetic correlations (see
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Fig. 10: Adiabatic preparation and quantum phase transition. (a) Schematic phase dia-
gram of the quantum Ising model of Eq. (16) for a 2D square or a 1D chain of atoms interacting
via the van der Waals interaction, showing the paramagnetic (PM) and antiferromagnetic (AF)
phases. Here VNN = C6/a

6, with a the spacing between atoms (we take C6 > 0). The right
side is a zoom of the phase diagram around the critical point (Ω = 0,∆ = 0), for the 1D
chain. (b) Adiabatic preparation of the ground state of a 13-atom chain in a Rydberg quantum
simulator [33] for various values of Ω/VNN: this gives an excitation every second site, every
third site, or every fourth site, corresponding to different ordered phases Zn. (c) Antiferromag-
netic spin-spin correlation function in two dimensional square tweezers arrays of atoms after
adiabatic preparation for the experiment of Ref. [34]. (d) Antiferromagnetic correlation length
ξ obtained in a chain of 51 atoms of a Rydberg quantum simulator as function of the detuning
sweep rate [36]. The slope gives access to critical exponents characterizing the quantum phase
transition.
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Fig. 10c) by measuring the connected spin-spin correlation function:

g(2)(k, l) =
1

Nkl

∑
(i,j)

[〈ninj〉 − 〈ni〉〈nj〉] . (31)

Fitting this correlation function by a decaying exponential yields the correlation length ξ, on the
order of 1−1.5a, with a the distance between the sites. This length was limited by experimental
imperfections, but was in good agreement with a modeling of the system including them.

The group at the Institut d’Optique also started to explore the case of arrays arranged in a
triangular configuration [34]. This case is particularly interesting as it exhibits geometrical
frustration [37]. Consider three spins placed at the corner of an equilateral triangle with antifer-
romagnetic Ising interaction. The pair-interaction energy is minimized for two opposite spins.
This means that the minimum energy of three atoms can not be minimized by minimizing the
energy on each bound. This leads to a ground state featuring entanglement and large scale de-
generacy. For large triangular arrays, this geometrical frustration is expected to lead, for some
parameters (Ω,∆), to an exponential scaling of the degeneracy with the number of spins. The
nature of the ground state for frustrated geometries such as triangle, honeycomb, etc., is a topic
of current study. In some cases, the ground state is expected to be a spin liquid featuring strong
correlations but no long-range order. In condensed matter systems, some materials exhibit frus-
tration, but no direct evidence of spin liquids has been obtained, mainly due to the difficulty to
perform local measurements [38]. Quantum simulators as the one based on arrays of tweezers
with tunable geometries could be a new way to investigate frustration and study spin liquids.

Quantum phase transition and adiabatic preparation. There is an obvious drawback to the
procedure of adiabatic ground state preparation when a quantum phase transition is crossed.
Quantum phase transitions (QPT) are zero temperature transitions where the symmetry of the
system suddenly changes when varying a parameter in the Hamiltonian. The superfluid-to-
insulator and para- to ferromagnetic transitions described above are important examples of
quantum phase transitions. The main issue for an adiabatic preparation comes from the fact
that the energy gap between the ground and first excited state closes at the transition, making
the adiabaticity criteria (30) impossible to fulfill. For finite-size system, the gaps remain finite,
but decrease with the number of atoms N . For example, for the Ising model described above,
the gap at the transition scales like ∆E ∼ 1/N in 1D, and ∆E ∼ 1/

√
N in a 2D square array.

This means that the time to reach adiabatically the ground state increases polynomially with the
atom numbers. Conversely, for a fixed duration of the parameters sweep, an increasing number
of excitations appears in the system as the number of atoms grows. This apparent drawback
can actually be turned into a way to study the properties of the quantum phase transition in
a quantum simulation approach, as we now illustrate by a recent experiment using a Rydberg
quantum simulator [36].

In this experiment, the group of M. Lukin in Harvard implemented the quantum Ising model
of Eq. (16) in a one dimensional chain with 51 atoms. As explained above the system exhibits
a quantum phase transition between a para- and anti-ferromagnetic phase (Fig. 10a). To study
the transition, the group swept the detuning of the laser ∆ emulating the longitudinal magnetic
field across the transition, for a given “transverse” magnetic field (the laser Rabi frequency).
At the end of the ramp characterized by a sweep rate v, they measured the connected correla-
tion function G(r) = [〈nini+r〉 − 〈ni〉〈ni+r〉] and fitted the envelope by an exponential decay
exp[−r/ξf ] to extract the correlation length ξf . The final correlation length is found to scale
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Fig. 11: Quantum chemistry calculation using a quantum-classical hybrid approach. (a)
Circuit implementation of the unitary coupled-cluster operator generating the trial state |φ(θ)〉,
for the Bravyi-Kitaev or the Jordan-Wigner mapping. (b) Results of the experiment performed
on a two-ion quantum computer (Bravyi-Kitaev encoding): reconstructed energy of the ground
state of the H2 molecule as a function of the internuclear distance R. Figures from [41].

with the sweeping rate v as ξf ∝ v−µ, with µ = 0.5. To understand this scaling, the group
used a model proposed by Kibble and Zurek in the 1980’s [39, 40]. Initially introduced in the
context of cosmology, this model relates the number of defects introduced in a system around
a QPT to the sweep rate. In the context of the Ising model, these defects are excitation of two
nearby Rydberg atoms, while the ground state in, e.g., a Z2 phase should consist of Rydberg
atoms every other sites. The characteristic distance between the defects are directly the corre-
lation length and results from a compromise between two effects occuring near the QPT. The
first one is the divergence of the correlation length ξ at the transition, characterized here by
a critical detuning ∆c and a critical exponent ν characteristic of the universality class of the
model: ξ ∼ |∆ − ∆c|−ν . However building the correlations occurs on a typical response time
τ that also diverges at the transition: τ ∼ |∆ − ∆c|−zν , with zν the dynamical critical expo-
nent. Hence when sweeping the detuning across the transition as ∆−∆c = vt, the correlation
length is frozen at a value ξf when ∆∗ −∆c = vτ . This corresponds to ∆∗ −∆c ∼ v

1
1+zν and

ξf ∼ v−µ with µ = ν/(1 + zν). Measuring µ thus amounts to measuring the critical exponents
of the QPT. For the quantum Ising model one expects ν = z = 1, leading to µ = 1/2, in very
good agreement with the data. In particular, a mean field treatment would yield µ = 1/3, and
is inconsistent with the experiment. This demonstration, which investigated the Kibble-Zurek
mechanism in the quantum case, was made possible thanks to the very good decoupling of the
platform from the environment. It was not the case in previous attempts. This nicely illus-
trates that synthetic quantum systems can be used to measure the properties of quantum phase
transitions with high precision.

4.3 Quantum chemistry and the hybrid approach

One of the central goals of quantum chemistry is to calculate the energy levels of molecules, in
particular their ground state. This task is one more example of a difficult many-body problem as,
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Fig. 10c) by measuring the connected spin-spin correlation function:

g(2)(k, l) =
1

Nkl

∑
(i,j)

[〈ninj〉 − 〈ni〉〈nj〉] . (31)

Fitting this correlation function by a decaying exponential yields the correlation length ξ, on the
order of 1−1.5a, with a the distance between the sites. This length was limited by experimental
imperfections, but was in good agreement with a modeling of the system including them.

The group at the Institut d’Optique also started to explore the case of arrays arranged in a
triangular configuration [34]. This case is particularly interesting as it exhibits geometrical
frustration [37]. Consider three spins placed at the corner of an equilateral triangle with antifer-
romagnetic Ising interaction. The pair-interaction energy is minimized for two opposite spins.
This means that the minimum energy of three atoms can not be minimized by minimizing the
energy on each bound. This leads to a ground state featuring entanglement and large scale de-
generacy. For large triangular arrays, this geometrical frustration is expected to lead, for some
parameters (Ω,∆), to an exponential scaling of the degeneracy with the number of spins. The
nature of the ground state for frustrated geometries such as triangle, honeycomb, etc., is a topic
of current study. In some cases, the ground state is expected to be a spin liquid featuring strong
correlations but no long-range order. In condensed matter systems, some materials exhibit frus-
tration, but no direct evidence of spin liquids has been obtained, mainly due to the difficulty to
perform local measurements [38]. Quantum simulators as the one based on arrays of tweezers
with tunable geometries could be a new way to investigate frustration and study spin liquids.

Quantum phase transition and adiabatic preparation. There is an obvious drawback to the
procedure of adiabatic ground state preparation when a quantum phase transition is crossed.
Quantum phase transitions (QPT) are zero temperature transitions where the symmetry of the
system suddenly changes when varying a parameter in the Hamiltonian. The superfluid-to-
insulator and para- to ferromagnetic transitions described above are important examples of
quantum phase transitions. The main issue for an adiabatic preparation comes from the fact
that the energy gap between the ground and first excited state closes at the transition, making
the adiabaticity criteria (30) impossible to fulfill. For finite-size system, the gaps remain finite,
but decrease with the number of atoms N . For example, for the Ising model described above,
the gap at the transition scales like ∆E ∼ 1/N in 1D, and ∆E ∼ 1/

√
N in a 2D square array.

This means that the time to reach adiabatically the ground state increases polynomially with the
atom numbers. Conversely, for a fixed duration of the parameters sweep, an increasing number
of excitations appears in the system as the number of atoms grows. This apparent drawback
can actually be turned into a way to study the properties of the quantum phase transition in
a quantum simulation approach, as we now illustrate by a recent experiment using a Rydberg
quantum simulator [36].

In this experiment, the group of M. Lukin in Harvard implemented the quantum Ising model
of Eq. (16) in a one dimensional chain with 51 atoms. As explained above the system exhibits
a quantum phase transition between a para- and anti-ferromagnetic phase (Fig. 10a). To study
the transition, the group swept the detuning of the laser ∆ emulating the longitudinal magnetic
field across the transition, for a given “transverse” magnetic field (the laser Rabi frequency).
At the end of the ramp characterized by a sweep rate v, they measured the connected correla-
tion function G(r) = [〈nini+r〉 − 〈ni〉〈ni+r〉] and fitted the envelope by an exponential decay
exp[−r/ξf ] to extract the correlation length ξf . The final correlation length is found to scale

Quantum Simulation A2.27

Fig. 11: Quantum chemistry calculation using a quantum-classical hybrid approach. (a)
Circuit implementation of the unitary coupled-cluster operator generating the trial state |φ(θ)〉,
for the Bravyi-Kitaev or the Jordan-Wigner mapping. (b) Results of the experiment performed
on a two-ion quantum computer (Bravyi-Kitaev encoding): reconstructed energy of the ground
state of the H2 molecule as a function of the internuclear distance R. Figures from [41].

with the sweeping rate v as ξf ∝ v−µ, with µ = 0.5. To understand this scaling, the group
used a model proposed by Kibble and Zurek in the 1980’s [39, 40]. Initially introduced in the
context of cosmology, this model relates the number of defects introduced in a system around
a QPT to the sweep rate. In the context of the Ising model, these defects are excitation of two
nearby Rydberg atoms, while the ground state in, e.g., a Z2 phase should consist of Rydberg
atoms every other sites. The characteristic distance between the defects are directly the corre-
lation length and results from a compromise between two effects occuring near the QPT. The
first one is the divergence of the correlation length ξ at the transition, characterized here by
a critical detuning ∆c and a critical exponent ν characteristic of the universality class of the
model: ξ ∼ |∆ − ∆c|−ν . However building the correlations occurs on a typical response time
τ that also diverges at the transition: τ ∼ |∆ − ∆c|−zν , with zν the dynamical critical expo-
nent. Hence when sweeping the detuning across the transition as ∆−∆c = vt, the correlation
length is frozen at a value ξf when ∆∗ −∆c = vτ . This corresponds to ∆∗ −∆c ∼ v

1
1+zν and

ξf ∼ v−µ with µ = ν/(1 + zν). Measuring µ thus amounts to measuring the critical exponents
of the QPT. For the quantum Ising model one expects ν = z = 1, leading to µ = 1/2, in very
good agreement with the data. In particular, a mean field treatment would yield µ = 1/3, and
is inconsistent with the experiment. This demonstration, which investigated the Kibble-Zurek
mechanism in the quantum case, was made possible thanks to the very good decoupling of the
platform from the environment. It was not the case in previous attempts. This nicely illus-
trates that synthetic quantum systems can be used to measure the properties of quantum phase
transitions with high precision.

4.3 Quantum chemistry and the hybrid approach

One of the central goals of quantum chemistry is to calculate the energy levels of molecules, in
particular their ground state. This task is one more example of a difficult many-body problem as,
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apart for small molecules, it involve large number of interacting electrons and nuclei. Chemists
have however developed an arsenal of sophisticated approximate methods, but they can become
hard to implement when the size of the molecule grows. Quantum simulation may be able to
address the question and proof-of-principle experiments have already investigated the potential
of this approach (see [41] for a review). Here we will introduce the basic ideas of one method,
called Variational Quantum Eigensolver (VQE) algorithm. It combines two concepts: (i) the
mapping of the quantum chemistry problem onto a spin model naturally implemented by many
quantum simulation platforms; (ii) an hybrid approach where the hardest task is performed by
a quantum simulator (see below), while the others are done by a classical hardware.

Mapping of the chemistry problem onto a spin model. We want to find the ground state of the
Coulomb Hamiltonian describing Ne electrons (positions ri, mass m) and Nn nuclei (position
Rj , charge Zje, mass Mj):

H = −
Nn∑
j=1

�2

2Mj

∇2
Rj

−
Ne∑
i=1

�2

2m
∇2

ri
−
∑
i,j

Zje
2

|Rj − ri|
+

∑
i,j>i

ZjZie
2

|Rj −Ri|
+

∑
i,j>i

e2

|rj − ri|
. (32)

The energy E0 of the ground state is usually found by a variational method where one uses the
fact that for any trial many-body normalized wave function φ, 〈H〉 = 〈φ|H |φ〉 ≥ E0. To be
able to perform the minimization of the Hamiltonian on a quantum simulator, one writes first
the electronic part of the Hamiltonian (32) in the second quantization form, after having fixed
the positions of the nuclei (Born-Oppenheimer approximation):

H =
∑
p,q

hpq ĉ
†
pĉq +

1

2

∑
p,q,r,s

hpqrsĉ
†
pĉ

†
q ĉrĉs , (33)

with ĉ†p (ĉq) the fermionic creation and annihilation operators, and the coefficients:

hpq =

∫
dσ φ∗

p(σ)

[
− �2

2m
∇2

r −
∑
i

Zje
2

|Rj − r|

]
φq(σ) ;

hpqrs =

∫
dσ1dσ2 φ

∗
p(σ1)φ

∗
q(σ2)

e2

|r1 − r2|
φr(σ1)φr(σ2) . (34)

Here σi = (ri, si) describes the spatial and spin variables of the electrons. Importantly, the
single-electrons orbital φ(σ)i are supposed to be known and calculable by classical methods.
Often, they are obtained by a Linear Combination of Atomic Orbitals calculated by a mean-field,
Hartree Fock model. They can also be ansatz functions. To write the Hamiltonian (33) as a spin-
model, one uses the mapping of the creation (annihilation) operators onto the spin operators σ̂±.
This can be done by the Jordan-Wigner or the Barvyi-Kitaev transformations [42]. As a result
of these pretty involved formal mappings, the Hamiltonian now has the form of a sum of tensor
products of spin operators:

H =
∑
�

c�H� with H� = σ̂α
1 σ̂

β
2 σ̂

γ
3 ... (35)

The c�-coefficients depend on the hpq and hpqrs integrals and of the positions of the nuclei (see
example below). One now has to minimize 〈H〉. However, the Hamiltonian (35) corresponds to
a spin model involving unphysical spin-spin interactions that can not be directly implemented
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on a quantum simulation platform. One option consists in synthetizing H by a digital approach
as mentioned in Sec. 2 and illustrated in Fig. 1. At the present stage of the technology, this is
challenging. Another approach relies on a hybrid Variational Quantum Eigensolver, where the
calculation of the expectation value for a trial function is performed by a quantum simulator,
which does not need to implement directly H .

The Variational Quantum Eigensolver algorithm consists of four steps, which combine
quantum and classical resources:

1. Initialization of the simulator in the many-electron state |φ(0)〉 encoded on spin degrees
of freedom. This step is usually relatively easy, as the initial state is often a product state.

2. Construction of a trial state |φ(θ)〉 depending on a parameter θ. To do so, one evolves
|φ(0)〉 with a unitary operator U(θ) (called coupled-cluster): |φ(θ)〉 = U(θ) |φ(0)〉. The
operator U(θ) is chosen so that the trial state explores efficiently the parameter space
when varying θ. This is where the quantum simulator operates, as calculating the evolu-
tion of |φ(0)〉 under U(θ) is very demanding using classical methods. The operator U(θ)
can either be directly implemented in the lab (analog approach) or is digitally synthetized
by a set of qubit gates (case of the experiments done so far). Importantly, the resources
required in the lab to realize U(θ) do not need to realize the full Hamiltonian H .

3. Readout of the simulator and repetition of the two first steps until obtaining enough statis-
tics to estimate the correlation functions: 〈φ(θ)| σ̂α

1 σ̂
β
2 σ̂

γ
3 ... |φ(θ)〉 = 〈φ(θ)|H� |φ(θ)〉.

This allows estimating 〈φ(θ)|H |φ(θ)〉.

4. Finally, variation of θ and use of a classical algorithm (e.g. gradient-descent) to minimize
the expectation value 〈φ(θ)|H |φ(θ)〉.

The third step shows that the non-physical many-spin interactions of Eq. (35) do not have to be
implemented experimentally: one only needs as quantum resources as many particles as spin
operators in the tensor products, and the ability to synthetize U(θ), which can be considerably
simpler than H . Let us illustrate briefly the method on H2, the simplest molecule. In this case
the Bravyi-Kitaev transformation leads to an Hamiltonian involving up to 4-body terms of the
form σ̂z

i , σ̂z
i σ̂

z
j , σ̂x

i σ̂
z
j σ̂

x
k and σ̂z

i σ̂
y
j σ̂

z
kσ̂

z
l [41]. However, it turns out that the initial state |φ(0)〉

resulting from a Hartree-Fock calculation is |0001〉, making the three- and four-body terms
irrelevant. This fact allows restricting the Hamiltonian to:

HBK = c0I + c1σ̂
z
0 + c2σ̂

z
1 + c3σ̂

z
0σ̂

z
1 + c4σ̂

x
0 σ̂

x
1 + c5σ̂

y
0 σ̂

y
1 . (36)

As the new Hamiltonian involves only up to two-body terms, the experimental implementa-
tion requires a simulator with two quantum bits (e.g. two ions as in [41]). Using the Jordan-
Wigner transformation does not lead to this simplification and the final Hamiltonian involves
up to 4-body terms, thus requiring four qubits. The coupled-cluster operators are UBK(θ) =
exp(−iθσ̂x

1 σ̂
y
0) and UJW(θ) = exp(−iθσ̂x

3 σ̂
x
2 σ̂

x
1 σ̂

y
0) for the Bravyi-Kitaev and Jordan-Wigner

mappings respectively. Figure 11(a) shows the circuit implementations of these operators for
the two mappings, as done on the experiment of Innsbruck using an ion quantum simulator in
digital mode [41]. Measuring the correlation functions necessary to reconstruct 〈φ(θ)|H |φ(θ)〉
is relatively straightforward. The final result of the experiment is presented in Fig. 11(b), which
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apart for small molecules, it involve large number of interacting electrons and nuclei. Chemists
have however developed an arsenal of sophisticated approximate methods, but they can become
hard to implement when the size of the molecule grows. Quantum simulation may be able to
address the question and proof-of-principle experiments have already investigated the potential
of this approach (see [41] for a review). Here we will introduce the basic ideas of one method,
called Variational Quantum Eigensolver (VQE) algorithm. It combines two concepts: (i) the
mapping of the quantum chemistry problem onto a spin model naturally implemented by many
quantum simulation platforms; (ii) an hybrid approach where the hardest task is performed by
a quantum simulator (see below), while the others are done by a classical hardware.

Mapping of the chemistry problem onto a spin model. We want to find the ground state of the
Coulomb Hamiltonian describing Ne electrons (positions ri, mass m) and Nn nuclei (position
Rj , charge Zje, mass Mj):
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The energy E0 of the ground state is usually found by a variational method where one uses the
fact that for any trial many-body normalized wave function φ, 〈H〉 = 〈φ|H |φ〉 ≥ E0. To be
able to perform the minimization of the Hamiltonian on a quantum simulator, one writes first
the electronic part of the Hamiltonian (32) in the second quantization form, after having fixed
the positions of the nuclei (Born-Oppenheimer approximation):

H =
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with ĉ†p (ĉq) the fermionic creation and annihilation operators, and the coefficients:
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Here σi = (ri, si) describes the spatial and spin variables of the electrons. Importantly, the
single-electrons orbital φ(σ)i are supposed to be known and calculable by classical methods.
Often, they are obtained by a Linear Combination of Atomic Orbitals calculated by a mean-field,
Hartree Fock model. They can also be ansatz functions. To write the Hamiltonian (33) as a spin-
model, one uses the mapping of the creation (annihilation) operators onto the spin operators σ̂±.
This can be done by the Jordan-Wigner or the Barvyi-Kitaev transformations [42]. As a result
of these pretty involved formal mappings, the Hamiltonian now has the form of a sum of tensor
products of spin operators:

H =
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c�H� with H� = σ̂α
1 σ̂

β
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γ
3 ... (35)

The c�-coefficients depend on the hpq and hpqrs integrals and of the positions of the nuclei (see
example below). One now has to minimize 〈H〉. However, the Hamiltonian (35) corresponds to
a spin model involving unphysical spin-spin interactions that can not be directly implemented
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on a quantum simulation platform. One option consists in synthetizing H by a digital approach
as mentioned in Sec. 2 and illustrated in Fig. 1. At the present stage of the technology, this is
challenging. Another approach relies on a hybrid Variational Quantum Eigensolver, where the
calculation of the expectation value for a trial function is performed by a quantum simulator,
which does not need to implement directly H .

The Variational Quantum Eigensolver algorithm consists of four steps, which combine
quantum and classical resources:

1. Initialization of the simulator in the many-electron state |φ(0)〉 encoded on spin degrees
of freedom. This step is usually relatively easy, as the initial state is often a product state.

2. Construction of a trial state |φ(θ)〉 depending on a parameter θ. To do so, one evolves
|φ(0)〉 with a unitary operator U(θ) (called coupled-cluster): |φ(θ)〉 = U(θ) |φ(0)〉. The
operator U(θ) is chosen so that the trial state explores efficiently the parameter space
when varying θ. This is where the quantum simulator operates, as calculating the evolu-
tion of |φ(0)〉 under U(θ) is very demanding using classical methods. The operator U(θ)
can either be directly implemented in the lab (analog approach) or is digitally synthetized
by a set of qubit gates (case of the experiments done so far). Importantly, the resources
required in the lab to realize U(θ) do not need to realize the full Hamiltonian H .

3. Readout of the simulator and repetition of the two first steps until obtaining enough statis-
tics to estimate the correlation functions: 〈φ(θ)| σ̂α
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This allows estimating 〈φ(θ)|H |φ(θ)〉.

4. Finally, variation of θ and use of a classical algorithm (e.g. gradient-descent) to minimize
the expectation value 〈φ(θ)|H |φ(θ)〉.

The third step shows that the non-physical many-spin interactions of Eq. (35) do not have to be
implemented experimentally: one only needs as quantum resources as many particles as spin
operators in the tensor products, and the ability to synthetize U(θ), which can be considerably
simpler than H . Let us illustrate briefly the method on H2, the simplest molecule. In this case
the Bravyi-Kitaev transformation leads to an Hamiltonian involving up to 4-body terms of the
form σ̂z
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resulting from a Hartree-Fock calculation is |0001〉, making the three- and four-body terms
irrelevant. This fact allows restricting the Hamiltonian to:
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As the new Hamiltonian involves only up to two-body terms, the experimental implementa-
tion requires a simulator with two quantum bits (e.g. two ions as in [41]). Using the Jordan-
Wigner transformation does not lead to this simplification and the final Hamiltonian involves
up to 4-body terms, thus requiring four qubits. The coupled-cluster operators are UBK(θ) =
exp(−iθσ̂x
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mappings respectively. Figure 11(a) shows the circuit implementations of these operators for
the two mappings, as done on the experiment of Innsbruck using an ion quantum simulator in
digital mode [41]. Measuring the correlation functions necessary to reconstruct 〈φ(θ)|H |φ(θ)〉
is relatively straightforward. The final result of the experiment is presented in Fig. 11(b), which
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Fig. 12: Implementation of the Su-Schrieffer-Heeger model. (a) The two configurations
of the model, in the tight-binding limit. (b) Fluorescence image of atoms in tweezers array
implementing the topological configuration. (c) Microwave spectroscopy of the Su-Schrieffer-
Heeger model implemented on a chain of Rydberg atoms: probability of exciting the atoms from
Rydberg state nS to nP as a function of the frequency of the microwave, for different positions
in the chain. The topological configuration features two states at zero energy, corresponding to
atoms located at the two edges of the chain. Figure from [47].

shows the minimal energy obtained as a function of the internuclear distance R. The accuracy
can be obtained by comparing to a quantum chemistry calculation, very accurate for H2. It is
around 4× 10−2.

The method has been also tested on LiH, BeH2, and H2O using circuit-based or ion-based
quantum simulators. The precision achieved are not yet at the chemical accuracy (∼ 10−5).
We are therefore quite far from the simulation of molecules that challenges chemists. However
these experiments validate the method and is a nice illustration of quantum simulation methods.

4.4 Other examples

There are many other examples of application of the quantum simulation approach that we will
not cover in these notes (see [1] and the reviews cited below).

Among them, a very important line of research is the quantum simulation of topological mat-
ter. Many experimental platforms have been used, such as ultracold atoms (quantum degener-
ate gases or placed in optical lattices), superconducting circuits or photonic platforms (silicon
waveguides, polaritons in semi-conductor cavities described in Sec. 3.5, etc.). For recent re-
views on this subject, see [43, 44]. So far, the implementations mainly consisted in engineer-
ing topological situations, in particular by tailoring band-structures with non-trivial topological
properties. However, for most of the experiments, the interactions between the particles were
negligible and the observations could be explained at the single-particle level.

Interacting topological system. The first realization of a topological situation with strong
interactions between the particles was performed in our group at the Institut d’Optique using
a Rydberg quantum simulator [47]. We implemented the Su, Schrieffer and Heeger (SSH)
model, initially developed in the late 1970’s to explain the conductivity of some organic poly-
mers [45, 46]. In its simplest setting, it consists of a one-dimensional chain of sites that are
coupled by an alternation of strong and weak links and where an excitation can hop in the
chain. Since then, the SSH model has been recognized as one of the simplest examples of a
system exhibiting topological properties. Consider the two configurations of a finite chain rep-
resented in Fig. 12(a): either the chain ends up with the strongest link J , or with the weakest
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one J ′. It turns out that in the first configuration, the single-particle spectrum consists of two
bands with width J ′, separated by an energy gap |J − J ′|. On the contrary, in the second con-
figuration, two states at zero energy appear in the middle of the gap, and correspond to states
localized on the edges of the chain. The fact that they have zero energy is rather intuitive in
the extreme case where J ′ = 0, as adding a particle on each edge does not cost energy. It
turns out that this remains true even when J ′ �= 0. The two configurations correspond to two
different topological classes of the system: it is impossible to vary the ratio J/J ′ and contin-
uously transform one configuration into the other without closing the gap. To implement this
tight-binding model, we used the XY model of Eq. (17) and its mapping onto the propagation
of spin excitations introduced at the end of Sec. 4.1: this situation is equivalent to a single
particle (here the spin excitation) tunnelling between neighboring sites in a lattice. Also, the
excitations behave as artificial particles with infinite on-site interactions, i.e. with a hard-core
constraint. It turns out that the spin excitations have the same commutation relations as those of
bosons. Therefore the problem of an ensemble of two-level Rydberg atoms interacting by the
resonant dipole-dipole interaction can be equivalently mapped onto a spin-1/2 XY model, or
onto a system of so called hard-core bosons [48]. But one should keep in mind that the resonant
dipole interaction that drives the transport of an excitation leads to a single-particle problem
when considering a single excitation. What makes the excitations interact is the fact that the
atoms only have two levels, and not the fact that the atoms carrying the excitations interact.
This mapping allowed us to to study the genuinely many-body properties arising from a hard-
core constraint [47]. We used two Rydberg states |nS〉 = |↓〉 and |nP 〉 = |↑〉 separated by a
transition with a frequency around 17 GHz. The anisotropy of the dipole interaction makes it
possible to realize a situation where next nearest-neighbor interactions are negligible, hence im-
plementing a 1D situation using a 2D arrangement of the atoms (see Fig. 12b). After preparing
all the atoms in the state |nS〉, we used microwave spectroscopy to measure the single-particle
energy spectrum (see Fig. 12c). We entered the many-body regime by preparing the ground
state of the chain comprising N/2 excitations (where N is the number of sites), using an adia-
batic preparation in the spirit of the one we used to prepare the antiferromagnetic correlations
in the Ising model described in Sec. 4.2. We have characterized this many-body ground state
in the topological configuration, and found that it displayed a characteristic robustness with re-
spect to the breaking of certain symmetries of the Hamiltonian. The prepared state is the first
experimental realization of a type of topological order for bosons introduced in 2012 based on
formal considerations [49], called symmetry-protected topological phases. These phases are the
only topological orders that can exist in one dimension. This experiment shows once again that
synthetic quantum systems allow implementing situations originally devised in a mathematical
physics context.

Simulation of open systems. Finally, it is important to mention that all quantum simulation
platforms are coupled to an environment. For all the examples mentioned above, the goal was to
keep this coupling to a minimum value. In some situations however, it is possible to engineer the
environment and therefore quantum simulate driven, open many-body systems. As described
in Sec. 3.5, the polariton platform described in 3.5 naturally operates in this regime. Quantum
circuits are also an interesting platform to study open systems [17].
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of the model, in the tight-binding limit. (b) Fluorescence image of atoms in tweezers array
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negligible and the observations could be explained at the single-particle level.
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dipole interaction that drives the transport of an excitation leads to a single-particle problem
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possible to realize a situation where next nearest-neighbor interactions are negligible, hence im-
plementing a 1D situation using a 2D arrangement of the atoms (see Fig. 12b). After preparing
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state of the chain comprising N/2 excitations (where N is the number of sites), using an adia-
batic preparation in the spirit of the one we used to prepare the antiferromagnetic correlations
in the Ising model described in Sec. 4.2. We have characterized this many-body ground state
in the topological configuration, and found that it displayed a characteristic robustness with re-
spect to the breaking of certain symmetries of the Hamiltonian. The prepared state is the first
experimental realization of a type of topological order for bosons introduced in 2012 based on
formal considerations [49], called symmetry-protected topological phases. These phases are the
only topological orders that can exist in one dimension. This experiment shows once again that
synthetic quantum systems allow implementing situations originally devised in a mathematical
physics context.

Simulation of open systems. Finally, it is important to mention that all quantum simulation
platforms are coupled to an environment. For all the examples mentioned above, the goal was to
keep this coupling to a minimum value. In some situations however, it is possible to engineer the
environment and therefore quantum simulate driven, open many-body systems. As described
in Sec. 3.5, the polariton platform described in 3.5 naturally operates in this regime. Quantum
circuits are also an interesting platform to study open systems [17].
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5 Challenges and outlook

In this last section, we first briefly discuss some of the challenges ahead for quantum simulators.

As seen in the examples discussed in the previous section, quantum simulation platforms are
already at the “useful” stage: they allowed answering open questions (e.g. MBL in 2D) and
they operate for some of them in a regime inaccessible to classical calculations. Also they pro-
vide new tools to address open questions, forcing one to think differently about the problems.
This triggering aspect provided by the platforms is, in my opinion, one important aspect of the
quantum simulation approach. This shows, that even plagued with imperfections and noise, we
learn from quantum simulators. As mentioned in Sec. 2, this fact has been conceptualized: pro-
grammable quantum simulators can be seen as noisy, intermediate scale quantum computers [4]
able to perform tasks too hard for classical hardware, despite the fact that they are not universal.
There is also no doubt that as the quality of the simulators improve, thanks to technological
developments, the range of physical effects accessible to them will enlarge, and the obvious
tasks for the experimentalists is to work hard on this improvements.

It is also fair to say that for many problems, quantum simulators are still in the benchmarking
phase, where the outcomes of the simulators can be compared to a classical simulation as the
number of particles is small enough. This phase is necessary to build trust in the experimental
implementation, and it is crucial for any new platform that is being developed. However this
raises the question of the validation of the quantum simulation in a regime where no bench-
marking against a classical solution is possible. The problem is quite different for quantum
simulators and quantum computers. For computers, performing the calculation is hard but the
solution is often easy to check (this is actually an important point as some quantum computing
algorithms only give a probabilistic answer). Most of the times, quantum simulation does not
allow for this possibility of directly confirming the solution. A current line of research is thus
to investigate benchmarking and verification protocols. Among the identified directions:

• as already mentioned, benchmarking in regimes where we can compare the solution di-
rectly against (classically) solvable problems, or with formal generalisations of random-
ized benchmarking from digital quantum computers.

• benchmarking with problems for which we can efficiently check the final outcome, in-
cluding e.g., classical optimization problems.

• comparing different platforms by performing the quantum simulation of a given model
Hamiltonian (e.g. Heisenberg, Quantum Ising, Fermi Hubbard etc) on different imple-
mentations. One can probe the many-body state fidelity of the model Hamiltonians, as
well as dynamical state evolution. This approach is similar to the one used for the most
precise atomic clocks: to check that the time given by the clock is accurate, one builds a
second clock and beat it with the first one to investigate systematic effects.

• when verifying the solution is computationally hard, we may be able to identify some
observables or correlation function witnesses to check the solution.

To conclude, and as an outlook, one should not think about quantum simulators only as being
able to address academic scientific questions. In fact these synthetic systems can also be viewed
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as machines able to prepare quantum states useful for many applications. For example, they can
generate large entangled states, whose correlations are useful to beat the standard quantum limit,
hence leading to clocks or sensors with enhanced precision [50]. In the long-term, they could of
course lead to quantum computers. Interestingly, machines able to implement spin models could
be useful to answer computationally hard problems well beyond physics, such as combinatorial
optimization problems (one prominent example being the traveling salesman’s problem). Many
of these optimization problems can be cast as Ising models [51] that most quantum simulators
implement naturally, as we have seen in these notes. By varying the parameters on the experi-
ment, one could drive the system into a state encoding the solution of the problem. Therefore,
quantum simulation using synthetic many-body systems appear as a wonderful playground for
physicists, but also with many potential of applications in our everyday life. We are just at the
beginning of exploring them.
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Copyright c© 2019, Springer-Nature. Reprinted with permission.



Nature | www.nature.com

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak 
Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun 
Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, 
Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve 
Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent 
Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn 
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, 
David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. 
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, 
Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, 
Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas 
C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. 
Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, 
Adam Zalcman, Hartmut Neven & John M. Martinis

Supplementary information

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41586-019-1666-5

A3.2 H. Neven and collaborators

Supplementary information for
“Quantum supremacy using a programmable superconducting processor”

Google AI Quantum and collaborators†

(Dated: October 8, 2019)

CONTENTS

I. Device design and architecture 2

II. Fabrication and layout 2

III. Qubit control and readout 3
A. Control 3
B. Readout 3

IV. XEB theory 5
A. XEB of a small number of qubits 5
B. XEB of a large number of qubits 7
C. Two limiting cases 8
D. Measurement errors 9

V. Quantifying errors 9

VI. Metrology and calibration 11
A. Calibration overview 11

1. Device registry 11
2. Scheduling calibrations: “Optimus” 12

B. Calibration procedure 12
1. Device configuration 12
2. Root config: procedure 12
3. Single-qubit config: procedure 13
4. Optimizing qubit operating frequencies 13
5. Grid config: procedure 14

C. Two-qubit gate metrology 15
1. The natural two-qubit gate for transmon

qubits 15
2. Using cross entropy to learn a unitary

model 16
3. Comparison with randomized

benchmarking 16
4. Speckle purity benchmarking (SPB) 18
5. “Per-layer” parallel XEB 19

D. Grid readout calibration 20
1. Choosing qubit frequencies for readout 20
2. Single qubit calibration 20
3. Characterizing multi-qubit readout 21

E. Summary of system parameters 21

VII. Quantum circuits 27
A. Background 27
B. Overview and technical requirements 27
C. Circuit structure 27
D. Randomness 27
E. Quantum gates 28
F. Programmability and universality 29

1. Decomposition of CZ into fSim gates 29

2. Universality for SU(2) 30
G. Circuit variants 30

1. Gate elision 31
2. Wedge formation 31

VIII. Large scale XEB results 31
A. Limitations of full circuits 32
B. Patch circuits: a quick performance

indicator for large systems 33
C. Elided circuits: a more rigorous

performance estimator for large systems 33
D. Choice of unitary model for two-qubit

entangling gates 34
E. Understanding system performance: error

model prediction 35
F. Distribution of bitstring probabilities 36
G. Statistical uncertainties of XEB

measurements 39
H. System stability and systematic

uncertainties 40
I. The fidelity result and the null hypothesis

on quantum supremacy 41

IX. Sensitivity of XEB to errors 42

X. Classical simulations 44
A. Local Schrödinger and

Schrödinger-Feynman simulators 44
B. Feynman simulator 45
C. Supercomputer Schrödinger simulator 49
D. Simulation of random circuit sampling with

a target fidelity 50
1. Optimality of the Schmidt decomposition

for gates embedded in a random circuit 50
2. Classical speedup for imbalanced gates 52
3. Verifiable and supremacy circuits 53

E. Treewidth upper bounds and variable
elimination algorithms 54

F. Computational cost estimation for the
sampling task 55

G. Understanding the scaling with width and
depth of the computational cost of
verification 56
1. Runtime scaling formulas 56
2. Assumptions and corrections 57
3. Fitting constants 58
4. Memory usage scaling 58

H. Energy advantage for quantum computing 59

XI. Complexity-theoretic foundation of the
experiment 59

Quantum supremacy A3.3



Nature | www.nature.com

Article

Quantum supremacy using a programmable 
superconducting processor

Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak 
Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun 
Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, 
Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve 
Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent 
Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn 
Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, 
David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. 
McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, 
Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, 
Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas 
C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. 
Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, 
Adam Zalcman, Hartmut Neven & John M. Martinis

Supplementary information

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41586-019-1666-5

A3.2 H. Neven and collaborators

Supplementary information for
“Quantum supremacy using a programmable superconducting processor”

Google AI Quantum and collaborators†

(Dated: October 8, 2019)

CONTENTS

I. Device design and architecture 2

II. Fabrication and layout 2

III. Qubit control and readout 3
A. Control 3
B. Readout 3

IV. XEB theory 5
A. XEB of a small number of qubits 5
B. XEB of a large number of qubits 7
C. Two limiting cases 8
D. Measurement errors 9

V. Quantifying errors 9

VI. Metrology and calibration 11
A. Calibration overview 11

1. Device registry 11
2. Scheduling calibrations: “Optimus” 12

B. Calibration procedure 12
1. Device configuration 12
2. Root config: procedure 12
3. Single-qubit config: procedure 13
4. Optimizing qubit operating frequencies 13
5. Grid config: procedure 14

C. Two-qubit gate metrology 15
1. The natural two-qubit gate for transmon

qubits 15
2. Using cross entropy to learn a unitary

model 16
3. Comparison with randomized

benchmarking 16
4. Speckle purity benchmarking (SPB) 18
5. “Per-layer” parallel XEB 19

D. Grid readout calibration 20
1. Choosing qubit frequencies for readout 20
2. Single qubit calibration 20
3. Characterizing multi-qubit readout 21

E. Summary of system parameters 21

VII. Quantum circuits 27
A. Background 27
B. Overview and technical requirements 27
C. Circuit structure 27
D. Randomness 27
E. Quantum gates 28
F. Programmability and universality 29

1. Decomposition of CZ into fSim gates 29

2. Universality for SU(2) 30
G. Circuit variants 30

1. Gate elision 31
2. Wedge formation 31

VIII. Large scale XEB results 31
A. Limitations of full circuits 32
B. Patch circuits: a quick performance

indicator for large systems 33
C. Elided circuits: a more rigorous

performance estimator for large systems 33
D. Choice of unitary model for two-qubit

entangling gates 34
E. Understanding system performance: error

model prediction 35
F. Distribution of bitstring probabilities 36
G. Statistical uncertainties of XEB

measurements 39
H. System stability and systematic

uncertainties 40
I. The fidelity result and the null hypothesis

on quantum supremacy 41

IX. Sensitivity of XEB to errors 42

X. Classical simulations 44
A. Local Schrödinger and

Schrödinger-Feynman simulators 44
B. Feynman simulator 45
C. Supercomputer Schrödinger simulator 49
D. Simulation of random circuit sampling with

a target fidelity 50
1. Optimality of the Schmidt decomposition

for gates embedded in a random circuit 50
2. Classical speedup for imbalanced gates 52
3. Verifiable and supremacy circuits 53

E. Treewidth upper bounds and variable
elimination algorithms 54

F. Computational cost estimation for the
sampling task 55

G. Understanding the scaling with width and
depth of the computational cost of
verification 56
1. Runtime scaling formulas 56
2. Assumptions and corrections 57
3. Fitting constants 58
4. Memory usage scaling 58

H. Energy advantage for quantum computing 59

XI. Complexity-theoretic foundation of the
experiment 59

Quantum supremacy A3.3



2

A. Error model 60

B. Definition of computational problem 60

C. Computational hardness of unbiased-noise
sampling 61

D. Proof of Theorem 1 62

Acknowledgments 63

References 64

I. DEVICE DESIGN AND ARCHITECTURE

The Sycamore device was designed with both the quan-
tum supremacy experiment and small noisy intermediate
scale quantum (NISQ) applications in mind. The archi-
tecture is also suitable for initial experiments with quan-
tum error correction based on the surface code. While
we are targeting 0.1% error two-qubit gates for error
correction, a quantum supremacy demonstration can be
achieved with 0.3-0.6% error rates.

For decoherence-dominated errors, a 0.1% error means
a factor of about 1000 between coherence and gate times.
For example, a 25 µs coherence time implies a 25 ns gate.
A key design objective in our architecture is achieving
short two-qubit gate time, leading to the choice of tun-
able transmon qubits with direct, tunable coupling.

A difficult challenge for achieving a high-performance
two-qubit gate is designing a sufficiently strong coupling
when the gate is active, which is needed for fast gates,
while minimizing the coupling otherwise for low resid-
ual control errors. These two competing requirements
are difficult to satisfy with a fixed-coupling architecture:
our prior processors [1] used large qubit-qubit detuning
(∼1 GHz) to turn off the effective interaction, requir-
ing relatively high-amplitude precise flux pulses to tune
the qubit frequencies to implement a CZ gate. In the
Sycamore device, we use adjustable couplers [2] as a nat-
ural solution to this control problem, albeit at the cost
of more wiring and control signals. This means that the
qubits can idle at much smaller relative detuning. We
chose a capacitor-coupled design [2, 3], which is simpler
to layout and scale, over the inductor-based coupler of
previous gmon devices [4, 5]. In Sycamore, the coupling
g is tunable from 5 MHz to −40 MHz. The experiment
uses ‘on’ coupling of about −20 MHz.

By needing only small frequency excursions to perform
a two-qubit gate, the tunable qubit can be operated much
closer to its maximum frequency, thus greatly reducing
flux sensitivity and dephasing from 1/f flux noise. Ad-
ditionally, the coupling can be turned off during mea-
surement, reducing the effect of measurement crosstalk,
a phenomenon that has shown to be somewhat difficult
to understand and minimize [6].

The interaction Hamiltonian of a system of on-
resonance transmons with adjustable coupling (truncated

to the qubit levels) has the following approximate form,

Hint(t) ≈
∑
〈i,j〉

gij(t) (σ
+
i σ−

j + σ−
i σ+

j ) +
g2ij(t)

|η|
σz
i σ

z
j , (1)

where gij is the nearest neighbor coupling, η is the non-
linearity of the qubits (roughly constant), i and j index
nearest-neighbor qubit pairs, and σ± = (σx±iσy)/2. We
pulse the coupling in time to create coupling gates.

Our two-qubit gate can be understood using Car-
tan decomposition [7], which enables an arbitrary two-
qubit gate to be decomposed into four single-qubit gates
around a central two-qubit gate that can be described by
a unitary matrix describing only XX, YY and ZZ interac-
tions, with 3 parameters indicating their strengths. For
the physical interaction describing our hardware, we see
a swapping interaction between the |01〉 and |10〉 qubits
states, corresponding to an XX+YY interaction. Inter-
action of the qubit |11〉 state with the |2〉 states of the
data transmons produce a phase shift of that state, cor-
responding to a ZZ interaction. By changing the qubit
frequencies and coupling strength we can vary the mag-
nitude of these interactions, giving net control of 2 out
of the 3 possible parameters for an arbitrary gate.

II. FABRICATION AND LAYOUT

Our Sycamore quantum processor is configured as a
diagonal array of qubits as seen in the schematic of Fig. 1
in the main text. The processor contains 142 transmon
qubits, of which 54 qubits have individual microwave and
frequency controls and are individually read out (referred
to as qubits). The remaining 88 transmons are operated
as adjustable couplers remaining in their ground state
during the algorithms (referred to as couplers).

The qubits consist of a DC SQUID sandwiched be-
tween two metal islands, operating in the transmon
regime. An on-chip bias line is inductively coupled to the
DC SQUID, which allows us to tune qubit frequency by
applying control fluxes into the SQUID loop. For regu-
lar operations, we tune qubits through a small frequency
range (< 100 MHz). This corresponds to a relatively
small control signal and makes qubit operation less sen-
sitive to flux crosstalk.

Each pair of nearest-neighbor qubits are coupled
through two parallel channels: direct capacitive coupling
and indirect coupling mediated by coupler [2, 3, 8]. Both
channels result in qubit-qubit coupling in the form of
σx
i σx

j + σy
i σy

j in the rotating frame, although with dif-
ferent signs. The indirect coupling is negative, given it
is a second-order virtual process. The strength of the
indirect coupling is adjusted by changing the coupler fre-
quency with an additional on-chip bias line, giving a net
zero qubit-qubit coupling at a specific flux bias.

The Sycamore processor consists of two die that we
fabricated on separate high resistivity silicon wafers. The
fabrication process, using aluminum on silicon, requires
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FIG. S1. A photograph of a packaged Sycamore pro-
cessor. The processor is shielded from the electromagnetic
environment by a mu-metal shield (middle) and a supercon-
ducting Aluminum cap, inside the mu-metal shield. The pro-
cessor control wires are routed, through PCB circuit board,
to coaxial connectors shown around the edge.

a total of 14 lithography layers utilizing both optical and
electron beam lithography. Crosstalk and dissipation are
mitigated through ground plane shielding [9]. After fabri-
cation and die singulation, we use indium bump bonding
[10, 11] of the two separate dies to form the Sycamore
processor.

The Sycamore processor is connected to a 3-layer Al-
plated circuit board with Al wirebonds [12]. Each line
is routed through a microwave connector to an individ-
ual coax cable. We shield the processor from stray light
using a superconducting Al lid with black coating, and
from magnetic fields using a mu-metal shield as shown in
Fig. S1.

III. QUBIT CONTROL AND READOUT

A. Control

Operating the device requires simultaneous synchro-
nized control waveforms for each of the qubits and cou-
plers. We use 54 coherent microwave control signals
for qubit XY rotations, 54 fast flux bias lines for qubit
frequency tuning, and 88 fast flux biases for the ad-
justable couplers. Dispersive readout requires an addi-
tional 9 microwave signals and phase sensitive receivers.
A schematic of the room temperature electronics is shown
in Fig. S2, and the cryogenic wiring is shown in Fig. S3.

Waveform generation is based on a custom-built multi-
channel digital to analog converter (DAC) module. Each
DAC module provides 8 DACs with 14-bit resolution and
1 GS/s sample rate. Each DAC sample clock is synchro-
nized to a global 10 MHz reference oscillator, and their
trigger is connected by a daisy chain to synchronize all
modules used in the experiment. This set of DAC mod-

ules forms a >250-channel, phase-synchronous waveform
generator. We have measured 20 ps of jitter between
channels. The modules are mounted in 14-slot 6U rack-
mount chassis. A single chassis, shown in FIG. S4, can
control approximately 15 qubits including their associ-
ated couplers and readout signals. A total of 4 chassis
are used to control the entire Sycamore chip.

The DAC outputs are used directly for fast flux bias-
ing the qubits and couplers required for two-qubit gates.
Microwave control for single-qubit XY rotations and dis-
persive readout combine two DAC channels and a mixer
module to form a microwave arbitrary waveform genera-
tor (Microwave AWG) via single-sideband upconversion
in an IQ mixer as shown in Figure S2 a. The microwave
AWG provides signals with arbitrary spectral content
within ±350 MHz of the local oscillator (LO). A single
LO signal is distributed to all IQ mixers so that all qubits’
XY controls are phase coherent. The mixer modules are
mounted in the same chassis as the DAC modules. Each
mixer’s I and Q port DC offsets are calibrated for min-
imum carrier leakage and the I and Q amplitudes and
phases are calibrated to maximize image rejection.

Each DAC module contains an FPGA that provides
a gigabit ethernet interface, SRAM to store waveform
patterns, and sends the waveform data to the DAC mod-
ule’s 8 DACs. To optimize the use of SRAM, the FPGA
implements a simple jump table to allow reusing or re-
peating waveform segments. A computer loads the de-
sired waveforms and jump table onto each FPGA using a
UDP-based protocol and then requests the first (master)
FPGA to start. The start pulse is passed down the daisy
chain causing the remainder (slave) DACs and ADCs to
start.

B. Readout

Qubit state measurement and readout (hereafter
“readout”) are done via the dispersive interaction be-
tween the qubit and a far-detuned harmonic resonator
[13–15]. A change in the qubit state from |0〉 to |1〉
causes a frequency shift of the resonator from ω|0〉 to
ω|1〉. A readout probe signal applied to the resonator
at a frequency in between ω|0〉 and ω|1〉 reflects with a
phase shift φ|0〉 or φ|1〉 that depends on the resonator
frequency and therefore on the qubit state. By detect-
ing the phase of the reflected probe signal we infer the
qubit state. The readout probe signal is generated with
the same microwave AWG as the XY control signals, but
with a separate local oscillator, and is received and de-
modulated by the circuit shown in Figure S2 b.

The readout probe intensity is typically set to populate
the readout resonator with only a few photons to avoid
readout-induced transitions in the qubit [16]. Detecting
this weak signal at room temperature with conventional
electronics requires 100 dB of amplification. To limit the
integration time to a small fraction of the qubit coher-
ence time, the amplification chain must operate near the
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The Sycamore device was designed with both the quan-
tum supremacy experiment and small noisy intermediate
scale quantum (NISQ) applications in mind. The archi-
tecture is also suitable for initial experiments with quan-
tum error correction based on the surface code. While
we are targeting 0.1% error two-qubit gates for error
correction, a quantum supremacy demonstration can be
achieved with 0.3-0.6% error rates.

For decoherence-dominated errors, a 0.1% error means
a factor of about 1000 between coherence and gate times.
For example, a 25 µs coherence time implies a 25 ns gate.
A key design objective in our architecture is achieving
short two-qubit gate time, leading to the choice of tun-
able transmon qubits with direct, tunable coupling.

A difficult challenge for achieving a high-performance
two-qubit gate is designing a sufficiently strong coupling
when the gate is active, which is needed for fast gates,
while minimizing the coupling otherwise for low resid-
ual control errors. These two competing requirements
are difficult to satisfy with a fixed-coupling architecture:
our prior processors [1] used large qubit-qubit detuning
(∼1 GHz) to turn off the effective interaction, requir-
ing relatively high-amplitude precise flux pulses to tune
the qubit frequencies to implement a CZ gate. In the
Sycamore device, we use adjustable couplers [2] as a nat-
ural solution to this control problem, albeit at the cost
of more wiring and control signals. This means that the
qubits can idle at much smaller relative detuning. We
chose a capacitor-coupled design [2, 3], which is simpler
to layout and scale, over the inductor-based coupler of
previous gmon devices [4, 5]. In Sycamore, the coupling
g is tunable from 5 MHz to −40 MHz. The experiment
uses ‘on’ coupling of about −20 MHz.

By needing only small frequency excursions to perform
a two-qubit gate, the tunable qubit can be operated much
closer to its maximum frequency, thus greatly reducing
flux sensitivity and dephasing from 1/f flux noise. Ad-
ditionally, the coupling can be turned off during mea-
surement, reducing the effect of measurement crosstalk,
a phenomenon that has shown to be somewhat difficult
to understand and minimize [6].

The interaction Hamiltonian of a system of on-
resonance transmons with adjustable coupling (truncated

to the qubit levels) has the following approximate form,
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where gij is the nearest neighbor coupling, η is the non-
linearity of the qubits (roughly constant), i and j index
nearest-neighbor qubit pairs, and σ± = (σx±iσy)/2. We
pulse the coupling in time to create coupling gates.

Our two-qubit gate can be understood using Car-
tan decomposition [7], which enables an arbitrary two-
qubit gate to be decomposed into four single-qubit gates
around a central two-qubit gate that can be described by
a unitary matrix describing only XX, YY and ZZ interac-
tions, with 3 parameters indicating their strengths. For
the physical interaction describing our hardware, we see
a swapping interaction between the |01〉 and |10〉 qubits
states, corresponding to an XX+YY interaction. Inter-
action of the qubit |11〉 state with the |2〉 states of the
data transmons produce a phase shift of that state, cor-
responding to a ZZ interaction. By changing the qubit
frequencies and coupling strength we can vary the mag-
nitude of these interactions, giving net control of 2 out
of the 3 possible parameters for an arbitrary gate.

II. FABRICATION AND LAYOUT

Our Sycamore quantum processor is configured as a
diagonal array of qubits as seen in the schematic of Fig. 1
in the main text. The processor contains 142 transmon
qubits, of which 54 qubits have individual microwave and
frequency controls and are individually read out (referred
to as qubits). The remaining 88 transmons are operated
as adjustable couplers remaining in their ground state
during the algorithms (referred to as couplers).

The qubits consist of a DC SQUID sandwiched be-
tween two metal islands, operating in the transmon
regime. An on-chip bias line is inductively coupled to the
DC SQUID, which allows us to tune qubit frequency by
applying control fluxes into the SQUID loop. For regu-
lar operations, we tune qubits through a small frequency
range (< 100 MHz). This corresponds to a relatively
small control signal and makes qubit operation less sen-
sitive to flux crosstalk.

Each pair of nearest-neighbor qubits are coupled
through two parallel channels: direct capacitive coupling
and indirect coupling mediated by coupler [2, 3, 8]. Both
channels result in qubit-qubit coupling in the form of
σx
i σx

j + σy
i σy

j in the rotating frame, although with dif-
ferent signs. The indirect coupling is negative, given it
is a second-order virtual process. The strength of the
indirect coupling is adjusted by changing the coupler fre-
quency with an additional on-chip bias line, giving a net
zero qubit-qubit coupling at a specific flux bias.

The Sycamore processor consists of two die that we
fabricated on separate high resistivity silicon wafers. The
fabrication process, using aluminum on silicon, requires
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FIG. S1. A photograph of a packaged Sycamore pro-
cessor. The processor is shielded from the electromagnetic
environment by a mu-metal shield (middle) and a supercon-
ducting Aluminum cap, inside the mu-metal shield. The pro-
cessor control wires are routed, through PCB circuit board,
to coaxial connectors shown around the edge.

a total of 14 lithography layers utilizing both optical and
electron beam lithography. Crosstalk and dissipation are
mitigated through ground plane shielding [9]. After fabri-
cation and die singulation, we use indium bump bonding
[10, 11] of the two separate dies to form the Sycamore
processor.

The Sycamore processor is connected to a 3-layer Al-
plated circuit board with Al wirebonds [12]. Each line
is routed through a microwave connector to an individ-
ual coax cable. We shield the processor from stray light
using a superconducting Al lid with black coating, and
from magnetic fields using a mu-metal shield as shown in
Fig. S1.

III. QUBIT CONTROL AND READOUT

A. Control

Operating the device requires simultaneous synchro-
nized control waveforms for each of the qubits and cou-
plers. We use 54 coherent microwave control signals
for qubit XY rotations, 54 fast flux bias lines for qubit
frequency tuning, and 88 fast flux biases for the ad-
justable couplers. Dispersive readout requires an addi-
tional 9 microwave signals and phase sensitive receivers.
A schematic of the room temperature electronics is shown
in Fig. S2, and the cryogenic wiring is shown in Fig. S3.

Waveform generation is based on a custom-built multi-
channel digital to analog converter (DAC) module. Each
DAC module provides 8 DACs with 14-bit resolution and
1 GS/s sample rate. Each DAC sample clock is synchro-
nized to a global 10 MHz reference oscillator, and their
trigger is connected by a daisy chain to synchronize all
modules used in the experiment. This set of DAC mod-

ules forms a >250-channel, phase-synchronous waveform
generator. We have measured 20 ps of jitter between
channels. The modules are mounted in 14-slot 6U rack-
mount chassis. A single chassis, shown in FIG. S4, can
control approximately 15 qubits including their associ-
ated couplers and readout signals. A total of 4 chassis
are used to control the entire Sycamore chip.

The DAC outputs are used directly for fast flux bias-
ing the qubits and couplers required for two-qubit gates.
Microwave control for single-qubit XY rotations and dis-
persive readout combine two DAC channels and a mixer
module to form a microwave arbitrary waveform genera-
tor (Microwave AWG) via single-sideband upconversion
in an IQ mixer as shown in Figure S2 a. The microwave
AWG provides signals with arbitrary spectral content
within ±350 MHz of the local oscillator (LO). A single
LO signal is distributed to all IQ mixers so that all qubits’
XY controls are phase coherent. The mixer modules are
mounted in the same chassis as the DAC modules. Each
mixer’s I and Q port DC offsets are calibrated for min-
imum carrier leakage and the I and Q amplitudes and
phases are calibrated to maximize image rejection.

Each DAC module contains an FPGA that provides
a gigabit ethernet interface, SRAM to store waveform
patterns, and sends the waveform data to the DAC mod-
ule’s 8 DACs. To optimize the use of SRAM, the FPGA
implements a simple jump table to allow reusing or re-
peating waveform segments. A computer loads the de-
sired waveforms and jump table onto each FPGA using a
UDP-based protocol and then requests the first (master)
FPGA to start. The start pulse is passed down the daisy
chain causing the remainder (slave) DACs and ADCs to
start.

B. Readout

Qubit state measurement and readout (hereafter
“readout”) are done via the dispersive interaction be-
tween the qubit and a far-detuned harmonic resonator
[13–15]. A change in the qubit state from |0〉 to |1〉
causes a frequency shift of the resonator from ω|0〉 to
ω|1〉. A readout probe signal applied to the resonator
at a frequency in between ω|0〉 and ω|1〉 reflects with a
phase shift φ|0〉 or φ|1〉 that depends on the resonator
frequency and therefore on the qubit state. By detect-
ing the phase of the reflected probe signal we infer the
qubit state. The readout probe signal is generated with
the same microwave AWG as the XY control signals, but
with a separate local oscillator, and is received and de-
modulated by the circuit shown in Figure S2 b.

The readout probe intensity is typically set to populate
the readout resonator with only a few photons to avoid
readout-induced transitions in the qubit [16]. Detecting
this weak signal at room temperature with conventional
electronics requires 100 dB of amplification. To limit the
integration time to a small fraction of the qubit coher-
ence time, the amplification chain must operate near the
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single DAC channel and a microwave source are used to bias
and pump the parametric amplifier for readout. c, Readout
pulses are generated by a microwave AWG. The reflected sig-
nal is amplified, mixed down to IF, and then digitized in a
pair of ADCs. The digital samples are analyzed in the FPGA.
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connects from each ADC module to the next. Control signals
exit the chassis through coaxial cables.

quantum noise limit [17, 18].
Inside the cryostat the signal is amplified by an

impedance matched lumped element Josephson paramet-
ric amplifier (IMPA) [19] on the mixing chamber stage
followed by a Low Noise Factory cryogenic HEMT am-
plifier at 3 K. At room temperature the signal is fur-
ther amplified before it is mixed down with an IQ mixer
producing a pair of intermediate frequency (IF) signals
I(t) and Q(t). The IF signals are amplified by a pair of
variable gain amplifiers to fine-tune their level, and then
digitized by a pair of custom 1 GS/s, 8-bit analog to dig-
ital converters (ADC). The digitized samples In and Qn

are processed in an FPGA which combines them into a
complex phasor

zn = In + iQn = En exp(i(ωndt + φ))

where dt is the sample spacing, ω is the IF frequency,
φ is the phase that depends on the qubit state, and En

is the envelope of the reflected readout signal. The en-
velope is measured experimentally once and then used
by the FPGA in subsequent experiments as the optimal
demodulation window wn to extract the phase of the re-
flected readout signal [20, 21]. The FPGA multiplies zn
by wn exp(−iωndt), and then sums over time to produce
a final complex value exp(iφ)

N−1∑
n=0

znwn exp(−iωndt) ∝ exp(iφ)

In the absence of noise, the final complex value would
always be one of two possible values corresponding to
the qubit states |0〉 and |1〉. However, the noise leads to
Gaussian distributions centered at those two points. The
size of the clouds is determined mostly by the noise of the
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IMPA and cryogenic HEMT amplifier, while the separa-
tion between the clouds’ centers is determined by the
resonator probe power and duration. The signal to noise
ratio of the measurement is determined by the clouds’
separation and width [21, 22].

The 54 qubits are divided into nine frequency multi-
plexed readout groups of six qubits each. Within a group,
each qubit is coupled to its own readout resonator, but all
six resonators are coupled to a shared bandpass Purcell
filter [21, 23, 24]. All qubits in a group can be read-out
simultaneously by frequency-domain multiplexing [1, 25]
in which the total probe signal is a superposition of probe
signals at each of the readout resonators’ frequencies.
The phase shifts of these superposed signals are inde-
pendently recovered in the FPGA by demodulating the
complex IQ phasor with each intermediate frequency. In
other words, we know what frequencies are in the su-
perposed readout signal and we compute the Fourier co-
efficients at those frequencies to find the phase of each
reflected frequency component.

IV. XEB THEORY

We use cross entropy benchmarking (XEB) [5, 26] to
calibrate general single- and two-qubit gates, and also to
estimate the fidelity of random quantum circuits with a
large number of qubits. XEB is based on the observation
that the measurement probabilities of a random quantum
state have a similar pattern to laser “speckles”, with some
bitstrings more probable than others [27, 28]. The same
holds for the output state of random quantum circuits.
As errors destroy the speckle pattern, this is enough to
estimate the rate of errors and fidelity in an experiment.
Crucially, XEB does not require the reconstruction of
experimental output probabilities, which would need an
exponential number of measurements for increasing num-
ber of qubits. Rather, we use numerical simulations to
calculate the likelihood of a set of bitstrings obtained in
an experiment according to the ideal expected probabili-
ties. Below we describe the theory behind this technique
in more detail.

A. XEB of a small number of qubits

We first consider the use of XEB to obtain the er-
ror rate for single- and two-qubit gates. As explained
above, for a two-qubit XEB estimation we use sequences
of cycles, each cycle consisting of two sufficiently random
single-qubit gates followed by the same two-qubit gate.

The density operator of the system after application
of a random circuit U with m cycles can be written as a
sum of two parts

ρU = εm |ψU 〉 〈ψU |+ (1− εm)χU , D = 2n . (2)

Here |ψU 〉 = U |ψ0〉 is the ideal output state and χU is
an operator with unit trace that along with εm describes

the effect of errors. For a depolarizing channel model
χU = I/D and εm has the meaning of the depolarization
fidelity after m cycles. Nevertheless, in the case of small
number of qubits, the part of the operator χU has nonzero
matrix elements between the states with no error and the
states with the error. However, if we undo the evolution
of each random circuit and average over an ensemble of
circuits such cross-terms are averaged out and we expect

U †χUU =
I

D
. (3)

Here and below we use the horizontal bar on the top to
denote averaging over the ensemble of random circuits.
Because of this property it is possible to establish the
connection between the quantity εm and the depolariza-
tion fidelity after m cycles.
From Eqs. (2) and (3) we get

U †ρUU = εm |ψ0〉 〈ψ0|+ (1− εm)
I

D
. (4)

This is a depolarizing channel. From this and the expo-
nential decay of fidelity we get

εm = pmc , (5)

connecting εm to the depolarization fidelity pc per cycle.
The noise model (2) is very general in the context of

random circuits. To provide some insight about the ori-
gin of this model we consider a specific case with pure
systematic error in the two-qubit gate. In this case the
resulting pure state after the application of the random
circuit Ũ with the error can be expanded into the direc-
tion of the ideal state vector and the orthogonal direction

Ũ |ψ0〉 = ξm |ψU 〉+
√

1− |ξm|2 |ϕŨ 〉 , (6)

where

〈ψU |ϕŨ 〉 = 0, 〈ϕŨ |ϕŨ 〉 = 1 . (7)

For the ensemble of random circuits U the error vector
is distributed completely randomly in the plane orthogo-
nal to the ideal vector U |ψ0〉 (see Fig. S5). This condition
of orthogonality is the only constraint on the vector |ϕŨ 〉
that involves |ψU 〉. Therefore we expect

U† |ϕŨ 〉 〈ϕŨ |U =
1

D − 1
(I − |ψ0〉 〈ψ0|) . (8)

Also

U†
(
ξm

√
1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c

)
U = 0 . (9)

This gives the connection between the error vector |ϕŨ 〉
and the operator χU

(1− εm)χU − 1− εm
D

|ψU 〉 〈ψU | = (1−|ξm|2) |ϕŨ 〉 〈ϕŨ |

+
(
ξm

√
1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c

)
. (10)

Quantum supremacy A3.7



4

MICROWAVE
AWG READOUT

PROBE IN

PARAMP
FLUX BIAS

DAC card
PARAMP
PUMP

LO

DAC module

2 dB

2 dB

2 dB

2 dB

7.5 GHz

Mixer module
I

Q

0.3 GHzDAC

0.3 GHzDAC

0.3 GHzDAC

0.3 GHzDAC

FPGA

2 dB 2 dB

2 dB

2 dB
FPGA

ADC

ADC

2 dB

LOW FREQ.
AWG (FLUX)

MICROWAVE AWG

READOUT
PROBE OUT

Readout
LO

3 dB

Downmixer module Amplifier
module

a

b

c
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ally for flux pulses or in pairs combined with a mixer module
to comprise a microwave AWG channel (dashed box). b, A
single DAC channel and a microwave source are used to bias
and pump the parametric amplifier for readout. c, Readout
pulses are generated by a microwave AWG. The reflected sig-
nal is amplified, mixed down to IF, and then digitized in a
pair of ADCs. The digital samples are analyzed in the FPGA.
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quantum noise limit [17, 18].
Inside the cryostat the signal is amplified by an

impedance matched lumped element Josephson paramet-
ric amplifier (IMPA) [19] on the mixing chamber stage
followed by a Low Noise Factory cryogenic HEMT am-
plifier at 3 K. At room temperature the signal is fur-
ther amplified before it is mixed down with an IQ mixer
producing a pair of intermediate frequency (IF) signals
I(t) and Q(t). The IF signals are amplified by a pair of
variable gain amplifiers to fine-tune their level, and then
digitized by a pair of custom 1 GS/s, 8-bit analog to dig-
ital converters (ADC). The digitized samples In and Qn

are processed in an FPGA which combines them into a
complex phasor

zn = In + iQn = En exp(i(ωndt + φ))

where dt is the sample spacing, ω is the IF frequency,
φ is the phase that depends on the qubit state, and En

is the envelope of the reflected readout signal. The en-
velope is measured experimentally once and then used
by the FPGA in subsequent experiments as the optimal
demodulation window wn to extract the phase of the re-
flected readout signal [20, 21]. The FPGA multiplies zn
by wn exp(−iωndt), and then sums over time to produce
a final complex value exp(iφ)

N−1∑
n=0

znwn exp(−iωndt) ∝ exp(iφ)

In the absence of noise, the final complex value would
always be one of two possible values corresponding to
the qubit states |0〉 and |1〉. However, the noise leads to
Gaussian distributions centered at those two points. The
size of the clouds is determined mostly by the noise of the
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IMPA and cryogenic HEMT amplifier, while the separa-
tion between the clouds’ centers is determined by the
resonator probe power and duration. The signal to noise
ratio of the measurement is determined by the clouds’
separation and width [21, 22].

The 54 qubits are divided into nine frequency multi-
plexed readout groups of six qubits each. Within a group,
each qubit is coupled to its own readout resonator, but all
six resonators are coupled to a shared bandpass Purcell
filter [21, 23, 24]. All qubits in a group can be read-out
simultaneously by frequency-domain multiplexing [1, 25]
in which the total probe signal is a superposition of probe
signals at each of the readout resonators’ frequencies.
The phase shifts of these superposed signals are inde-
pendently recovered in the FPGA by demodulating the
complex IQ phasor with each intermediate frequency. In
other words, we know what frequencies are in the su-
perposed readout signal and we compute the Fourier co-
efficients at those frequencies to find the phase of each
reflected frequency component.

IV. XEB THEORY

We use cross entropy benchmarking (XEB) [5, 26] to
calibrate general single- and two-qubit gates, and also to
estimate the fidelity of random quantum circuits with a
large number of qubits. XEB is based on the observation
that the measurement probabilities of a random quantum
state have a similar pattern to laser “speckles”, with some
bitstrings more probable than others [27, 28]. The same
holds for the output state of random quantum circuits.
As errors destroy the speckle pattern, this is enough to
estimate the rate of errors and fidelity in an experiment.
Crucially, XEB does not require the reconstruction of
experimental output probabilities, which would need an
exponential number of measurements for increasing num-
ber of qubits. Rather, we use numerical simulations to
calculate the likelihood of a set of bitstrings obtained in
an experiment according to the ideal expected probabili-
ties. Below we describe the theory behind this technique
in more detail.

A. XEB of a small number of qubits

We first consider the use of XEB to obtain the er-
ror rate for single- and two-qubit gates. As explained
above, for a two-qubit XEB estimation we use sequences
of cycles, each cycle consisting of two sufficiently random
single-qubit gates followed by the same two-qubit gate.

The density operator of the system after application
of a random circuit U with m cycles can be written as a
sum of two parts

ρU = εm |ψU 〉 〈ψU |+ (1− εm)χU , D = 2n . (2)

Here |ψU 〉 = U |ψ0〉 is the ideal output state and χU is
an operator with unit trace that along with εm describes

the effect of errors. For a depolarizing channel model
χU = I/D and εm has the meaning of the depolarization
fidelity after m cycles. Nevertheless, in the case of small
number of qubits, the part of the operator χU has nonzero
matrix elements between the states with no error and the
states with the error. However, if we undo the evolution
of each random circuit and average over an ensemble of
circuits such cross-terms are averaged out and we expect

U†χUU =
I

D
. (3)

Here and below we use the horizontal bar on the top to
denote averaging over the ensemble of random circuits.
Because of this property it is possible to establish the
connection between the quantity εm and the depolariza-
tion fidelity after m cycles.
From Eqs. (2) and (3) we get

U†ρUU = εm |ψ0〉 〈ψ0|+ (1− εm)
I

D
. (4)

This is a depolarizing channel. From this and the expo-
nential decay of fidelity we get

εm = pmc , (5)

connecting εm to the depolarization fidelity pc per cycle.
The noise model (2) is very general in the context of

random circuits. To provide some insight about the ori-
gin of this model we consider a specific case with pure
systematic error in the two-qubit gate. In this case the
resulting pure state after the application of the random
circuit Ũ with the error can be expanded into the direc-
tion of the ideal state vector and the orthogonal direction

Ũ |ψ0〉 = ξm |ψU 〉+
√
1− |ξm|2 |ϕŨ 〉 , (6)

where

〈ψU |ϕŨ 〉 = 0, 〈ϕŨ |ϕŨ 〉 = 1 . (7)

For the ensemble of random circuits U the error vector
is distributed completely randomly in the plane orthogo-
nal to the ideal vector U |ψ0〉 (see Fig. S5). This condition
of orthogonality is the only constraint on the vector |ϕŨ 〉
that involves |ψU 〉. Therefore we expect

U † |ϕŨ 〉 〈ϕŨ |U =
1

D − 1
(I − |ψ0〉 〈ψ0|) . (8)

Also

U†
(
ξm

√
1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c

)
U = 0 . (9)

This gives the connection between the error vector |ϕŨ 〉
and the operator χU

(1− εm)χU − 1− εm
D

|ψU 〉 〈ψU | = (1−|ξm|2) |ϕŨ 〉 〈ϕŨ |

+
(
ξm

√
1− |ξm|2 |ψU 〉 〈ϕŨ |+ h.c

)
. (10)
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FIG. S5. Cartoon: decomposition of the quantum
state into the vector aligned with the ideal quantum
state and its orthogonal complement

The resulting equation

|ξm|2 = εm +
1− εm

D
(11)

is to be expected, because |ξm|2 is the average state fi-
delity while εm is the depolarization fidelity (see Sec. V).
Note that Eqs. (8)–(11) lead to Eq. (4). This result can
also be derived assuming that single qubit gates form a
2-design in the Hilbert space of each qubit.
We demonstrate the above findings by numerically sim-

ulating the random circuits for 2 qubits that contains
single qubit gates randomly sampled from Haar measure
and ISWAP-like gate

V (θ) =




1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 1


 . (12)

The systematic error ∆θ = θ − π/2 corresponds to the
deviation of the swap angle from π/2. Then assuming
that the single qubit gates are error free the depolarizing
channel model gives the prediction for the depolarizing
fidelity per cycle

pc =
|tr(V (θ)V †(π/2))|2 − 1

D2 − 1

=
1

15
(8 cos(∆θ) + 2 cos(2∆θ) + 5) . (13)

As shown in Fig. S6 the depolarizing fidelity pmc for the
circuit of depth m based on Eq. (13) closely matches the
corresponding quantity obtained by the averaging of the
squared overlap over the ensemble of random circuits (cf.
(11)

εm =
D |ξm|2 − 1

D − 1
. (14)
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FIG. S6. Plots of the circuit depolarizing fidelity vs the
circuit depth. Solid lines corresponds to the predictions
from the depolarizing channel model (13) and points corre-
spond to εm (14) obtained by the averaging of the squared
overlap over the ensemble of random circuits. Different col-
ored pots correspond to different values of the swap error
∆θ = 0.01(red), 0.02(blue), 0.03 (green), 0.04 (pink), 0.05
(black).

Returning to the generic case, property (3) can be ex-
tended so that for any smooth function f(u) the following
relation holds

∑
q∈{0,1}n

f(ps(q)) 〈q|χU |q〉 =
∑

q∈{0,1}n

f(ps(q))

D
+ ε ,

(15)

where |q〉 is a computational basis state corresponding
to bitstring q, and ps(q) = 〈q|Uρ0U

† |q〉 is the simulated
(computed) ideal probability of q. If the average is per-
formed over a sample of random circuits of size S then
the correction is ε ∈ O(1/

√
S). We tested numerically for

the case of n = 2 that relation (15) holds even for purely
systematic errors in the case of a sufficiently random set
of single qubit gates.
We now make the critical step of estimating the param-

eter pmc from a set of experimental realizations of random
circuits with m cycles. We map each measured bitstring
q with a function f(ps(q)) and then average this function
over the measured bitstrings. The standard XEB [5, 26]
uses the natural logarithm, f(ps(q)) = log(ps(q)). In the
main text we use the linear version of XEB, for which
f(ps(q)) = Dps(q)− 1. Both these functions give higher
values to bitstrings with higher simulated probabilities.
Another closely related choice is the Heavy Output Gen-
eration test [29], for which f is a step-function.
Under the model (2), in an experiment with ideal state

preparation and measurement, we obtain the bitstring q
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with probability

pmc ps(q) + (1− pmc ) 〈q|χU |q〉 , (16)

For the linear XEB, the average value of Dps(q)−1 when
sampling with probabilities given by Eq. (16) is

〈Dps(q)− 1〉 = pmc

(
D

∑
q

ps(q)2 − 1

)
. (17)

Similarly to Eq. (15), the horizontal bar denotes averag-
ing over the random circuits.

The sum on the right hand side of (17) goes over all bit-
strings in the computational basis, and can be obtained
with numerical simulations. It can also be found analyti-
cally assuming that the random circuit ensemble approxi-
mates the Haar measure where for a given q the quantity
ps(q) is distributed with the beta distribution function
(D − 1)(1 − ps)

D−2. In this case the right hand side in
(17) equals pmc (2D/(D + 1)− 1).

The experimental average on the left hand side of (17)
can be estimated with accuracy 1/

√
SNs using S random

circuit realizations with Ns samples each

1

SNs

S∑
j=1

Ns∑
i=1

(
Dpjs(qi,j)− 1

)

= 〈Dps(q)− 1〉+ O

(
1√
SNs

)
. (18)

This gives an estimate of pmc .
This estimate can be justified using Bayes rule. The

log-likelihood for a set of experimental measurements
{qi,j} assuming that the experimental probabilities are
given by Eq. (16) is proportional to

S∑
j=1

Ns∑
i=1

log
(
1 + pmc (Dpjs(qi,j)− 1)

)
, (19)

where pjs(q) is a simulated probability corresponding to
the j-th circuit realization. We want to maximize the
log-likelihood as a function of pmc . Taking the derivative
with respect to pmc and equating to 0 we obtain

S∑
j=1

Ns∑
i=1

Dpjs(qi,j)− 1

1 + pmc (Dpjs(qi,j)− 1)
= 0 , (20)

For pmc � 1 it is easy to solve this equation and obtain
the estimate

pmc �
∑S

j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)
∑S

j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)2 � 〈Dps(q)− 1〉
D

∑
q ps(q)2 − 1

.

(21)

In the spirit of the XEB method, we can use other
functions f(ps(q)) to estimate pmc . One alternative is

derived from the log-likelihood of a sample {qi,j} with
respect to the simulated (computed) ideal probabilities

logΠS
j=1Π

Ns
i=1p

j
s(qi,j) =

S∑
j=1

Ns∑
i=1

log pjs(qi,j) , (22)

which converges to the cross entropy between experimen-
tal probabilities and simulated probabilities. The experi-
mental average of the function f(ps(q)) = log ps(q) under
the probabilities from Eq. (16) with additional averaging
over random circuits is

〈log ps(q)〉 � pmc

(∑
q

(ps(q)− 1/D) log ps(q)

)

+
1

D

∑
q

log ps(q) . (23)

As before, the sums on the right hand side can be ob-
tained with numerical simulations and the average value
on the left hand side can be estimated experimentally.
This also gives an estimate of pmc .
Both Eq. (17) and Eq. (23) give a linear equation, from

which we can obtain an estimate of the total polarization
pmc for an experimental implementation of one quantum
circuit with m cycles. We normally use mutiple circuits
with the same number of cycles m to estimate pmc , which
we can do using the least squares method. Finally, we ob-
tain an estimate of pc from a fit of the estimates pmc as an
exponential decay in m. This is standard in randomized
benchmarking [30, 31]. One advantage of this method
is that it allows us to estimate the cycle polarization pc
independently of the state preparation and measurement
errors (SPAM). See also below.

B. XEB of a large number of qubits

We now consider the case of a large number of qubits
n � 1. We are typically interested in estimating the
fidelity F of each of a set of circuits with a given number
of qubits and depth. As above, we write the output of
an approximate implementation of the random quantum
circuit U as

ρU = F |ψU 〉 〈ψU |+ (1− F )χU , (24)

where |ψU 〉 is the ideal output and F = 〈ψU | ρU |ψU 〉 is
the fidelity. We do not necessarily assume χU = I/D,
and we will ignore the small difference, of order 2−n,
n � 1, between the fidelity F and the depolarization
fidelity p.

As for the case of small number of qubits n, we map
each output bitstring q with a function f(ps(q)). Given
that the values 〈q|χU |q〉 resulting from errors are typ-
ically uncorrelated with the chaotic “speckles” of ps(q),
we make our main assumption

∑
q

〈q|χU |q〉 f(ps(q)) =
1

D

∑
q

f(ps(q)) + ε . (25)

Quantum supremacy A3.9
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FIG. S5. Cartoon: decomposition of the quantum
state into the vector aligned with the ideal quantum
state and its orthogonal complement

The resulting equation

|ξm|2 = εm +
1− εm

D
(11)

is to be expected, because |ξm|2 is the average state fi-
delity while εm is the depolarization fidelity (see Sec. V).
Note that Eqs. (8)–(11) lead to Eq. (4). This result can
also be derived assuming that single qubit gates form a
2-design in the Hilbert space of each qubit.
We demonstrate the above findings by numerically sim-

ulating the random circuits for 2 qubits that contains
single qubit gates randomly sampled from Haar measure
and ISWAP-like gate

V (θ) =




1 0 0 0
0 cos θ −i sin θ 0
0 −i sin θ cos θ 0
0 0 0 1


 . (12)

The systematic error ∆θ = θ − π/2 corresponds to the
deviation of the swap angle from π/2. Then assuming
that the single qubit gates are error free the depolarizing
channel model gives the prediction for the depolarizing
fidelity per cycle

pc =
|tr(V (θ)V †(π/2))|2 − 1

D2 − 1

=
1

15
(8 cos(∆θ) + 2 cos(2∆θ) + 5) . (13)

As shown in Fig. S6 the depolarizing fidelity pmc for the
circuit of depth m based on Eq. (13) closely matches the
corresponding quantity obtained by the averaging of the
squared overlap over the ensemble of random circuits (cf.
(11)

εm =
D |ξm|2 − 1

D − 1
. (14)
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FIG. S6. Plots of the circuit depolarizing fidelity vs the
circuit depth. Solid lines corresponds to the predictions
from the depolarizing channel model (13) and points corre-
spond to εm (14) obtained by the averaging of the squared
overlap over the ensemble of random circuits. Different col-
ored pots correspond to different values of the swap error
∆θ = 0.01(red), 0.02(blue), 0.03 (green), 0.04 (pink), 0.05
(black).

Returning to the generic case, property (3) can be ex-
tended so that for any smooth function f(u) the following
relation holds

∑
q∈{0,1}n

f(ps(q)) 〈q|χU |q〉 =
∑

q∈{0,1}n

f(ps(q))

D
+ ε ,

(15)

where |q〉 is a computational basis state corresponding
to bitstring q, and ps(q) = 〈q|Uρ0U

† |q〉 is the simulated
(computed) ideal probability of q. If the average is per-
formed over a sample of random circuits of size S then
the correction is ε ∈ O(1/

√
S). We tested numerically for

the case of n = 2 that relation (15) holds even for purely
systematic errors in the case of a sufficiently random set
of single qubit gates.
We now make the critical step of estimating the param-

eter pmc from a set of experimental realizations of random
circuits with m cycles. We map each measured bitstring
q with a function f(ps(q)) and then average this function
over the measured bitstrings. The standard XEB [5, 26]
uses the natural logarithm, f(ps(q)) = log(ps(q)). In the
main text we use the linear version of XEB, for which
f(ps(q)) = Dps(q)− 1. Both these functions give higher
values to bitstrings with higher simulated probabilities.
Another closely related choice is the Heavy Output Gen-
eration test [29], for which f is a step-function.
Under the model (2), in an experiment with ideal state

preparation and measurement, we obtain the bitstring q
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with probability

pmc ps(q) + (1− pmc ) 〈q|χU |q〉 , (16)

For the linear XEB, the average value of Dps(q)−1 when
sampling with probabilities given by Eq. (16) is

〈Dps(q)− 1〉 = pmc

(
D

∑
q

ps(q)2 − 1

)
. (17)

Similarly to Eq. (15), the horizontal bar denotes averag-
ing over the random circuits.

The sum on the right hand side of (17) goes over all bit-
strings in the computational basis, and can be obtained
with numerical simulations. It can also be found analyti-
cally assuming that the random circuit ensemble approxi-
mates the Haar measure where for a given q the quantity
ps(q) is distributed with the beta distribution function
(D − 1)(1 − ps)

D−2. In this case the right hand side in
(17) equals pmc (2D/(D + 1)− 1).

The experimental average on the left hand side of (17)
can be estimated with accuracy 1/

√
SNs using S random

circuit realizations with Ns samples each

1

SNs

S∑
j=1

Ns∑
i=1

(
Dpjs(qi,j)− 1

)

= 〈Dps(q)− 1〉+ O

(
1√
SNs

)
. (18)

This gives an estimate of pmc .
This estimate can be justified using Bayes rule. The

log-likelihood for a set of experimental measurements
{qi,j} assuming that the experimental probabilities are
given by Eq. (16) is proportional to

S∑
j=1

Ns∑
i=1

log
(
1 + pmc (Dpjs(qi,j)− 1)

)
, (19)

where pjs(q) is a simulated probability corresponding to
the j-th circuit realization. We want to maximize the
log-likelihood as a function of pmc . Taking the derivative
with respect to pmc and equating to 0 we obtain

S∑
j=1

Ns∑
i=1

Dpjs(qi,j)− 1

1 + pmc (Dpjs(qi,j)− 1)
= 0 , (20)

For pmc � 1 it is easy to solve this equation and obtain
the estimate

pmc �
∑S

j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)
∑S

j=1

∑Ns

i=1

(
Dpjs(qi,j)− 1

)2 � 〈Dps(q)− 1〉
D

∑
q ps(q)2 − 1

.

(21)

In the spirit of the XEB method, we can use other
functions f(ps(q)) to estimate pmc . One alternative is

derived from the log-likelihood of a sample {qi,j} with
respect to the simulated (computed) ideal probabilities

logΠS
j=1Π

Ns
i=1p

j
s(qi,j) =

S∑
j=1

Ns∑
i=1

log pjs(qi,j) , (22)

which converges to the cross entropy between experimen-
tal probabilities and simulated probabilities. The experi-
mental average of the function f(ps(q)) = log ps(q) under
the probabilities from Eq. (16) with additional averaging
over random circuits is

〈log ps(q)〉 � pmc

(∑
q

(ps(q)− 1/D) log ps(q)

)

+
1

D

∑
q

log ps(q) . (23)

As before, the sums on the right hand side can be ob-
tained with numerical simulations and the average value
on the left hand side can be estimated experimentally.
This also gives an estimate of pmc .
Both Eq. (17) and Eq. (23) give a linear equation, from

which we can obtain an estimate of the total polarization
pmc for an experimental implementation of one quantum
circuit with m cycles. We normally use mutiple circuits
with the same number of cycles m to estimate pmc , which
we can do using the least squares method. Finally, we ob-
tain an estimate of pc from a fit of the estimates pmc as an
exponential decay in m. This is standard in randomized
benchmarking [30, 31]. One advantage of this method
is that it allows us to estimate the cycle polarization pc
independently of the state preparation and measurement
errors (SPAM). See also below.

B. XEB of a large number of qubits

We now consider the case of a large number of qubits
n � 1. We are typically interested in estimating the
fidelity F of each of a set of circuits with a given number
of qubits and depth. As above, we write the output of
an approximate implementation of the random quantum
circuit U as

ρU = F |ψU 〉 〈ψU |+ (1− F )χU , (24)

where |ψU 〉 is the ideal output and F = 〈ψU | ρU |ψU 〉 is
the fidelity. We do not necessarily assume χU = I/D,
and we will ignore the small difference, of order 2−n,
n � 1, between the fidelity F and the depolarization
fidelity p.

As for the case of small number of qubits n, we map
each output bitstring q with a function f(ps(q)). Given
that the values 〈q|χU |q〉 resulting from errors are typ-
ically uncorrelated with the chaotic “speckles” of ps(q),
we make our main assumption

∑
q

〈q|χU |q〉 f(ps(q)) =
1

D

∑
q

f(ps(q)) + ε . (25)

Quantum supremacy A3.9
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FIG. S7. Absolute value of the XEB fidelity between a ran-
dom quantum circuit and the same circuit with a single Pauli
error. Markers show the median over all possible positions in
the circuit for both bit-flip and phase-flip errors. Error bars
correspond to the first and third quartile. The dashed lines
are the 1/

√
D theory prediction.

This equation is trivial if we assume a depolarizing model,
χU = I/D. More generally, it can be understood in the
geometric context of concentration of measure [32–35] for
high dimensional spaces, and from Levy’s lemma [36] we

expect a typical statistical fluctuation ε ∈ O(1/
√

D) with
D = 2n. We will only require ε � F . We check Eq. (25)
numerically for the output ρe = |ψe〉 〈ψe| where |ψe〉 is
the wave function obtained after a single phase-flip or bit-
flip error is added somewhere in the circuit, see Fig. S7
and Ref. [26]. We have also tested this assumption nu-
merically comparing the fidelity with the XEB estimate
for a pure state

√
F |ψU 〉+

√
1− F |ψ⊥〉, see also Ref. [37]

and Section X.
From Eqs. (24) and (25) we obtain Eq. (17) for linear

XEB, f(ps(q)) = Dps(q) − 1 (FXEB in the main text).
We also obtain Eq. (23) for XEB, f(ps(q)) = log ps(q),
with pmc replaced by fidelity F . As before, the sums on
the right hand side can be obtained with numerical sim-
ulations and the average value on the left hand side can
be estimated experimentally with accuracy 1/

√
Ns using

Ns samples. This gives an estimate of F .
In practice, circuits of enough depth (as in the exper-

iments reported here) exhibit the Porter-Thomas distri-
bution for the measurement probabilities p = {ps(q)},
that is

Pr(p) = De−Dp . (26)

In this case the linear cross entropy Eq. (17) gives

F = 〈Dps(q)− 1〉 . (27)

The standard deviation of the estimate of F with
Ns samples from the central limit theorem is

FIG. S8. Comparison of fidelity estimates obtained using
linear XEB, Eq. (27) and logarithmic XEB, Eq. (28) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

√
(1 + 2F − F 2)/Ns. The cross entropy Eq. (23) gives

F = 〈logDps(q)〉+ γ , (28)

where γ is the Euler-Mascheroni constant ≈ 0.577. The
standard deviation of the estimate of F with Ns sam-
ples is

√
(π2/6− F 2)/Ns. The logarithmic XEB has a

smaller standard deviation for F > 0.32 (it is the best
estimate when F ≈ 1), while for F < 0.32 the linear XEB
has a smaller standard deviation (it is the best estimate
for F � 1, where it relates to the maximum likelihood
estimator). See Fig. S8 for comparison of the fidelity
estimates produced by the linear and logarithmic XEB.
We note in passing another example for an estima-

tor of F related to the HOG test [29] which counts the
number of measured bitstrings with probabilities ps(q)
greater than the median of the probabilities. The func-
tion f(ps(q)) in this case returns 1 for Dps(q) ≥ log(2),
and 0 in the other case. The fidelity estimator uses the
following normalization

F =
1

log(2)
〈2ns(q)− 1〉 , (29)

where ns(q) is defined to be 1 if Dps(q) ≥ log(2), and
0 otherwise. The standard deviation of this estimator

is
√
[log−2(2)− F 2]/Ns, which is always larger than for

the XEB. See Fig. S9 for comparison of the fidelity es-
timates produced by linear XEB and the HOG-based fi-
delity estimator. HOG test is also related to a definition
of quantum volume [38].

C. Two limiting cases

Here, we consider two special cases of equation (27)
and the formula (1) in the main paper. First, suppose
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FIG. S9. Comparison of fidelity estimates obtained using lin-
ear XEB, Eq. (27) and normalized HOG score, Eq. (29) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

bitstrings qi are sampled from the uniform distribution.
In this case P (qi) = 1/D for every i and FXEB = 0.
Therefore, if the qubits are in the maximally mixed state,
the estimator yields zero fidelity, as expected.
Second, suppose that bitstrings are sampled from the

theoretical output distribution of a random quantum cir-
cuit. Assume that the distribution has Porter-Thomas
shape. By equation (26), the fraction of bitstrings with
theoretical probability in [p, p + dp] is

Pr(p) dp = De−Dpdp (30)

and the total number of such bitstrings is

N(p) dp = D2e−Dp dp. (31)

Therefore, the probability that a bitstring with probabil-
ity in [p, p + dp] is sampled equals

p · N(p) dp = pD2e−Dp dp = f(p) dp (32)

where f(p) is the probability density function of the ran-
dom variable defined as the ideal probability of a sampled
bitstring, i.e. the random variable which is being aver-
aged in the formula (1) of the main paper. Thus, the
average probability of a sampled bitstring is

〈P (qi)〉 =
∫ 1

0

pf(p) dp =

∫ 1

0

p2D2e−Dp dp

=
2

D

(
1− e−D

(
D2

2
+ D + 1

))
≈ 2

D
.

(33)

Substituting into equation (1) in the main paper yields
FXEB = 1. The general case of a depolarizing error can
be obtained from the two limiting cases by convex com-
bination.

D. Measurement errors

We now consider how measurement errors affect the
estimation of fidelity. Let us assume uncorrelated clas-
sical measurement errors, so that if the “actual” mea-
surement result of a qubit is 0, we can get 1 with prob-
ability em0, and similarly with probability em1 we get 0
for actual result 1, i.e., p(1|0) = em0, p(0|0) = 1 − em0,
p(0|1) = em1, p(1|1) = 1 − em1. In this case the proba-
bility to get measurement result q = k1k2..kn for actual
result q′ = k′

1k
′
2..k

′
n is the product of the corresponding

factors. The probability of correct measurement result is
then

pm(q
′) = (1− em0)

n−|q′|(1− em1)
|q′|

≈ (1− em0)
n/2(1− em1)

n/2, (34)

where |q′| is the number of 1s (Hamming distance from
00..0) in the initial bitstring q′, and in the second expres-
sion we approximated |q′| with n/2 for large n.

Now let us make a natural assumption that if there
was one or more measurement errors, q′ → q, then the
resulting ideal probability ps(q) is uncorrelated with the
actual ideal probability ps(q

′). Using this assumption we
can write

F = FUpm (35)

where FU is the circuit fidelity and F is the complete
(effective) fidelity. The complete fidelity F is estimated
as before. The measurement fidelity pm can be obtained
independently. For instance, we can prepare a bistring
q and measure immediately to obtain the probability of
a correct measurement result for q. We obtain pm by
repeating this for a set of random bitstrings. We can
therefore obtain FU from Eq. (35). As explained above,
fitting the depolarization fidelity per cycle pc for different
circuit depths m is also a method to separate measure-
ment errors.
The state preparation errors can be treated similarly,

assuming that a single error leads to uncorrelated result-
ing distribution ps(q), so that the measurement fidelity
pm in Eq. (35) is combined with a similar factor describ-
ing the state preparation fidelity.

V. QUANTIFYING ERRORS

An important test for this experiment is predicting
XEB fidelity FXEB based on simpler measurements of
single- and two-qubit errors. Here we review how this is
calculated, illustrating important principles with the ex-
ample of a single qubit. The general theory is described
at the end of this section.
First, we assume Pauli errors describe decoherence us-

ing a depolarizing model. This model is used, for ex-
ample, to compute thresholds and logical error rates for
error correction. The parameter describing decoherence

Quantum supremacy A3.11
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FIG. S7. Absolute value of the XEB fidelity between a ran-
dom quantum circuit and the same circuit with a single Pauli
error. Markers show the median over all possible positions in
the circuit for both bit-flip and phase-flip errors. Error bars
correspond to the first and third quartile. The dashed lines
are the 1/

√
D theory prediction.

This equation is trivial if we assume a depolarizing model,
χU = I/D. More generally, it can be understood in the
geometric context of concentration of measure [32–35] for
high dimensional spaces, and from Levy’s lemma [36] we

expect a typical statistical fluctuation ε ∈ O(1/
√

D) with
D = 2n. We will only require ε � F . We check Eq. (25)
numerically for the output ρe = |ψe〉 〈ψe| where |ψe〉 is
the wave function obtained after a single phase-flip or bit-
flip error is added somewhere in the circuit, see Fig. S7
and Ref. [26]. We have also tested this assumption nu-
merically comparing the fidelity with the XEB estimate
for a pure state

√
F |ψU 〉+

√
1− F |ψ⊥〉, see also Ref. [37]

and Section X.
From Eqs. (24) and (25) we obtain Eq. (17) for linear

XEB, f(ps(q)) = Dps(q) − 1 (FXEB in the main text).
We also obtain Eq. (23) for XEB, f(ps(q)) = log ps(q),
with pmc replaced by fidelity F . As before, the sums on
the right hand side can be obtained with numerical sim-
ulations and the average value on the left hand side can
be estimated experimentally with accuracy 1/

√
Ns using

Ns samples. This gives an estimate of F .
In practice, circuits of enough depth (as in the exper-

iments reported here) exhibit the Porter-Thomas distri-
bution for the measurement probabilities p = {ps(q)},
that is

Pr(p) = De−Dp . (26)

In this case the linear cross entropy Eq. (17) gives

F = 〈Dps(q)− 1〉 . (27)

The standard deviation of the estimate of F with
Ns samples from the central limit theorem is

FIG. S8. Comparison of fidelity estimates obtained using
linear XEB, Eq. (27) and logarithmic XEB, Eq. (28) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

√
(1 + 2F − F 2)/Ns. The cross entropy Eq. (23) gives

F = 〈logDps(q)〉+ γ , (28)

where γ is the Euler-Mascheroni constant ≈ 0.577. The
standard deviation of the estimate of F with Ns sam-
ples is

√
(π2/6− F 2)/Ns. The logarithmic XEB has a

smaller standard deviation for F > 0.32 (it is the best
estimate when F ≈ 1), while for F < 0.32 the linear XEB
has a smaller standard deviation (it is the best estimate
for F � 1, where it relates to the maximum likelihood
estimator). See Fig. S8 for comparison of the fidelity
estimates produced by the linear and logarithmic XEB.
We note in passing another example for an estima-

tor of F related to the HOG test [29] which counts the
number of measured bitstrings with probabilities ps(q)
greater than the median of the probabilities. The func-
tion f(ps(q)) in this case returns 1 for Dps(q) ≥ log(2),
and 0 in the other case. The fidelity estimator uses the
following normalization

F =
1

log(2)
〈2ns(q)− 1〉 , (29)

where ns(q) is defined to be 1 if Dps(q) ≥ log(2), and
0 otherwise. The standard deviation of this estimator

is
√
[log−2(2)− F 2]/Ns, which is always larger than for

the XEB. See Fig. S9 for comparison of the fidelity es-
timates produced by linear XEB and the HOG-based fi-
delity estimator. HOG test is also related to a definition
of quantum volume [38].

C. Two limiting cases

Here, we consider two special cases of equation (27)
and the formula (1) in the main paper. First, suppose
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FIG. S9. Comparison of fidelity estimates obtained using lin-
ear XEB, Eq. (27) and normalized HOG score, Eq. (29) from
bitstrings observed in our quantum supremacy experiment.
Standard deviation smaller than markers.

bitstrings qi are sampled from the uniform distribution.
In this case P (qi) = 1/D for every i and FXEB = 0.
Therefore, if the qubits are in the maximally mixed state,
the estimator yields zero fidelity, as expected.
Second, suppose that bitstrings are sampled from the

theoretical output distribution of a random quantum cir-
cuit. Assume that the distribution has Porter-Thomas
shape. By equation (26), the fraction of bitstrings with
theoretical probability in [p, p + dp] is

Pr(p) dp = De−Dpdp (30)

and the total number of such bitstrings is

N(p) dp = D2e−Dp dp. (31)

Therefore, the probability that a bitstring with probabil-
ity in [p, p + dp] is sampled equals

p · N(p) dp = pD2e−Dp dp = f(p) dp (32)

where f(p) is the probability density function of the ran-
dom variable defined as the ideal probability of a sampled
bitstring, i.e. the random variable which is being aver-
aged in the formula (1) of the main paper. Thus, the
average probability of a sampled bitstring is

〈P (qi)〉 =
∫ 1

0

pf(p) dp =

∫ 1

0

p2D2e−Dp dp

=
2

D

(
1− e−D

(
D2

2
+ D + 1

))
≈ 2

D
.

(33)

Substituting into equation (1) in the main paper yields
FXEB = 1. The general case of a depolarizing error can
be obtained from the two limiting cases by convex com-
bination.

D. Measurement errors

We now consider how measurement errors affect the
estimation of fidelity. Let us assume uncorrelated clas-
sical measurement errors, so that if the “actual” mea-
surement result of a qubit is 0, we can get 1 with prob-
ability em0, and similarly with probability em1 we get 0
for actual result 1, i.e., p(1|0) = em0, p(0|0) = 1 − em0,
p(0|1) = em1, p(1|1) = 1 − em1. In this case the proba-
bility to get measurement result q = k1k2..kn for actual
result q′ = k′

1k
′
2..k

′
n is the product of the corresponding

factors. The probability of correct measurement result is
then

pm(q
′) = (1− em0)

n−|q′|(1− em1)
|q′|

≈ (1− em0)
n/2(1− em1)

n/2, (34)

where |q′| is the number of 1s (Hamming distance from
00..0) in the initial bitstring q′, and in the second expres-
sion we approximated |q′| with n/2 for large n.

Now let us make a natural assumption that if there
was one or more measurement errors, q′ → q, then the
resulting ideal probability ps(q) is uncorrelated with the
actual ideal probability ps(q

′). Using this assumption we
can write

F = FUpm (35)

where FU is the circuit fidelity and F is the complete
(effective) fidelity. The complete fidelity F is estimated
as before. The measurement fidelity pm can be obtained
independently. For instance, we can prepare a bistring
q and measure immediately to obtain the probability of
a correct measurement result for q. We obtain pm by
repeating this for a set of random bitstrings. We can
therefore obtain FU from Eq. (35). As explained above,
fitting the depolarization fidelity per cycle pc for different
circuit depths m is also a method to separate measure-
ment errors.
The state preparation errors can be treated similarly,

assuming that a single error leads to uncorrelated result-
ing distribution ps(q), so that the measurement fidelity
pm in Eq. (35) is combined with a similar factor describ-
ing the state preparation fidelity.

V. QUANTIFYING ERRORS

An important test for this experiment is predicting
XEB fidelity FXEB based on simpler measurements of
single- and two-qubit errors. Here we review how this is
calculated, illustrating important principles with the ex-
ample of a single qubit. The general theory is described
at the end of this section.
First, we assume Pauli errors describe decoherence us-

ing a depolarizing model. This model is used, for ex-
ample, to compute thresholds and logical error rates for
error correction. The parameter describing decoherence
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in a single qubit is the Pauli error eP , giving a probabil-
ity eP /3 for applying an erroneous X, Y, or Z gate to the
qubit after the gate, corresponding to a bit and/or phase
flip.

Second, the depolarization model is assumed to de-
scribe the system state using simple classical probability.
The probability of no error for many qubits and many op-
erations, corresponding to no change to the system state,
is then found by simply multiplying the probability of no
error for each qubit gate. This is a good assumption for
RB and XEB since a bit- or phase-flip error effectively
decorrelates the state. The depolarization model assumes
that when there is an error with probability ed, the sys-
tem state randomly splits to all qubits states, which has
Hilbert space dimension D = 2n. This is described by
a change in density matrix ρ → (1 − ed)ρ + ed × 11/D.
Note the depolarization term has a small possibility of
the state resetting back to its original state. For a single
qubit where D = 2, this can be described using a Pauli-
error type model as a probability ed/4 applying a I, X, Y,
or Z gate. Comparing to the Pauli model, the error prob-
ability thus needs to be rescaled by ed = eP /(1− 1/D2).
This gives a net polarization p of the qubit state due to
many Pauli errors as

p =
∏
i

[
1− eP (i)/

(
1− 1/D2

)]
. (36)

Third, the effect of this depolarization has to be ac-
counted for considering the measured signal. The mea-
sured signal for randomized benchmarking is given by
RB = p(1 − 1/D) + 1/D, which can be understood
in a physical argument that a complete randomization
of the state has a 1/D chance to give the correct final
state. A cross-entropy benchmarking measurement gives
FXEB = p. A measurement of p, which can have offsets
and prefactors in these formulas, also includes other scal-
ing factors coming from state preparation and measure-
ment errors. All of these scaling issues are circumvented
by applying gates in a repeated number of cycles m such
that p = pmc . A measurement of the signal versus m can
then directly pull out the fractional polarization change
per cycle, pc, independent of these scale factors.
Fourth, from this polarization change we can then com-

pute the Pauli error, which is the metric that should be
reported since it is the fundamental error rate that is in-
dependent of D. Unfortunately, a fidelity 1 − eP /(1 +
1/D) for RB is commonly reported, which has a D-
dependent correction. We recommend this practice be
changed, but note that removing the 1/(1 + 1/D) factor
decreases the reported fidelity value. We also recommend
reporting Pauli error, eP instead of entanglement fidelity
(1−eP ), since it is more intuitive to understand how close
some quantity is to 0 than to 1. Table I summarizes the
different error metrics and their relations.

This general model can also account for non-
depolarizing errors such as energy decay, since quantum
states in an algorithm typically average over the entire
Bloch sphere (as in XEB), or for example when the al-

gorithm purposely inserts spin-echoes. Thus the average
effect of energy decay effectively randomizes the state in
a way compatible with Pauli errors. For a gate of length
tg with a qubit decay time T1, averaging over the Bloch
sphere (2 poles and 4 equator positions) gives (to first
order) an average error probability ea = tg/3T1. Using
Table I, this converts to a Pauli error eP = tg/2T1.

A detailed theory of the D scaling factor is as follows.
In order to arrive at a first order estimate on how error
rates accumulate on random quantum circuits, the errors
can be modeled via the set of Kraus operators. The den-
sity matrix of the system ρ after application of a gate
is connected to the density matrix ρ0 before the gate as
follows:

ρ = Λ(ρ0) =
K∑

k=0

Akρ0A
†
k,

∑
k

A†
kAk = 11. (37)

For the closed-system quantum evolution with unitary
U (no dephasing nor decay) the sum on the right hand
side contains only one term with k=0 and A0 = U . In
general, Kraus operators describe the physical effects of
many types of errors (control error, decoherence, etc.)
that can explicitly depend on the gate. Knowing the
Kraus operators allows us to calculate the total error
budget as well as its individual components.

Conventionally, circuit fidelities are reported as a met-
ric of its quality. To make a connection to physically ob-
servable quantities, the average fidelity can be expressed
in terms of Kraus operators. In the absence of leakage
errors and cross-talk the average fidelity equals

F = 1− eP
1 + 1/D

, eP = 1− 1

D2

K∑
k=0

| tr(UA†
k)|

2 (38)

where D = 2n is the dimension of the Hilbert space and
the quantity eP plays a role of a Pauli error probability
in the depolarizing channel model (see below).

For random circuits the effects of errors can be de-
scribed by a depolarizing channel model, with Kraus op-
erators of the form

Ak =

√
eP

D2 − 1
PkU, k �= 0, (39)

A0 =
√
1− eP P0U,

Pk = σk1 ⊗ σk2 . . . ⊗ σkn

where Pk are strings of Pauli operators σkj for individual
qubits for kj = 1, 2, 3 and also identity matrices σ0 in the
qubit subspace for kj = 0. This form assumes that indi-
vidual Pauli errors all happen with the same probability
eP .

To make a connection to experimental measurements
of the cross-entropy we substitute (39) into (37) and ob-
tain

Λ(ρ0) = (1− eP )Uρ0U
−1

+
eP

D − 1/D

(
11− Uρ0U

−1

D

)
. (40)
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TABLE I. A “Rosetta stone” translation between error metrics. In single- and two-qubit RB or XEB experiments, we measure
the per-gate (or per-cycle) depolarization decay constant p. The second column shows conversions from this rate to the various
error metrics. The last two columns are representative comparisons for 0.1% Pauli error.

Error metric Relation to depolarization decay constant p n=1 (D=2) n=2 (D=4)
Pauli error (ep, rP )

a (1− p)(1− 1/D2) 0.1% 0.1%
Average error (ea, r) (1− p)(1− 1/D) 0.067% 0.08%
Depolarization error (ed) 1− p 0.133% 0.107%

a 1− process fidelity, or 1− entanglement fidelity

We compare this expression with the standard form of
the depolarizing channel model

Λ(ρ0) = pUρ0U
−1 + (1− p)

11

D
, (41)

expressed in terms of the depolarization fidelity param-
eter p. Note the difference between the expressions. On
the one hand, in (41) the second term corresponds to full
depolarization in all directions. On the other hand, in
(40) the second term describes full depolarization in all
directions except for the direction corresponding to the
ideal quantum state.

From (40), (41) one can establish the connection be-
tween the Pauli error rate and depolarizing fidelity pa-
rameter p

eP = (1− p)(1− 1/D2) (42)

We note that the explicit assumption of connecting
Pauli errors to depolarization is needed for the small D
case, typically for single- and two-qubit error measure-
ments. Once we have measured the Pauli errors, then
only a simple probabilistic calculation is needed to com-
pute FXEB in the large D case.

VI. METROLOGY AND CALIBRATION

A. Calibration overview

Quantum computations are physically realized through
the time-evolution of quantum systems steered by ana-
log control signals. As quantum information is stored in
continuous amplitudes and phases, these control signals
must be carefully chosen to achieve the desired result.
Calibration is the process of performing a series of exper-
iments on the quantum system to learn optimal control
parameters.

Calibration is challenging for a number of reasons.
Analog control requires careful control-pulse shaping as
any deviation from the ideal will introduce error. Qubits
require individual calibration as variations in the control
system and qubits necessitate different control parame-
ters to hit target fidelities. Optimal control parameters
can also drift in time, requiring calibrations to be re-
visited to maintain performance. Additionally, the full

calibration procedure requires bootstrapping: using a se-
ries of control sequences with increasing complexity to
determine circuit and control parameters to increasingly
higher degrees of precision. Lastly, each qubit needs to
perform a number of independent operations which are
independently calibrated: single-qubit gates, two-qubit
gates, and readout.

Our Sycamore processor offers a high degree of pro-
grammability: we can dynamically change the frequency
of each qubit, as well as the effective qubit-qubit coupling
between nearest neighbor qubits. This tunability gives us
the freedom to enact many different control strategies, as
well as account for non-uniformities in the processor’s pa-
rameters. However, these extra degrees of freedom are a
double-edged sword. Additional control knobs always in-
troduce a source of decoherence and control errors as well
as an added burden on calibration.

Our approach is to systematize and automate our cal-
ibration procedure as much as possible, thus abstract-
ing complexity away. This automation allows us to turn
calibration into a science, where we can compare cali-
bration procedures to determine optimal strategies for
time, performance, and reliability. By employing cal-
ibration science to study full-system performance with
different control strategies, we have been able to improve
full-system fidelities by over an order of magnitude from
initial attempts while decreasing the calibration time and
improving reliability. Lastly, we design our calibration to
be done almost entirely at the single- or two-qubit level,
rather than at the system level, in order to be as scalable
as possible.

1. Device registry

The device registry is a database of control variables
and configuration information we use to control our quan-
tum processors. The registry stores information such
as operating frequencies, control biases, gate parameters
such as duration, amplitude, parameterization of circuit
models, etc. The goal of calibration is to experimen-
tally determine and populate the registry with optimal
control parameters. We typically store >100 parame-
ters per qubit to achieve high fidelity across all of the
various qubit operations. The large number of param-
eters and subtle interdependencies between them high-
lights the need for automated calibration.

Quantum supremacy A3.13



10

in a single qubit is the Pauli error eP , giving a probabil-
ity eP /3 for applying an erroneous X, Y, or Z gate to the
qubit after the gate, corresponding to a bit and/or phase
flip.

Second, the depolarization model is assumed to de-
scribe the system state using simple classical probability.
The probability of no error for many qubits and many op-
erations, corresponding to no change to the system state,
is then found by simply multiplying the probability of no
error for each qubit gate. This is a good assumption for
RB and XEB since a bit- or phase-flip error effectively
decorrelates the state. The depolarization model assumes
that when there is an error with probability ed, the sys-
tem state randomly splits to all qubits states, which has
Hilbert space dimension D = 2n. This is described by
a change in density matrix ρ → (1 − ed)ρ + ed × 11/D.
Note the depolarization term has a small possibility of
the state resetting back to its original state. For a single
qubit where D = 2, this can be described using a Pauli-
error type model as a probability ed/4 applying a I, X, Y,
or Z gate. Comparing to the Pauli model, the error prob-
ability thus needs to be rescaled by ed = eP /(1− 1/D2).
This gives a net polarization p of the qubit state due to
many Pauli errors as

p =
∏
i

[
1− eP (i)/

(
1− 1/D2

)]
. (36)

Third, the effect of this depolarization has to be ac-
counted for considering the measured signal. The mea-
sured signal for randomized benchmarking is given by
RB = p(1 − 1/D) + 1/D, which can be understood
in a physical argument that a complete randomization
of the state has a 1/D chance to give the correct final
state. A cross-entropy benchmarking measurement gives
FXEB = p. A measurement of p, which can have offsets
and prefactors in these formulas, also includes other scal-
ing factors coming from state preparation and measure-
ment errors. All of these scaling issues are circumvented
by applying gates in a repeated number of cycles m such
that p = pmc . A measurement of the signal versus m can
then directly pull out the fractional polarization change
per cycle, pc, independent of these scale factors.
Fourth, from this polarization change we can then com-

pute the Pauli error, which is the metric that should be
reported since it is the fundamental error rate that is in-
dependent of D. Unfortunately, a fidelity 1 − eP /(1 +
1/D) for RB is commonly reported, which has a D-
dependent correction. We recommend this practice be
changed, but note that removing the 1/(1 + 1/D) factor
decreases the reported fidelity value. We also recommend
reporting Pauli error, eP instead of entanglement fidelity
(1−eP ), since it is more intuitive to understand how close
some quantity is to 0 than to 1. Table I summarizes the
different error metrics and their relations.

This general model can also account for non-
depolarizing errors such as energy decay, since quantum
states in an algorithm typically average over the entire
Bloch sphere (as in XEB), or for example when the al-

gorithm purposely inserts spin-echoes. Thus the average
effect of energy decay effectively randomizes the state in
a way compatible with Pauli errors. For a gate of length
tg with a qubit decay time T1, averaging over the Bloch
sphere (2 poles and 4 equator positions) gives (to first
order) an average error probability ea = tg/3T1. Using
Table I, this converts to a Pauli error eP = tg/2T1.

A detailed theory of the D scaling factor is as follows.
In order to arrive at a first order estimate on how error
rates accumulate on random quantum circuits, the errors
can be modeled via the set of Kraus operators. The den-
sity matrix of the system ρ after application of a gate
is connected to the density matrix ρ0 before the gate as
follows:

ρ = Λ(ρ0) =
K∑

k=0

Akρ0A
†
k,

∑
k

A†
kAk = 11. (37)

For the closed-system quantum evolution with unitary
U (no dephasing nor decay) the sum on the right hand
side contains only one term with k=0 and A0 = U . In
general, Kraus operators describe the physical effects of
many types of errors (control error, decoherence, etc.)
that can explicitly depend on the gate. Knowing the
Kraus operators allows us to calculate the total error
budget as well as its individual components.

Conventionally, circuit fidelities are reported as a met-
ric of its quality. To make a connection to physically ob-
servable quantities, the average fidelity can be expressed
in terms of Kraus operators. In the absence of leakage
errors and cross-talk the average fidelity equals

F = 1− eP
1 + 1/D

, eP = 1− 1

D2

K∑
k=0

| tr(UA†
k)|

2 (38)

where D = 2n is the dimension of the Hilbert space and
the quantity eP plays a role of a Pauli error probability
in the depolarizing channel model (see below).

For random circuits the effects of errors can be de-
scribed by a depolarizing channel model, with Kraus op-
erators of the form

Ak =

√
eP

D2 − 1
PkU, k �= 0, (39)

A0 =
√
1− eP P0U,

Pk = σk1 ⊗ σk2 . . . ⊗ σkn

where Pk are strings of Pauli operators σkj for individual
qubits for kj = 1, 2, 3 and also identity matrices σ0 in the
qubit subspace for kj = 0. This form assumes that indi-
vidual Pauli errors all happen with the same probability
eP .

To make a connection to experimental measurements
of the cross-entropy we substitute (39) into (37) and ob-
tain

Λ(ρ0) = (1− eP )Uρ0U
−1

+
eP

D − 1/D

(
11− Uρ0U

−1

D

)
. (40)
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TABLE I. A “Rosetta stone” translation between error metrics. In single- and two-qubit RB or XEB experiments, we measure
the per-gate (or per-cycle) depolarization decay constant p. The second column shows conversions from this rate to the various
error metrics. The last two columns are representative comparisons for 0.1% Pauli error.

Error metric Relation to depolarization decay constant p n=1 (D=2) n=2 (D=4)
Pauli error (ep, rP )

a (1− p)(1− 1/D2) 0.1% 0.1%
Average error (ea, r) (1− p)(1− 1/D) 0.067% 0.08%
Depolarization error (ed) 1− p 0.133% 0.107%

a 1− process fidelity, or 1− entanglement fidelity

We compare this expression with the standard form of
the depolarizing channel model

Λ(ρ0) = pUρ0U
−1 + (1− p)

11

D
, (41)

expressed in terms of the depolarization fidelity param-
eter p. Note the difference between the expressions. On
the one hand, in (41) the second term corresponds to full
depolarization in all directions. On the other hand, in
(40) the second term describes full depolarization in all
directions except for the direction corresponding to the
ideal quantum state.

From (40), (41) one can establish the connection be-
tween the Pauli error rate and depolarizing fidelity pa-
rameter p

eP = (1− p)(1− 1/D2) (42)

We note that the explicit assumption of connecting
Pauli errors to depolarization is needed for the small D
case, typically for single- and two-qubit error measure-
ments. Once we have measured the Pauli errors, then
only a simple probabilistic calculation is needed to com-
pute FXEB in the large D case.

VI. METROLOGY AND CALIBRATION

A. Calibration overview

Quantum computations are physically realized through
the time-evolution of quantum systems steered by ana-
log control signals. As quantum information is stored in
continuous amplitudes and phases, these control signals
must be carefully chosen to achieve the desired result.
Calibration is the process of performing a series of exper-
iments on the quantum system to learn optimal control
parameters.

Calibration is challenging for a number of reasons.
Analog control requires careful control-pulse shaping as
any deviation from the ideal will introduce error. Qubits
require individual calibration as variations in the control
system and qubits necessitate different control parame-
ters to hit target fidelities. Optimal control parameters
can also drift in time, requiring calibrations to be re-
visited to maintain performance. Additionally, the full

calibration procedure requires bootstrapping: using a se-
ries of control sequences with increasing complexity to
determine circuit and control parameters to increasingly
higher degrees of precision. Lastly, each qubit needs to
perform a number of independent operations which are
independently calibrated: single-qubit gates, two-qubit
gates, and readout.

Our Sycamore processor offers a high degree of pro-
grammability: we can dynamically change the frequency
of each qubit, as well as the effective qubit-qubit coupling
between nearest neighbor qubits. This tunability gives us
the freedom to enact many different control strategies, as
well as account for non-uniformities in the processor’s pa-
rameters. However, these extra degrees of freedom are a
double-edged sword. Additional control knobs always in-
troduce a source of decoherence and control errors as well
as an added burden on calibration.

Our approach is to systematize and automate our cal-
ibration procedure as much as possible, thus abstract-
ing complexity away. This automation allows us to turn
calibration into a science, where we can compare cali-
bration procedures to determine optimal strategies for
time, performance, and reliability. By employing cal-
ibration science to study full-system performance with
different control strategies, we have been able to improve
full-system fidelities by over an order of magnitude from
initial attempts while decreasing the calibration time and
improving reliability. Lastly, we design our calibration to
be done almost entirely at the single- or two-qubit level,
rather than at the system level, in order to be as scalable
as possible.

1. Device registry

The device registry is a database of control variables
and configuration information we use to control our quan-
tum processors. The registry stores information such
as operating frequencies, control biases, gate parameters
such as duration, amplitude, parameterization of circuit
models, etc. The goal of calibration is to experimen-
tally determine and populate the registry with optimal
control parameters. We typically store >100 parame-
ters per qubit to achieve high fidelity across all of the
various qubit operations. The large number of param-
eters and subtle interdependencies between them high-
lights the need for automated calibration.
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FIG. S10. Optimus calibration graph for Sycamore.
Calibration of physical qubits is a bootstrapping procedure
between different pulse sequences or “experiments” to extract
control and system parameters. Initial experiments are coarse
and have interplay between fundamental operations and ele-
ments such as single-qubit gates, readout, and the coupler. Fi-
nal experiments involve precise metrology for each of the qubit
operations: single-qubit gates, two-qubit gates, and readout.

2. Scheduling calibrations: “Optimus”

We seek a strategy for identifying and maintaining op-
timal control parameters for a system of physical qubits
given incomplete system information. To perform these
tasks, we use the “Optimus” formulation as in Ref [39],
where each calibration is a node in a directed acyclic
graph that updates one or more registry parameters,
and the bootstrapping nature of calibration sequences
is represented as directed edges between nodes. Now,
calibrating a system of physical qubits becomes a well-
defined graph traversal problem. The calibration graph
used for the Sycamore device can be see in Figure S10.
This strategy is particularly useful for maintaining cal-
ibrations in the presence of drift, where we want to do
the minimal amount of work to bring the system back
in spec, and when extending the calibration procedure,
as interdependencies are explicit. Typical timescales for
bringup of a new Sycamore processor are approximately
36 hours upon first cooldown, and 4 hours per day there-
after for maintaining calibrations. These times are spe-
cific to current available technology, and can be signifi-
cantly improved.

B. Calibration procedure

1. Device configuration

Throughout the calibration procedure, the device reg-
istry may be configured in different states in order to cal-
ibrate certain parameters. We call these different states
“device configurations”, and different kinds of configu-

Root Single qubits Grid

a b cActive Inactive

FIG. S11. Configurations of the device over the course
of calibration. (a) In the root configuration, we start with
no knowledge of the system and measure basic device param-
eters. (b) We create a single qubit configuration for each
qubit, where all qubits except the qubit of interest are biased
to near zero frequency. (c) Using knowledge learned in the
single qubit configurations, we build a grid of qubits.

rations reflect our knowledge of the system at different
points in the full calibration procedure. As illustrated in
Figure S11, the primary difference between the different
configurations is the set of “active” qubits, where ac-
tive qubits are biased to an operating frequency between
5-7GHz, and “inactive” qubits are biased near zero fre-
quency. Following the outline above, we have three device
configurations of interest:

a. Root config. The root configuration is the start-
ing state of the system immediately after cool down and
basic system verification. In this configuration, we cal-
ibrate coarse frequency vs bias curves for each readout
resonator, qubit, and coupler.

b. Single qubit config. After completing root cali-
brations, we now know how to bias each qubit to its
minimum and maximum frequencies. We create one con-
figuration of the device registry for each qubit, where the
qubit of interest is biased in a useful region (5-7 GHz)
and the remaining qubits are biased to their minimum
frequencies in order to isolate the qubit of interest. In
each of these configurations, we fine tune the bias vs fre-
quency curves for the qubit and its associated couplers
and resonators, and also measure T1 as a function of fre-
quency, necessary due to background TLS defects and
modes.

c. Grid config. After completing calibrations in
each isolated qubit configuration, we feed the informa-
tion we learned into a frequency optimization procedure.
The optimizer places the biases for each qubit and cou-
pler in a user defined grid of any desired size up to the
entire chip. We then proceed to calibrate high fidelity
single qubit gates, two qubit gates, and readout.

2. Root config: procedure

We begin calibration with simple frequency-domain ex-
periments to understand how each qubit and coupler re-
sponds to its flux bias line.
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• Calibrate each parametric amplifier (flux bias,
pump frequency, pump power).

• For each qubit, identify its readout resonator and
measure the readout signal versus qubit bias (“Res-
onator Spectroscopy”) [40]. Estimate the resonator
and qubit frequency as a function of qubit bias.

• For each coupler, place one of its qubits near max-
imum frequency and the other near minimum fre-
quency, then measure the readout signal of the first
qubit as a function of coupler bias. The readout sig-
nal changes significantly as the coupler frequency
passes near the qubit frequency. Identify where
the coupler is near its maximum frequency, so the
qubit-qubit coupling is small (a few MHz) and rel-
atively insensitive to coupler bias.

3. Single-qubit config: procedure

After setting the biases to isolate a single qubit, we
follow the procedure outlined in [41] which we will sum-
marize here:

• Perform fixed microwave drive qubit spectroscopy
while sweeping the qubit bias and detecting shifts
in the resonator response, to find the bias that
places the qubit at the desired resonant frequency.

• Using the avoided level crossing identified in the
root config, determine the operating bias to bring
the qubit on resonance with its readout resonator
to perform active ground state preparation. We use
a 10 µs pulse consistent with the readout resonator
ringdown time.

• Perform power Rabi oscillations to find the drive
power that gives a π pulse to populate the |1〉 state.

• Optimize the readout frequency and power to max-
imize readout fidelity.

• Fine tune parameters (qubit resonant frequency,
drive power, drive detuning [42]) for π and π/2
pulses.

• Calibrate the timing between the qubit microwave
drive, qubit bias, and coupler bias.

• Perform qubit spectroscopy as a function of qubit
bias to fine tune the qubit bias vs frequency curves.

• Measure T1 vs. frequency by preparing the qubit in
|1〉 then biasing the qubit to a variable frequency
for a variable amount of time, and measuring the
final population [43].

• Measure the response of a qubit to a detuning pulse
to calibrate the frequency-control transfer function
[5, 41, 44].

With the single-qubits calibrated in isolation, we have
a wealth of information on circuits parameters and coher-
ence information for each qubit. We use this information
as input to a frequency placement algorithm to identify
optimal operating frequencies for when the full processor
is in operation.

4. Optimizing qubit operating frequencies

In our quantum processor architecture, we can inde-
pendently tune each qubit’s operating frequency. Since
qubit performance varies strongly with frequency, select-
ing good operating frequencies is necessary to achieve
high fidelity gates. In arbitrary quantum algorithms,
each qubit operates at three distinct types of frequen-
cies: idle, interaction, and readout frequencies. Qubits
idle and execute single-qubit gates at their respective idle
frequencies. Qubit pairs execute two-qubit gates near
their respective interaction frequencies. Finally, qubits
are measured at their respective readout frequencies. In
selecting operating frequencies, it is necessary to mitigate
and make nontrivial tradeoffs between energy-relaxation,
dephasing, leakage, and control imperfections. We solve
and automate the frequency selection problem by ab-
stracting it into an optimization problem.

We construct a quantum-algorithm-dependent and
gate-dependent optimization objective that maps oper-
ating frequencies onto a metric correlated with system
error. The error mechanisms embedded within the ob-
jective function are parasitic coupling between nearest-
neighbor and next-nearest-neighbor qubits, spectrally-
diffusing two-level-system (TLS) defects [43], spurious
microwave modes, coupling to control lines and the
readout resonator, frequency-control electronics noise,
frequency-control pulse distortions, microwave-control
pulse distortions, and microwave-carrier bleedthrough.
Additional considerations in selecting readout frequen-
cies are covered in Section VID. The objective is con-
structed from experimental data and numerics, and
the individual error mechanisms are weighted by coef-
ficients determined either heuristically or through statis-
tical learning.

Minimizing the objective function is a complex com-
binatorial optimization problem. We characterize the
complexity of the problem by the optimization dimen-
sion and search space. For a processor with N qubits
on a square lattice with nearest-neighbor coupling, there
are N idle, N readout, and ∼ 2N interaction frequen-
cies to optimize. In an arbitrary quantum algorithm, all
frequencies are potentially intertwined due to coupling
between qubits. Therefore, the optimization dimension
is ∼ 4N . The optimization search-space is constrained
by qubits’ circuit parameters and control-hardware spec-
ifications. Discretizing each qubit’s operational range to
100 frequencies results in an optimization search space of
∼ 1004N . This is much larger than the dimension of the
Hilbert space of an N qubit processor, which is 2N .
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FIG. S10. Optimus calibration graph for Sycamore.
Calibration of physical qubits is a bootstrapping procedure
between different pulse sequences or “experiments” to extract
control and system parameters. Initial experiments are coarse
and have interplay between fundamental operations and ele-
ments such as single-qubit gates, readout, and the coupler. Fi-
nal experiments involve precise metrology for each of the qubit
operations: single-qubit gates, two-qubit gates, and readout.

2. Scheduling calibrations: “Optimus”

We seek a strategy for identifying and maintaining op-
timal control parameters for a system of physical qubits
given incomplete system information. To perform these
tasks, we use the “Optimus” formulation as in Ref [39],
where each calibration is a node in a directed acyclic
graph that updates one or more registry parameters,
and the bootstrapping nature of calibration sequences
is represented as directed edges between nodes. Now,
calibrating a system of physical qubits becomes a well-
defined graph traversal problem. The calibration graph
used for the Sycamore device can be see in Figure S10.
This strategy is particularly useful for maintaining cal-
ibrations in the presence of drift, where we want to do
the minimal amount of work to bring the system back
in spec, and when extending the calibration procedure,
as interdependencies are explicit. Typical timescales for
bringup of a new Sycamore processor are approximately
36 hours upon first cooldown, and 4 hours per day there-
after for maintaining calibrations. These times are spe-
cific to current available technology, and can be signifi-
cantly improved.

B. Calibration procedure

1. Device configuration

Throughout the calibration procedure, the device reg-
istry may be configured in different states in order to cal-
ibrate certain parameters. We call these different states
“device configurations”, and different kinds of configu-

Root Single qubits Grid

a b cActive Inactive

FIG. S11. Configurations of the device over the course
of calibration. (a) In the root configuration, we start with
no knowledge of the system and measure basic device param-
eters. (b) We create a single qubit configuration for each
qubit, where all qubits except the qubit of interest are biased
to near zero frequency. (c) Using knowledge learned in the
single qubit configurations, we build a grid of qubits.

rations reflect our knowledge of the system at different
points in the full calibration procedure. As illustrated in
Figure S11, the primary difference between the different
configurations is the set of “active” qubits, where ac-
tive qubits are biased to an operating frequency between
5-7GHz, and “inactive” qubits are biased near zero fre-
quency. Following the outline above, we have three device
configurations of interest:

a. Root config. The root configuration is the start-
ing state of the system immediately after cool down and
basic system verification. In this configuration, we cal-
ibrate coarse frequency vs bias curves for each readout
resonator, qubit, and coupler.

b. Single qubit config. After completing root cali-
brations, we now know how to bias each qubit to its
minimum and maximum frequencies. We create one con-
figuration of the device registry for each qubit, where the
qubit of interest is biased in a useful region (5-7 GHz)
and the remaining qubits are biased to their minimum
frequencies in order to isolate the qubit of interest. In
each of these configurations, we fine tune the bias vs fre-
quency curves for the qubit and its associated couplers
and resonators, and also measure T1 as a function of fre-
quency, necessary due to background TLS defects and
modes.

c. Grid config. After completing calibrations in
each isolated qubit configuration, we feed the informa-
tion we learned into a frequency optimization procedure.
The optimizer places the biases for each qubit and cou-
pler in a user defined grid of any desired size up to the
entire chip. We then proceed to calibrate high fidelity
single qubit gates, two qubit gates, and readout.

2. Root config: procedure

We begin calibration with simple frequency-domain ex-
periments to understand how each qubit and coupler re-
sponds to its flux bias line.
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• Calibrate each parametric amplifier (flux bias,
pump frequency, pump power).

• For each qubit, identify its readout resonator and
measure the readout signal versus qubit bias (“Res-
onator Spectroscopy”) [40]. Estimate the resonator
and qubit frequency as a function of qubit bias.

• For each coupler, place one of its qubits near max-
imum frequency and the other near minimum fre-
quency, then measure the readout signal of the first
qubit as a function of coupler bias. The readout sig-
nal changes significantly as the coupler frequency
passes near the qubit frequency. Identify where
the coupler is near its maximum frequency, so the
qubit-qubit coupling is small (a few MHz) and rel-
atively insensitive to coupler bias.

3. Single-qubit config: procedure

After setting the biases to isolate a single qubit, we
follow the procedure outlined in [41] which we will sum-
marize here:

• Perform fixed microwave drive qubit spectroscopy
while sweeping the qubit bias and detecting shifts
in the resonator response, to find the bias that
places the qubit at the desired resonant frequency.

• Using the avoided level crossing identified in the
root config, determine the operating bias to bring
the qubit on resonance with its readout resonator
to perform active ground state preparation. We use
a 10 µs pulse consistent with the readout resonator
ringdown time.

• Perform power Rabi oscillations to find the drive
power that gives a π pulse to populate the |1〉 state.

• Optimize the readout frequency and power to max-
imize readout fidelity.

• Fine tune parameters (qubit resonant frequency,
drive power, drive detuning [42]) for π and π/2
pulses.

• Calibrate the timing between the qubit microwave
drive, qubit bias, and coupler bias.

• Perform qubit spectroscopy as a function of qubit
bias to fine tune the qubit bias vs frequency curves.

• Measure T1 vs. frequency by preparing the qubit in
|1〉 then biasing the qubit to a variable frequency
for a variable amount of time, and measuring the
final population [43].

• Measure the response of a qubit to a detuning pulse
to calibrate the frequency-control transfer function
[5, 41, 44].

With the single-qubits calibrated in isolation, we have
a wealth of information on circuits parameters and coher-
ence information for each qubit. We use this information
as input to a frequency placement algorithm to identify
optimal operating frequencies for when the full processor
is in operation.

4. Optimizing qubit operating frequencies

In our quantum processor architecture, we can inde-
pendently tune each qubit’s operating frequency. Since
qubit performance varies strongly with frequency, select-
ing good operating frequencies is necessary to achieve
high fidelity gates. In arbitrary quantum algorithms,
each qubit operates at three distinct types of frequen-
cies: idle, interaction, and readout frequencies. Qubits
idle and execute single-qubit gates at their respective idle
frequencies. Qubit pairs execute two-qubit gates near
their respective interaction frequencies. Finally, qubits
are measured at their respective readout frequencies. In
selecting operating frequencies, it is necessary to mitigate
and make nontrivial tradeoffs between energy-relaxation,
dephasing, leakage, and control imperfections. We solve
and automate the frequency selection problem by ab-
stracting it into an optimization problem.

We construct a quantum-algorithm-dependent and
gate-dependent optimization objective that maps oper-
ating frequencies onto a metric correlated with system
error. The error mechanisms embedded within the ob-
jective function are parasitic coupling between nearest-
neighbor and next-nearest-neighbor qubits, spectrally-
diffusing two-level-system (TLS) defects [43], spurious
microwave modes, coupling to control lines and the
readout resonator, frequency-control electronics noise,
frequency-control pulse distortions, microwave-control
pulse distortions, and microwave-carrier bleedthrough.
Additional considerations in selecting readout frequen-
cies are covered in Section VID. The objective is con-
structed from experimental data and numerics, and
the individual error mechanisms are weighted by coef-
ficients determined either heuristically or through statis-
tical learning.

Minimizing the objective function is a complex com-
binatorial optimization problem. We characterize the
complexity of the problem by the optimization dimen-
sion and search space. For a processor with N qubits
on a square lattice with nearest-neighbor coupling, there
are N idle, N readout, and ∼ 2N interaction frequen-
cies to optimize. In an arbitrary quantum algorithm, all
frequencies are potentially intertwined due to coupling
between qubits. Therefore, the optimization dimension
is ∼ 4N . The optimization search-space is constrained
by qubits’ circuit parameters and control-hardware spec-
ifications. Discretizing each qubit’s operational range to
100 frequencies results in an optimization search space of
∼ 1004N . This is much larger than the dimension of the
Hilbert space of an N qubit processor, which is 2N .
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FIG. S12. Idle frequency solutions found by our Snake optimizer with different error mechanisms enabled.
The optimizer makes increasingly complex tradeoffs as more error mechanisms are enabled. These tradeoffs manifest as a
transition from a structured frequency configuration into an unstructured one. Similar tradeoffs are simultaneously made in
optimizing interaction and readout frequencies. Optimized idle and interaction operating frequencies are shown in Figure S13
and optimized readout frequencies are shown in Figure S20. Color scales are chosen to maximize contrast. Grey indicates that
there is no preference for any frequency.

Given the problem complexity, it is assumed that find-
ing globally optimal operating frequencies is intractable.
However, we have empirically verified that locally op-
timal solutions are sufficient for state-of-the-art system
performance. To find local optima, we developed the
“Snake” homebrew optimizer that combines quantum al-
gorithm structure with physics intuition to exponentially
reduce optimization complexity and take intelligent op-
timization steps. For the circuits used here, the opti-
mizer exploits the time-interleaved structure of single-
qubit gates, two-qubit gates, and readout. For our 53
qubit processor, it returns local optima in ∼ 10 seconds
on a desktop. Because of its favorable scaling in runtime
versus number of qubits, we believe the Snake optimizer
is a viable long-term solution to the frequency selection
problem.

To illustrate how the Snake optimizer makes trade-
offs between error mechanisms, we plot idle frequency
solutions with different error mechanisms enabled (Fig-
ure S12). Starting with an ideal processor with no
error mechanisms enabled, there is no preference for
any frequency configuration. Enabling frequency-control
electronics noise, the optimizer pushes qubits towards
their respective maximum frequencies, to minimize flux-
noise susceptibility. Note that each qubit has a dif-
ferent maximum frequency due to fabrication variabil-
ity. Enabling frequency-control pulse distortions forces
a gradual transition between qubit frequencies to min-
imize two-qubit-gate frequency-sweep amplitudes. En-
abling nearest-neighbor (NN) and next-nearest neighbor
(NNN) parasitic coupling further lowers the degeneracy
between qubit frequencies into a structure that resem-
bles a multi-tiered checkerboard. Finally, enabling er-
rors from TLS defects, spurious microwave modes, and
all other known error mechanisms removes any obvious
structure. A set of optimized idle and interaction fre-
quencies is shown in Figure S13, and readout frequencies
are shown in Figure S20.

5. Grid config: procedure

Calibrating a grid of qubits follows the same procedure
as calibrating an isolated qubit with additional calibra-
tions to turn off the qubit-qubit coupling.

• Achieve basic state discrimination for each qubit at
its desired frequency.

• For each coupler, minimize the qubit-qubit cou-
pling (note changing coupler biases affects qubit
frequencies). For each case below, we choose the
coupler bias minimizing the interaction.

– For qubit pairs idling within 60 MHz of each
other, use a resonant swapping experiment.
We excite one qubit and apply flux pulses to
nominally put the qubits on resonance and let
the qubits interact over time [8].

– For qubit pair idling further apart, use a con-
ditional phase experiment. We perform two
Ramsey experiments on one qubit, where the
other qubit is in the ground state and the ex-
cited state, to identify the state-dependent fre-
quency shift of the first qubit.

• Adjust the qubit biases to restore the desired qubit
frequencies and proceed with qubit calibration as
in the single-qubit configurations.

• Calibrate the entangling gate.

– Estimate the qubit pulse amplitudes to reach
the desired interaction frequency with their
frequency versus bias calibration.

– Fine-tune the qubit pulse amplitudes to reach
resonance, compensating for pulse under-
shoot.

– Tune the coupler pulse amplitude to achieve a
complete photon exchange.
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FIG. S13. Optimized idle and interaction frequencies
found by our Snake optimizer. a, Idle frequencies, b,
interaction frequencies. Readout frequencies are shown in
Figure S20. These solutions are sufficient for state-of-the-art
system performance. See Figure S12 to understand some of
the tradeoffs that are made during optimization. Color scales
are chosen to maximize contrast.

In the next two sections, we describe in more detail
the fine tuning required to achieve high fidelity two qubit
gates and multiqubit readout.

C. Two-qubit gate metrology

High-fidelity two-qubit gates are very hard to achieve.
In an effort to make this easier, we design qubits with
tunable frequencies and tunable interactions. This
added control allows for immense flexibility when imple-
menting gates. In the following subsections, we discuss
a simple high-fidelity control and metrology strategy for
two-qubit gates in our system.

1. The natural two-qubit gate for transmon qubits

Consider two transmon qubits at different frequencies
(say 6.0 and 6.1 GHz). Here are two potential ways
of generating a multi-qubit gate in this system. If the
qubits are tuned into resonance, then excitations swap
back-and-forth and this interaction can be modeled as
a partial-iSWAP gate [45]. If the qubits are detuned
by an amount close to their nonlinearity, then the 11-
state undergoes an evolution that can be modeled as a
controlled-phase gate (assuming the population does not
leak) [46, 47]. In fact, any two-qubit control sequence
that does not leak can be modeled as a partial-iSWAP
followed by a controlled-phase gate.
A typical control sequence is shown Fig. S14a. Gate

times of 12 ns are chosen to trade off decoherence (too
slow) and leakage to higher states of the qubit (too fast).
Figure S14b depicts how this operation can be decom-
posed as a quantum circuit. This circuit contains Z-
rotations that result from the frequency excursions of the
qubits, and can be expressed by the unitary:




1 0 0 0
0 ei(∆++∆−) cos θ −iei(∆+−∆−,off ) sin θ 0
0 −iei(∆++∆−,off ) sin θ ei(∆+−∆−) cos θ 0
0 0 0 ei(2∆+−φ)


 .

(43)
These gates have an efficient mapping to interacting
fermions and have been coined ‘fSim’ gates, short for
fermionic simulation [48]. The long-term goal is to im-
plement the entire space of gates (shown in Fig. S14c).
For quantum supremacy, the two-qubit gate of choice is

the iSWAP gate. For example, CZ is less computationally
expensive to simulate on a classical computer by a factor
of two [37, 49]. A dominant error-mechanism when try-
ing to implement an iSWAP is a small conditional-phase
that is generated by an interaction of the |11〉-state with
higher states of the transmons (|02〉 and |20〉). For this
reason, the fSim gate with swap-angle θ � 90◦ and con-
ditional phase φ � 30◦ has become the gate of choice in
our supremacy experiment. Note that small deviations
from these angles are also viable quantum supremacy
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FIG. S12. Idle frequency solutions found by our Snake optimizer with different error mechanisms enabled.
The optimizer makes increasingly complex tradeoffs as more error mechanisms are enabled. These tradeoffs manifest as a
transition from a structured frequency configuration into an unstructured one. Similar tradeoffs are simultaneously made in
optimizing interaction and readout frequencies. Optimized idle and interaction operating frequencies are shown in Figure S13
and optimized readout frequencies are shown in Figure S20. Color scales are chosen to maximize contrast. Grey indicates that
there is no preference for any frequency.

Given the problem complexity, it is assumed that find-
ing globally optimal operating frequencies is intractable.
However, we have empirically verified that locally op-
timal solutions are sufficient for state-of-the-art system
performance. To find local optima, we developed the
“Snake” homebrew optimizer that combines quantum al-
gorithm structure with physics intuition to exponentially
reduce optimization complexity and take intelligent op-
timization steps. For the circuits used here, the opti-
mizer exploits the time-interleaved structure of single-
qubit gates, two-qubit gates, and readout. For our 53
qubit processor, it returns local optima in ∼ 10 seconds
on a desktop. Because of its favorable scaling in runtime
versus number of qubits, we believe the Snake optimizer
is a viable long-term solution to the frequency selection
problem.

To illustrate how the Snake optimizer makes trade-
offs between error mechanisms, we plot idle frequency
solutions with different error mechanisms enabled (Fig-
ure S12). Starting with an ideal processor with no
error mechanisms enabled, there is no preference for
any frequency configuration. Enabling frequency-control
electronics noise, the optimizer pushes qubits towards
their respective maximum frequencies, to minimize flux-
noise susceptibility. Note that each qubit has a dif-
ferent maximum frequency due to fabrication variabil-
ity. Enabling frequency-control pulse distortions forces
a gradual transition between qubit frequencies to min-
imize two-qubit-gate frequency-sweep amplitudes. En-
abling nearest-neighbor (NN) and next-nearest neighbor
(NNN) parasitic coupling further lowers the degeneracy
between qubit frequencies into a structure that resem-
bles a multi-tiered checkerboard. Finally, enabling er-
rors from TLS defects, spurious microwave modes, and
all other known error mechanisms removes any obvious
structure. A set of optimized idle and interaction fre-
quencies is shown in Figure S13, and readout frequencies
are shown in Figure S20.

5. Grid config: procedure

Calibrating a grid of qubits follows the same procedure
as calibrating an isolated qubit with additional calibra-
tions to turn off the qubit-qubit coupling.

• Achieve basic state discrimination for each qubit at
its desired frequency.

• For each coupler, minimize the qubit-qubit cou-
pling (note changing coupler biases affects qubit
frequencies). For each case below, we choose the
coupler bias minimizing the interaction.

– For qubit pairs idling within 60 MHz of each
other, use a resonant swapping experiment.
We excite one qubit and apply flux pulses to
nominally put the qubits on resonance and let
the qubits interact over time [8].

– For qubit pair idling further apart, use a con-
ditional phase experiment. We perform two
Ramsey experiments on one qubit, where the
other qubit is in the ground state and the ex-
cited state, to identify the state-dependent fre-
quency shift of the first qubit.

• Adjust the qubit biases to restore the desired qubit
frequencies and proceed with qubit calibration as
in the single-qubit configurations.

• Calibrate the entangling gate.

– Estimate the qubit pulse amplitudes to reach
the desired interaction frequency with their
frequency versus bias calibration.

– Fine-tune the qubit pulse amplitudes to reach
resonance, compensating for pulse under-
shoot.

– Tune the coupler pulse amplitude to achieve a
complete photon exchange.
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FIG. S13. Optimized idle and interaction frequencies
found by our Snake optimizer. a, Idle frequencies, b,
interaction frequencies. Readout frequencies are shown in
Figure S20. These solutions are sufficient for state-of-the-art
system performance. See Figure S12 to understand some of
the tradeoffs that are made during optimization. Color scales
are chosen to maximize contrast.

In the next two sections, we describe in more detail
the fine tuning required to achieve high fidelity two qubit
gates and multiqubit readout.

C. Two-qubit gate metrology

High-fidelity two-qubit gates are very hard to achieve.
In an effort to make this easier, we design qubits with
tunable frequencies and tunable interactions. This
added control allows for immense flexibility when imple-
menting gates. In the following subsections, we discuss
a simple high-fidelity control and metrology strategy for
two-qubit gates in our system.

1. The natural two-qubit gate for transmon qubits

Consider two transmon qubits at different frequencies
(say 6.0 and 6.1 GHz). Here are two potential ways
of generating a multi-qubit gate in this system. If the
qubits are tuned into resonance, then excitations swap
back-and-forth and this interaction can be modeled as
a partial-iSWAP gate [45]. If the qubits are detuned
by an amount close to their nonlinearity, then the 11-
state undergoes an evolution that can be modeled as a
controlled-phase gate (assuming the population does not
leak) [46, 47]. In fact, any two-qubit control sequence
that does not leak can be modeled as a partial-iSWAP
followed by a controlled-phase gate.
A typical control sequence is shown Fig. S14a. Gate

times of 12 ns are chosen to trade off decoherence (too
slow) and leakage to higher states of the qubit (too fast).
Figure S14b depicts how this operation can be decom-
posed as a quantum circuit. This circuit contains Z-
rotations that result from the frequency excursions of the
qubits, and can be expressed by the unitary:




1 0 0 0
0 ei(∆++∆−) cos θ −iei(∆+−∆−,off ) sin θ 0
0 −iei(∆++∆−,off ) sin θ ei(∆+−∆−) cos θ 0
0 0 0 ei(2∆+−φ)


 .

(43)
These gates have an efficient mapping to interacting
fermions and have been coined ‘fSim’ gates, short for
fermionic simulation [48]. The long-term goal is to im-
plement the entire space of gates (shown in Fig. S14c).
For quantum supremacy, the two-qubit gate of choice is

the iSWAP gate. For example, CZ is less computationally
expensive to simulate on a classical computer by a factor
of two [37, 49]. A dominant error-mechanism when try-
ing to implement an iSWAP is a small conditional-phase
that is generated by an interaction of the |11〉-state with
higher states of the transmons (|02〉 and |20〉). For this
reason, the fSim gate with swap-angle θ � 90◦ and con-
ditional phase φ � 30◦ has become the gate of choice in
our supremacy experiment. Note that small deviations
from these angles are also viable quantum supremacy
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FIG. S14. Two-qubit gate strategy. a, Control waveforms
for two qubits and a coupler. Each curve represents the con-
trol flux applied to the qubit’s and coupler’s SQUID loops as
a function of time. b, Generic circuit representation for an ar-
bitrary two-qubit gate using flux pulses. This family of gates
have been named “fSim” gates, short for fermionic-simulation
gates. Our definition of the fSim gate uses θ with the sign op-
posite to the common convention for the iSWAP gate. c, Con-
trol landscape for fSim gates as a function of the swap angle
and conditional phase, up to single qubit rotations. The co-
ordinates of common entangling gates are marked along with
the Sycamore gate fSim(θ = 90◦, φ = 30◦).

gates. These gates result from the natural evolution of
two qubits making them easy to calibrate, high intrinsic
fidelity gates for quantum supremacy.

2. Using cross entropy to learn a unitary model

We have recently introduced cross-entropy as a fidelity
metric for quantum supremacy experiments. Cross-
entropy benchmarking (XEB) was introduced as an ana-
log to randomized benchmarking (RB) that can be used
with any number of qubits and is independent of state-
preparation and measurement errors [5, 26].

A distinct advantage of XEB is that the resulting data
can be analyzed to find an optimal representation of a

unitary; this process is outlined in Fig. S15. The gate
sequence for a two-qubit XEB experiment is shown in
Fig. S15a. The sequence alternates between single-qubit
gates on both qubits and a two-qubit gate between them.
At the end of the sequence, both qubits are measured and
the probabilities of bitstrings (00, 01, 10, 11) are esti-
mated. This procedure is repeated for ∼10-20 instances
of randomly selected single-qubit gates. The measured
probabilities can then be compared to the ideal probabil-
ities using the expression for fidelity Eq. (3) in Ref. [5].

The data from a two-qubit XEB experiment is shown
in Fig. S15b (green dots). By performing additional
sequences with tomography rotations prior to measure-
ment, we can infer the decay of purity with increasing
circuit depth (blue dots). For two qubits, the decay of fi-
delity tells us the total error of our gates while the purity
decay tells us the contribution from decoherence —the
difference is control error. Based on the data in green
and blue, it appears that the total error is about half
control and half decoherence.

So far, we have established a generic unitary model
(Fig. S14b), a training dataset (Fig. S15a), and a cost-
function (Fig. S15b). These three ingredients form the
foundation for using optimization techniques to improve
fidelity. Using a simple Nelder-Mead optimization proto-
col, we can maximize the XEB fidelity by varying the pa-
rameters of the unitary model. The fidelity decay curve
for the optimal unitary model are shown in Fig. S15b (or-
ange dots). The optimized results are nearly coherence
limited.

The optimal control-model parameters for all pairs are
shown as integrated histograms in Fig. S16a,b. Panel
(a) shows the histograms for partial-iSWAP angles (∼90
degrees) and conditional phases (∼30 degrees). Panel (b)
shows histograms for the various flavors of Z-rotations.
While conceptually there are four possible Z-rotations
(see Fig. S14b), only three of these rotations are needed
to uniquely define the operation. These three rotations
can be thought of as the detuning of the qubits before
the iSWAP, the detuning after the iSWAP, and an overall
frequency shift of both qubits which commutes with the
iSWAP.

3. Comparison with randomized benchmarking

In Fig. S17 we show that two-qubit gate fidelity ex-
tracted using XEB agrees well with the fidelity as mea-
sured with RB, an important sanity check in validating
XEB as a gate metrology tool. In two-qubit XEB, we ex-
tract the error per cycle which consists of a single-qubit
gate on each qubit and a two-qubit gate between them.
In Fig. S17a we show the individual RB decay curves for
single-qubit gates. In panel b, we show the RB decay
curve for benchmarking a CZ gate. Adding up the three
errors from RB, we would expect an XEB cycle error
of 0.57%. In panel c, we show the measured XEB de-
cay curve which indicates a cycle error of 0.59% —nearly
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FIG. S15. Using XEB to learn a unitary model. a, Pro-
cess flow diagram for using XEB to learn a unitary model. Af-
ter running basic calibrations, we have an approximate model
for our two-qubit gate. Using this gate, we construct a ran-
dom circuit that is fed into both the quantum computer and
a classical computer. The results of both outputs can be com-
pared using cross-entropy. Optimizing over the parameters in
the two qubit model provide a high-fidelity representation of
the two-qubit unitary. b, Data from a two-qubit XEB experi-
ment. The two-qubit purity (blue) was measured tomograph-
ically and provides the coherence-limit of the operations. The
decay of the XEB fidelity is shown in green and orange. In
orange, the parameters of a generic unitary model were op-
timized to determine a higher-fidelity representation of the
unitary. All errors are quoted as Pauli errors.
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FIG. S16. Parameters of the control model. A generic
model for two-qubit gates using flux-control has five free pa-
rameters. Using XEB we can measure these parameters with
high fidelity. a, Integrated histogram (cumulative distribu-
tion) of the control parameters that determine the interac-
tion between the qubits. b, An integrated histogram of the
remaining three parameters that represent different flavors
of single-qubit Z-rotations. While the first two parameters
(panel a) define the entangling gate, the final three parame-
ters (panel b) are simply measured and then kept track of dur-
ing an algorithm. Intuitively, these three angles correspond
to a detuning before the swap, a detuning after the swap,
and an overall frequency shift which commutes through the
swap; these correspond to ∆−+∆−,off , ∆−−∆−,off , and 2∆+

respectively in Eq. (43). Note that θ and φ angles are 360 de-
grees periodic and Z-rotation angles are 720 degree periodic.

identical to the value predicted by RB.

For single-qubit gate benchmarking on the Sycamore
device used in this work (see Table II), we find that π
pulse fidelities are somewhat worse than π/2 pulse fideli-
ties, which we attribute to reflections from the imper-
fect microwave environment. Because the XEB gateset
we have used consists only of π/2 pulses, we find that
the single-qubit gate errors extracted from conventional
RB, which contains π pulses, are somewhat higher than
those extracted from single-qubit XEB. Using only π/2
pulses instead of π pulses in single-qubit RB brings the
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FIG. S14. Two-qubit gate strategy. a, Control waveforms
for two qubits and a coupler. Each curve represents the con-
trol flux applied to the qubit’s and coupler’s SQUID loops as
a function of time. b, Generic circuit representation for an ar-
bitrary two-qubit gate using flux pulses. This family of gates
have been named “fSim” gates, short for fermionic-simulation
gates. Our definition of the fSim gate uses θ with the sign op-
posite to the common convention for the iSWAP gate. c, Con-
trol landscape for fSim gates as a function of the swap angle
and conditional phase, up to single qubit rotations. The co-
ordinates of common entangling gates are marked along with
the Sycamore gate fSim(θ = 90◦, φ = 30◦).

gates. These gates result from the natural evolution of
two qubits making them easy to calibrate, high intrinsic
fidelity gates for quantum supremacy.

2. Using cross entropy to learn a unitary model

We have recently introduced cross-entropy as a fidelity
metric for quantum supremacy experiments. Cross-
entropy benchmarking (XEB) was introduced as an ana-
log to randomized benchmarking (RB) that can be used
with any number of qubits and is independent of state-
preparation and measurement errors [5, 26].

A distinct advantage of XEB is that the resulting data
can be analyzed to find an optimal representation of a

unitary; this process is outlined in Fig. S15. The gate
sequence for a two-qubit XEB experiment is shown in
Fig. S15a. The sequence alternates between single-qubit
gates on both qubits and a two-qubit gate between them.
At the end of the sequence, both qubits are measured and
the probabilities of bitstrings (00, 01, 10, 11) are esti-
mated. This procedure is repeated for ∼10-20 instances
of randomly selected single-qubit gates. The measured
probabilities can then be compared to the ideal probabil-
ities using the expression for fidelity Eq. (3) in Ref. [5].

The data from a two-qubit XEB experiment is shown
in Fig. S15b (green dots). By performing additional
sequences with tomography rotations prior to measure-
ment, we can infer the decay of purity with increasing
circuit depth (blue dots). For two qubits, the decay of fi-
delity tells us the total error of our gates while the purity
decay tells us the contribution from decoherence —the
difference is control error. Based on the data in green
and blue, it appears that the total error is about half
control and half decoherence.

So far, we have established a generic unitary model
(Fig. S14b), a training dataset (Fig. S15a), and a cost-
function (Fig. S15b). These three ingredients form the
foundation for using optimization techniques to improve
fidelity. Using a simple Nelder-Mead optimization proto-
col, we can maximize the XEB fidelity by varying the pa-
rameters of the unitary model. The fidelity decay curve
for the optimal unitary model are shown in Fig. S15b (or-
ange dots). The optimized results are nearly coherence
limited.

The optimal control-model parameters for all pairs are
shown as integrated histograms in Fig. S16a,b. Panel
(a) shows the histograms for partial-iSWAP angles (∼90
degrees) and conditional phases (∼30 degrees). Panel (b)
shows histograms for the various flavors of Z-rotations.
While conceptually there are four possible Z-rotations
(see Fig. S14b), only three of these rotations are needed
to uniquely define the operation. These three rotations
can be thought of as the detuning of the qubits before
the iSWAP, the detuning after the iSWAP, and an overall
frequency shift of both qubits which commutes with the
iSWAP.

3. Comparison with randomized benchmarking

In Fig. S17 we show that two-qubit gate fidelity ex-
tracted using XEB agrees well with the fidelity as mea-
sured with RB, an important sanity check in validating
XEB as a gate metrology tool. In two-qubit XEB, we ex-
tract the error per cycle which consists of a single-qubit
gate on each qubit and a two-qubit gate between them.
In Fig. S17a we show the individual RB decay curves for
single-qubit gates. In panel b, we show the RB decay
curve for benchmarking a CZ gate. Adding up the three
errors from RB, we would expect an XEB cycle error
of 0.57%. In panel c, we show the measured XEB de-
cay curve which indicates a cycle error of 0.59% —nearly
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FIG. S15. Using XEB to learn a unitary model. a, Pro-
cess flow diagram for using XEB to learn a unitary model. Af-
ter running basic calibrations, we have an approximate model
for our two-qubit gate. Using this gate, we construct a ran-
dom circuit that is fed into both the quantum computer and
a classical computer. The results of both outputs can be com-
pared using cross-entropy. Optimizing over the parameters in
the two qubit model provide a high-fidelity representation of
the two-qubit unitary. b, Data from a two-qubit XEB experi-
ment. The two-qubit purity (blue) was measured tomograph-
ically and provides the coherence-limit of the operations. The
decay of the XEB fidelity is shown in green and orange. In
orange, the parameters of a generic unitary model were op-
timized to determine a higher-fidelity representation of the
unitary. All errors are quoted as Pauli errors.
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FIG. S16. Parameters of the control model. A generic
model for two-qubit gates using flux-control has five free pa-
rameters. Using XEB we can measure these parameters with
high fidelity. a, Integrated histogram (cumulative distribu-
tion) of the control parameters that determine the interac-
tion between the qubits. b, An integrated histogram of the
remaining three parameters that represent different flavors
of single-qubit Z-rotations. While the first two parameters
(panel a) define the entangling gate, the final three parame-
ters (panel b) are simply measured and then kept track of dur-
ing an algorithm. Intuitively, these three angles correspond
to a detuning before the swap, a detuning after the swap,
and an overall frequency shift which commutes through the
swap; these correspond to ∆−+∆−,off , ∆−−∆−,off , and 2∆+

respectively in Eq. (43). Note that θ and φ angles are 360 de-
grees periodic and Z-rotation angles are 720 degree periodic.

identical to the value predicted by RB.

For single-qubit gate benchmarking on the Sycamore
device used in this work (see Table II), we find that π
pulse fidelities are somewhat worse than π/2 pulse fideli-
ties, which we attribute to reflections from the imper-
fect microwave environment. Because the XEB gateset
we have used consists only of π/2 pulses, we find that
the single-qubit gate errors extracted from conventional
RB, which contains π pulses, are somewhat higher than
those extracted from single-qubit XEB. Using only π/2
pulses instead of π pulses in single-qubit RB brings the
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FIG. S17. Sanity check: XEB agrees with RB. a, Single-
qubit randomized benchmarking (RB) data taken separately
on two qubits. b, Two-qubit randomized benchmarking data
for a CZ on the same pair of qubits. c, Two-qubit cross-
entropy benchmarking (XEB) on the same pair of qubits. The
measured XEB error (0.59% / cycle) agrees well with the
prediction from single- and two-qubit RB (0.57%). All errors
are quoted as Pauli errors.

extracted error close to that measured via XEB.

4. Speckle purity benchmarking (SPB)

It is experimentally useful to be able to extract state
purity from XEB experiments in order to error-budget
the contribution of decoherence. Conventionally, purity
estimation can be done with state tomography, where the
full density matrix ρ is reconstructed and used to quan-
tify the state purity. This involves expanding a single se-
quence into a collection of sequences each appended with
single-qubit gates. Unfortunately, full tomographic re-
construction scales exponentially in the number of qubits,
both for the number of sequences needed as well as the
number of measurements needed per sequence. Here, we
introduce an exponentially more efficient method to ex-
tract the state purity without additional sequences.
We use a re-scaled purity definition such that a fully-

decohered state has a purity of 0, and a pure state has a
purity of 1. We define

Purity =
D

D − 1

(
Tr(ρ2)− 1

D

)
, (44)

which is consistent with what is defined in Ref. [50]. This
can be understood as the squared length of the general-
ized Bloch vector in D dimensions (for a qubit, D = 2,
this definition gives 〈X〉2 + 〈Y 〉2 + 〈Z〉2).
“Speckle” Purity Benchmarking (SPB) is the method

of measuring the state purity from raw XEB data. As-
suming the depolarizing-channel model with polarization
parameter p, we can model the quantum state as

ρ = p |ψ〉 〈ψ|+ (1− p)
11

D
. (45)

Here, p is the probability of a pure state |ψ〉 (which in
this case is not necessarily known to us), while 1 − p is
the probability of being in the fully-decohered state (11
is the identity operator). For the state (45), from the
definition (44) it is easy to find the relation

Purity = p2. (46)

We will now work out how to obtain p2 from a distri-
bution of measured probabilities Pm of various bitstrings
for a sequence, collected over many XEB sequences (Figs.
S18a and S18b).
First, we note that for p = 0 the probabilities of all

bitstrings are 1/D, and the distribution is the δ-function
located at 1/D (the integrated histogram is then the step-
function – see Fig. S18b). In contrast, if p = 1, then
the measured probabilities Pm follow the D-dimensional
Porter-Thomas distribution [26]

PPT(Pm) = (D − 1)(1− Pm)D−2, (47)

which has the same average 1/D and variance

VarPT(Pm) =
D − 1

D2(D + 1)
. (48)
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For the fully-decohered state all bitstrings have the
same probability 1/D, so in this case the variance of the
distribution of probabilities is zero. For the state (45)
with an arbitrary p, the histogram of probabilities Pm

will be described by the distribution (47) shrunk towards
the average 1/D by the factor p. Consequently, the vari-
ance of the experimental probabilities will be p2 times
the Porter-Thomas variance (48).
Thus, we can find p2 by dividing the variance of ex-

perimentally measured probabilities Pm by the Porter-
Thomas variance (48). Finally, using the relation (46)
for the depolarization model (45), we can relate the vari-
ance of the experimental probabilities Pm to the average
state purity

Purity = Var(Pm)
D2(D + 1)

D − 1
. (49)

With these convenient relations, we can directly com-
pare the XEB fidelity FXEB = p to

√
Purity from SPB

on the same scale, and check their dependence p = pmc
on the number of cycles m. Without systematic control
errors, the XEB and SPB results should coincide. Ex-
perimentally, we always have control errors which lead
us to incorrectly predict |ψ〉, so control errors give XEB
a higher error than SPB. Thus, with a single XEB dataset
we can extract the XEB error per-cycle, and the purity
loss per-cycle with SPB. By subtracting these, we are
left with the control error per-cycle. Thus, with a single
experiment we can error budget total error into control
error and decoherence error.
These relationships can be seen experimentally in Fig-

ure S18. Amazingly, computing the speckle purity can
be done with no knowledge of the specific gate sequence
performed; as long as the experiment introduces suffi-
cient randomization of the Hilbert Space, Porter-Thomas
statistics apply. Practically, SPB allows us to measure
the state purity from raw XEB data with exponentially
fewer number of pulse sequences as compared to full state
tomography. This favorable scaling allows one to ex-
tend purity measurements to larger numbers of qubits.
It is important to note that an exponential number of
measurements are still required to fully characterize the
probability distribution for a given sequence, as in to-
mography, so purity measurements of the full processor
are impractical.

5. “Per-layer” parallel XEB

To execute quantum circuits efficiently, it is helpful
to run as many gates as possible in parallel. We wish
to benchmark our entangling gates operating simultane-
ously. Resulting fidelities and optimized unitaries may
differ from the isolated case, where we benchmark each
pair individually, due to imperfections such as control
crosstalk and stray qubit-qubit interactions. In the quan-
tum supremacy algorithm, we partition the set of two-
qubit gates into four layers, each of which can be ex-

a
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P01

P10

P11

FIG. S18. “Speckle” purity extracted from XEB. a,
Measured probabilities from XEB for a two-qubit system and
30 random circuits. Raw probabilities show a speckle pat-
tern at low cycles (orange dashed) over circuit instance and
probabilities (|00〉, |01〉, |10〉, |11〉). The speckle contrast de-
creases with cycles and thus decoherence (green dashed). b,
Integrated histogram (cumulative distribution) of probabili-
ties. The x-axis is scaled by the dimension D = 22, so the
uniform distribution is a step function at 1.0. At low cycles,
the distribution is well-described by Porter-Thomas, and at
high cycles, the distribution approaches the uniform distribu-
tion. c, We can directly relate the variance of the distribu-
tion to the average state purity. We fit an exponential to the
square root of Purity. We compare this purity-derived num-
ber per-cycle= 0.00276 to a similar number per-cycle=0.00282
derived from tomographic measure of purity, and see good
agreement. The error of XEB, which also includes control
errors, is slightly higher at error per-cycle=0.00349.
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FIG. S17. Sanity check: XEB agrees with RB. a, Single-
qubit randomized benchmarking (RB) data taken separately
on two qubits. b, Two-qubit randomized benchmarking data
for a CZ on the same pair of qubits. c, Two-qubit cross-
entropy benchmarking (XEB) on the same pair of qubits. The
measured XEB error (0.59% / cycle) agrees well with the
prediction from single- and two-qubit RB (0.57%). All errors
are quoted as Pauli errors.

extracted error close to that measured via XEB.

4. Speckle purity benchmarking (SPB)

It is experimentally useful to be able to extract state
purity from XEB experiments in order to error-budget
the contribution of decoherence. Conventionally, purity
estimation can be done with state tomography, where the
full density matrix ρ is reconstructed and used to quan-
tify the state purity. This involves expanding a single se-
quence into a collection of sequences each appended with
single-qubit gates. Unfortunately, full tomographic re-
construction scales exponentially in the number of qubits,
both for the number of sequences needed as well as the
number of measurements needed per sequence. Here, we
introduce an exponentially more efficient method to ex-
tract the state purity without additional sequences.
We use a re-scaled purity definition such that a fully-

decohered state has a purity of 0, and a pure state has a
purity of 1. We define

Purity =
D

D − 1

(
Tr(ρ2)− 1

D

)
, (44)

which is consistent with what is defined in Ref. [50]. This
can be understood as the squared length of the general-
ized Bloch vector in D dimensions (for a qubit, D = 2,
this definition gives 〈X〉2 + 〈Y 〉2 + 〈Z〉2).
“Speckle” Purity Benchmarking (SPB) is the method

of measuring the state purity from raw XEB data. As-
suming the depolarizing-channel model with polarization
parameter p, we can model the quantum state as

ρ = p |ψ〉 〈ψ|+ (1− p)
11

D
. (45)

Here, p is the probability of a pure state |ψ〉 (which in
this case is not necessarily known to us), while 1 − p is
the probability of being in the fully-decohered state (11
is the identity operator). For the state (45), from the
definition (44) it is easy to find the relation

Purity = p2. (46)

We will now work out how to obtain p2 from a distri-
bution of measured probabilities Pm of various bitstrings
for a sequence, collected over many XEB sequences (Figs.
S18a and S18b).
First, we note that for p = 0 the probabilities of all

bitstrings are 1/D, and the distribution is the δ-function
located at 1/D (the integrated histogram is then the step-
function – see Fig. S18b). In contrast, if p = 1, then
the measured probabilities Pm follow the D-dimensional
Porter-Thomas distribution [26]

PPT(Pm) = (D − 1)(1− Pm)D−2, (47)

which has the same average 1/D and variance

VarPT(Pm) =
D − 1

D2(D + 1)
. (48)

A3.20 H. Neven and collaborators
19

For the fully-decohered state all bitstrings have the
same probability 1/D, so in this case the variance of the
distribution of probabilities is zero. For the state (45)
with an arbitrary p, the histogram of probabilities Pm

will be described by the distribution (47) shrunk towards
the average 1/D by the factor p. Consequently, the vari-
ance of the experimental probabilities will be p2 times
the Porter-Thomas variance (48).
Thus, we can find p2 by dividing the variance of ex-

perimentally measured probabilities Pm by the Porter-
Thomas variance (48). Finally, using the relation (46)
for the depolarization model (45), we can relate the vari-
ance of the experimental probabilities Pm to the average
state purity

Purity = Var(Pm)
D2(D + 1)

D − 1
. (49)

With these convenient relations, we can directly com-
pare the XEB fidelity FXEB = p to

√
Purity from SPB

on the same scale, and check their dependence p = pmc
on the number of cycles m. Without systematic control
errors, the XEB and SPB results should coincide. Ex-
perimentally, we always have control errors which lead
us to incorrectly predict |ψ〉, so control errors give XEB
a higher error than SPB. Thus, with a single XEB dataset
we can extract the XEB error per-cycle, and the purity
loss per-cycle with SPB. By subtracting these, we are
left with the control error per-cycle. Thus, with a single
experiment we can error budget total error into control
error and decoherence error.
These relationships can be seen experimentally in Fig-

ure S18. Amazingly, computing the speckle purity can
be done with no knowledge of the specific gate sequence
performed; as long as the experiment introduces suffi-
cient randomization of the Hilbert Space, Porter-Thomas
statistics apply. Practically, SPB allows us to measure
the state purity from raw XEB data with exponentially
fewer number of pulse sequences as compared to full state
tomography. This favorable scaling allows one to ex-
tend purity measurements to larger numbers of qubits.
It is important to note that an exponential number of
measurements are still required to fully characterize the
probability distribution for a given sequence, as in to-
mography, so purity measurements of the full processor
are impractical.

5. “Per-layer” parallel XEB

To execute quantum circuits efficiently, it is helpful
to run as many gates as possible in parallel. We wish
to benchmark our entangling gates operating simultane-
ously. Resulting fidelities and optimized unitaries may
differ from the isolated case, where we benchmark each
pair individually, due to imperfections such as control
crosstalk and stray qubit-qubit interactions. In the quan-
tum supremacy algorithm, we partition the set of two-
qubit gates into four layers, each of which can be ex-
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FIG. S18. “Speckle” purity extracted from XEB. a,
Measured probabilities from XEB for a two-qubit system and
30 random circuits. Raw probabilities show a speckle pat-
tern at low cycles (orange dashed) over circuit instance and
probabilities (|00〉, |01〉, |10〉, |11〉). The speckle contrast de-
creases with cycles and thus decoherence (green dashed). b,
Integrated histogram (cumulative distribution) of probabili-
ties. The x-axis is scaled by the dimension D = 22, so the
uniform distribution is a step function at 1.0. At low cycles,
the distribution is well-described by Porter-Thomas, and at
high cycles, the distribution approaches the uniform distribu-
tion. c, We can directly relate the variance of the distribu-
tion to the average state purity. We fit an exponential to the
square root of Purity. We compare this purity-derived num-
ber per-cycle= 0.00276 to a similar number per-cycle=0.00282
derived from tomographic measure of purity, and see good
agreement. The error of XEB, which also includes control
errors, is slightly higher at error per-cycle=0.00349.
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ecuted in parallel. We then cycle through these layers
interleaved with randomly chosen single-qubit gates (see
Fig. 3a). However, it is intractable to directly use full-
system XEB to benchmark our entangling gates for two
reasons: we would simultaneously optimize over the uni-
tary model parameters of every entangling gate, and the
classical simulation would be exponentially expensive in
system size.

We solve this problem with “per-layer” parallel XEB
(see Ref. [51] for a related technique in the context of
RB). Instead of alternating among the four layers of en-
tanglers, where each qubit becomes entangled with each
of its neighbors, we perform four separate experiments,
one for each layer. The experiment sequences are illus-
trated in Fig. S19a. For each layer, we construct parallel
sequences where the layer is repeated with interleaved
single-qubit gates; nominally, each qubit only interacts
with one other. Following each parallel XEB sequence,
we measure all the qubits and extract the equivalent XEB
data for each pair. Every two-qubit gate can be charac-
terized in these four experiments, regardless of system
size. The optimization and classical simulation are also
efficient, as each pair can be analyzed individually.

We present experimental results of “per-layer” paral-
lel XEB in Fig. S19b-c. In Fig. S19b, we compare the
performance in the isolated and simultaneous (parallel)
experiments. In both cases, the optimized XEB error
is close to purity-limited. Simultaneous operation mod-
estly increases the error, by roughly 0.003. This increase
is primarily from purity error, which would arise from un-
intended interactions with other qubits, where coherent
errors at the system scale manifest as incoherent errors
when we focus on individual pairs. The unitaries we ob-
tain in the simultaneous case differ slightly from the iso-
lated case, which would arise from control crosstalk and
unintended interactions. To quantify how these differ-
ences affect the gate error, we recalculate the error with
the unitaries from the isolated optimization and the data
from the simultaneous experiment, which increases the
error. We also plot the distributions of the differences in
unitary model parameters in Fig. S19c. The dominant
change is in ∆+, a single-qubit phase.

D. Grid readout calibration

1. Choosing qubit frequencies for readout

The algorithm described in Section VIB 4 generally
chooses qubit idling frequencies which are far detuned
from the resonator to optimize for dephasing. However,
these idling frequencies are not optimal for performing
readout. To address this problem, we dynamically bias
each qubit to a different frequency during the readout
phase of the experiment. The qubit frequencies during
readout are shown in Fig. S20 (compare to Fig. S13).

To choose the qubit frequencies for readout, we first
measure readout fidelity as a function of qubit frequency

and resonator drive frequency at a fixed resonator drive
power, in each of the isolated single qubit configurations.
This scan captures errors due to both non-optimal detun-
ing between the qubit and resonator, as well as regions
with low T1 values due to TLSs. We then use the data for
each qubit and a few constraints to optimize the place-
ment of the qubit frequencies during readout, using the
same optimization technique that was described in Sec-
tion VIB 4. We describe two of the important constraints
and related error reduction techniques below.

First, because the coupling between qubits relies on
a dispersive interaction with the coupler, the coupling
would no longer be off when the qubits were detuned by
a significant amount from their idling positions. Thus,
we impose a constraint that qubits should not be placed
near resonance during readout. Nevertheless, we found
that for some pairs of qubits, we had to dynamically bias
the coupler during readout to avoid any swapping tran-
sitions between the qubits during readout. This readout
coupler bias is found by sweeping the coupler bias and
maximizing the two-qubit readout fidelity.

Second, the pattern of the bare resonator frequencies
on the chip as shown in Fig. S20 led to an unexpected
problem. Pairs of readout resonators which were coupled
to neighboring qubits and were also within a few MHz in
frequency space were found to have non-negligible cou-
pling. This coupling was strong enough to mediate swap-
ping of photons from one resonator to the other. The
pairs of qubits with similar resonator frequencies were
all located in a diagonal chain bisecting the qubit grid,
as shown by the red outline in Fig. S20. To mitigate
this problem, we arrange the qubit frequencies for these
qubits so that the resonator eigenfrequencies are as far
apart as possible. The resulting spectral separation is
not quite enough to eliminate all deleterious effects, so in
addition, we use correlated discrimination on the eight of
the qubits in this chain. In other words, we use the re-
sults of all eight detector values to determine which one
of 28 = 256 states the eight qubits were in. All other
qubits in the grid are discriminated as isolated qubits.

2. Single qubit calibration

After placing the qubit frequencies for readout, we cal-
ibrate and fine tune the readout parameters for each
qubit. For each qubit, we use a 1 µs drive pulse and
a 1 µs demodulation window. We summarize the proce-
dure for choosing the remaining parameters as follows:

• Choose the resonator drive frequency to maximize
the separation between measurements performed
with the qubit in either |0〉 and |1〉 [15].

• Choose the resonator drive power to hit a target
separation between |0〉 and |1〉, so that the error
due to this separation is below a 0.3% threshold.
We do not choose the readout power to maximize
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FIG. S19. Parallel XEB. a, Schematics of four device-wide sequences, one for each entangler layer. Black points are active
qubits, colored circles are single-qubit gates, and colored lines are two-qubit gates. We cycle between single- and two-qubit
gates m times. Compare to Fig. 3a, main text, where the layers are interleaved. b, Integrated histograms of Pauli error e2c (see
Fig. 2a, main text). These include isolated results, where each entangler is measured in its own experiment, and simultaneous
(parallel) results. Purity is “speckle” purity. c, Difference, δ, in unitary model parameters (Eq. 43) between the unitaries
obtained in the isolated and simultaneous experiments. δ∆− is not plotted because it has a negligible effect on the unitary
when θ ≈ 90 degrees.

the separation as doing so would saturate our am-
plifiers, and cause unwanted transitions of the qubit
state [16, 21, 52, 53].

• Find the optimal demodulation weight function by
measuring the average detector voltage as a func-
tion of time during the course of the readout pulse
[15, 20].

• Finally, choose the discrimination line between the
measurement results for |0〉 and |1〉, except as noted
in the previous section where we need to apply cor-
related discrimination.

After completing these calibrations, we check each
qubit’s readout fidelity by preparing either |0〉 or |1〉 and
reading the qubit out. We define the identification error
to be the probability that the qubit was not measured
in the state we intended to prepare. We achieve 0.97%
median identification error for the |0〉 state, and 4.5% for
|1〉, when each qubit is measured in isolation. The full
distribution is shown in dashed lines in Fig. S21a. We
conjecture that the error in |0〉 is due to thermal exci-
tation during preparation or measurement, and that the
error in |1〉 is due to energy relaxation during readout.

3. Characterizing multi-qubit readout

To assess the fidelity of multi-qubit readout, we pre-
pare and measure 150 random classical bitstring states
with 53 qubits, with 3000 trials per state. We find that
13.6% of all trials successfully identified the prepared
state. We can decompose this overall fidelity in two ways.
First, we plot in solid lines in Fig. S21 the errors for each
qubit during simultaneous readout, averaged over the 150
random bitstrings. We find that the median errors in-
crease from 0.97% for |0〉 and 4.5% for |1〉 in isolation,
to 1.8% and 5.1% for simultaneous readout. We do not
yet understand the root causes of this increase in error.
In addition, we show in Fig. S21 the distribution of er-
rors among the multiqubit results. We see that the most
likely error is one lost excitation in the measured state.

E. Summary of system parameters

Table II reports aggregate values for qubit and pair
parameters in our processor. A complete table of single-
qubit parameter values by qubit is available in supporting
online materials, Ref. [54], and illustrated in Figs. S22
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ecuted in parallel. We then cycle through these layers
interleaved with randomly chosen single-qubit gates (see
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intended interactions with other qubits, where coherent
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a dispersive interaction with the coupler, the coupling
would no longer be off when the qubits were detuned by
a significant amount from their idling positions. Thus,
we impose a constraint that qubits should not be placed
near resonance during readout. Nevertheless, we found
that for some pairs of qubits, we had to dynamically bias
the coupler during readout to avoid any swapping tran-
sitions between the qubits during readout. This readout
coupler bias is found by sweeping the coupler bias and
maximizing the two-qubit readout fidelity.

Second, the pattern of the bare resonator frequencies
on the chip as shown in Fig. S20 led to an unexpected
problem. Pairs of readout resonators which were coupled
to neighboring qubits and were also within a few MHz in
frequency space were found to have non-negligible cou-
pling. This coupling was strong enough to mediate swap-
ping of photons from one resonator to the other. The
pairs of qubits with similar resonator frequencies were
all located in a diagonal chain bisecting the qubit grid,
as shown by the red outline in Fig. S20. To mitigate
this problem, we arrange the qubit frequencies for these
qubits so that the resonator eigenfrequencies are as far
apart as possible. The resulting spectral separation is
not quite enough to eliminate all deleterious effects, so in
addition, we use correlated discrimination on the eight of
the qubits in this chain. In other words, we use the re-
sults of all eight detector values to determine which one
of 28 = 256 states the eight qubits were in. All other
qubits in the grid are discriminated as isolated qubits.

2. Single qubit calibration

After placing the qubit frequencies for readout, we cal-
ibrate and fine tune the readout parameters for each
qubit. For each qubit, we use a 1 µs drive pulse and
a 1 µs demodulation window. We summarize the proce-
dure for choosing the remaining parameters as follows:

• Choose the resonator drive frequency to maximize
the separation between measurements performed
with the qubit in either |0〉 and |1〉 [15].

• Choose the resonator drive power to hit a target
separation between |0〉 and |1〉, so that the error
due to this separation is below a 0.3% threshold.
We do not choose the readout power to maximize
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FIG. S19. Parallel XEB. a, Schematics of four device-wide sequences, one for each entangler layer. Black points are active
qubits, colored circles are single-qubit gates, and colored lines are two-qubit gates. We cycle between single- and two-qubit
gates m times. Compare to Fig. 3a, main text, where the layers are interleaved. b, Integrated histograms of Pauli error e2c (see
Fig. 2a, main text). These include isolated results, where each entangler is measured in its own experiment, and simultaneous
(parallel) results. Purity is “speckle” purity. c, Difference, δ, in unitary model parameters (Eq. 43) between the unitaries
obtained in the isolated and simultaneous experiments. δ∆− is not plotted because it has a negligible effect on the unitary
when θ ≈ 90 degrees.

the separation as doing so would saturate our am-
plifiers, and cause unwanted transitions of the qubit
state [16, 21, 52, 53].

• Find the optimal demodulation weight function by
measuring the average detector voltage as a func-
tion of time during the course of the readout pulse
[15, 20].

• Finally, choose the discrimination line between the
measurement results for |0〉 and |1〉, except as noted
in the previous section where we need to apply cor-
related discrimination.

After completing these calibrations, we check each
qubit’s readout fidelity by preparing either |0〉 or |1〉 and
reading the qubit out. We define the identification error
to be the probability that the qubit was not measured
in the state we intended to prepare. We achieve 0.97%
median identification error for the |0〉 state, and 4.5% for
|1〉, when each qubit is measured in isolation. The full
distribution is shown in dashed lines in Fig. S21a. We
conjecture that the error in |0〉 is due to thermal exci-
tation during preparation or measurement, and that the
error in |1〉 is due to energy relaxation during readout.

3. Characterizing multi-qubit readout

To assess the fidelity of multi-qubit readout, we pre-
pare and measure 150 random classical bitstring states
with 53 qubits, with 3000 trials per state. We find that
13.6% of all trials successfully identified the prepared
state. We can decompose this overall fidelity in two ways.
First, we plot in solid lines in Fig. S21 the errors for each
qubit during simultaneous readout, averaged over the 150
random bitstrings. We find that the median errors in-
crease from 0.97% for |0〉 and 4.5% for |1〉 in isolation,
to 1.8% and 5.1% for simultaneous readout. We do not
yet understand the root causes of this increase in error.
In addition, we show in Fig. S21 the distribution of er-
rors among the multiqubit results. We see that the most
likely error is one lost excitation in the measured state.

E. Summary of system parameters

Table II reports aggregate values for qubit and pair
parameters in our processor. A complete table of single-
qubit parameter values by qubit is available in supporting
online materials, Ref. [54], and illustrated in Figs. S22
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TABLE II. Aggregate system parameters

Parameter Median Mean Stdev. Units Figure
Qubit maximum frequency 6.924 6.933 0.114 GHz S22
Qubit idle frequency 6.661 6.660 0.057 GHz S13
Qubit frequency at readout 5.750 5.766 0.360 GHz S20
Readout drive frequency 4.618 4.588 0.076 GHz S20
Qubit anharmonicity -208.0 -208.0 4.7 MHz S22
Resonator linewidth κ/2π 0.64 0.69 0.23 MHz S22
Qubit-resonator coupling g/2π 72.3 72.1 2.8 MHz S22
T1 at Idle Frequency 15.54 16.04 4.00 µs S22
Readout error |0〉 isolated / simultaneous 0.97 / 1.8 1.2 / 2.3 0.8 / 2.1 % S21
Readout error |1〉 isolated / simultaneous 4.5 / 5.1 5.0 / 5.5 1.8 / 2.2 % S21
1Q RBa e1 0.19 0.22 0.10 % S23
1Q RBa e1 (π/2 gateset) 0.15 0.16 0.06 % S23
1Q RBa tomographic e1 purity 0.14 0.15 0.04 % S23
1Q XEB e1 isolated / simultaneous 0.13 / 0.14 0.15 / 0.16 0.05 / 0.05 % 3a (main) S23
1Q XEB e1 purity isolated / simultaneous 0.11 / 0.11 0.11 / 0.12 0.03 / 0.03 % S23
2Q XEB e2 isolated / simultaneous 0.30 / 0.60 0.36 / 0.62 0.17 / 0.24 % 3a (main)
2Q XEB e2c isolated / simultaneous 0.64 / 0.89 0.65 / 0.93 0.20 / 0.26 % 3a (main)
2Q XEB e2c purity isolated / simultaneous 0.59 / 0.86 0.62 / 0.89 0.20 / 0.24 % S19
Measurement em isolated / simultaneous 2.83 / 3.50 3.05 / 3.77 1.09 / 1.61 % 3a (main)

a RB data taken at a later date

through S24. Single-qubit metrics represent a sample
size of 53. Two-qubit metrics represent 86 pairs.
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FIG. S20. a, Drive frequencies for the readout resonators for
each qubit. The red outline shows the area where we had to
perform correlated discrimination because of unwanted cross-
couplings between the resonators. b, Qubit frequencies dur-
ing readout, found using a frequency optimization procedure.
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FIG. S21. Readout errors. a, Histogram of readout errors
for each qubit when prepared in |0〉 or |1〉, and readout in
isolation or simultaneously. b, Distribution of errors in multi-
qubit readout. The x-axis Hamming distance is the number of
bits that are different between measured and prepared states,
while the y-axis is the difference in the number of 1’s in the
states. For example, if we prepare |011〉 and measure |101〉,
the Hamming distance is 2 and the difference in the number
of excitations is 0.
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FIG. S21. Readout errors. a, Histogram of readout errors
for each qubit when prepared in |0〉 or |1〉, and readout in
isolation or simultaneously. b, Distribution of errors in multi-
qubit readout. The x-axis Hamming distance is the number of
bits that are different between measured and prepared states,
while the y-axis is the difference in the number of 1’s in the
states. For example, if we prepare |011〉 and measure |101〉,
the Hamming distance is 2 and the difference in the number
of excitations is 0.
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FIG. S22. Typical distribution of single-qubit parameters over the Sycamore processor.
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FIG. S23. Typical distribution of single-qubit gate benchmarking errors over the Sycamore processor, for both isolated and
simultaneous operation.
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FIG. S22. Typical distribution of single-qubit parameters over the Sycamore processor.
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FIG. S23. Typical distribution of single-qubit gate benchmarking errors over the Sycamore processor, for both isolated and
simultaneous operation.
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FIG. S24. Typical distribution of readout errors over the Sycamore processor, for both isolated and simultaneous operation.
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VII. QUANTUM CIRCUITS

A. Background

We sample the output of random quantum circuits
(RQCs) with two use cases in mind: performing a com-
putational task beyond the reach of state-of-the-art su-
percomputers (quantum supremacy); and estimating the
experimental fidelity (performance evaluation).

In order for the RQCs to cover both use cases, we de-
fine a circuit family with a varying number of qubits n
and cycles m. Our quantum supremacy demonstration
uses RQCs with a large number of qubits n = 53 and
high depth m = 20. Large number of qubits hinders
wave function (Schrödinger) simulation and high depth
impedes tensor network (Feynman) simulation (see Sec.
XB). We find that the most competitive classical simu-
lator for our hardest RQCs is the Schrödinger-Feynman
algorithm (SFA, see Sec. XA) which copes well with high
depth circuits on many qubits.

SFA takes as input an n-qubit quantum circuit and a
cut which divides n = n1+n2 qubits into two contiguous
partitions with n1 and n2 qubits. The algorithm com-
putes the output state as the sum over simulation paths
formed as the product of the terms of the Schmidt de-
composition of all cross-partition gates. By the distribu-
tive law there are rg such simulation paths for a circuit
with g cross-partition gates of Schmidt rank r. Conse-
quently, the algorithm achieves runtime proportional to
(2n1 + 2n2)rg. Circuit cuts with n1, n2 and g that make
the simulation task tractable are called promising cuts.
The most promising cut for our largest RQCs runs paral-
lel to the shorter axis of the device starting in the vicinity
of the broken qubit. The sum over the simulation paths
can be interpreted as tensor contraction. In this view, the
rg factor can be thought of as the bond dimension associ-
ated with the circuit partitioning, i.e. the cardinality of
the index set ranged over in the contraction correspond-
ing to all cross-partition gates. SFA is described in more
detail in [37] and section X.

B. Overview and technical requirements

The two use cases for our RQCs give rise to a ten-
sion in technical requirements at the heart of quantum
supremacy. On the one hand, supremacy RQC sam-
pling should by definition be prohibitively hard to simu-
late classically. On the other hand, performance evalua-
tion entails classical simulation of the RQCs. To resolve
the conflict, we note that the fidelity of a RQC experi-
ment depends primarily on the number and quality of the
gates. By contrast, the simulation cost is highly sensi-
tive to minor perturbations in the circuit. Consequently,
experiment fidelity for RQCs that cannot be simulated
directly may be approximated from the experiment fi-
delity of similar RQCs obtained as the result of transfor-
mations that reduce simulation cost without significantly

affecting experiment fidelity (see Section VIIG).
Performance evaluation using XEB provides another

design consideration. The procedure requires knowledge
of the cross-entropy of the theoretical output distribution
of the circuit. An analytical expression for this quantity
has been derived in [26] for circuits whose measurement
probabilities approach the Porter-Thomas distribution.
We find that our RQCs satisfy this assumption when the
circuit depth is larger than 12, see Fig. S35a. Note that
high circuit depth also increases the cost of classical sim-
ulation.

C. Circuit structure

A RQC with n qubits generally utilizes qubits 1
through n in the qubit order shown in Fig. S27 with
small deviations from this default qubit ordering in some
circuits. The qubit order has been chosen to ensure that
for most RQCs with fewer than 51 qubits, there is a par-
titioning of the qubits into two similarly sized blocks con-
nected by only five couplers. The next larger RQC, with
51 qubits, has seven couplers along the most promising
circuit cut. Since the cost of SFA grows exponentially in
the number of gates across the partitions our circuit ge-
ometry leads to a steep increase in the simulation cost of
51-qubit RQCs relative to the circuits with fewer qubits.
This creates a sizeable gap in the computational hardness
between most of our evaluation circuits and the quantum
supremacy circuits (n = 53).
In the time dimension, each RQC is a series of m full

cycles and one half cycle followed by measurement of all
qubits. Every full cycle consists of two steps. In the first
step, a single-qubit gate is applied to every qubit. In
the second step, two-qubit gates are applied to pairs of
qubits. Different qubit pairs are allowed to interact in
different cycles. Specifically, in the supremacy RQCs we
loop through the direct neighbors of every qubit over the
eight-cycle sequence ABCDCDAB and in the evaluation
RQCs we use the four-cycle sequence EFGH where A, B,
..., H are coupler activation patterns shown in Fig. S25.
The sequence is repeated in subsequent cycles. The cost
of SFA simulation is highly sensitive to the specific se-
quence employed in a circuit, see VIIG 2. Border qubits
have fewer than four neighbors and no gate is applied
to them in some cycles. The half cycle preceding the
measurement consists of the single-qubit gates only. The
overall structure of our RQCs is shown in Fig. 3 of the
main paper.

D. Randomness

Single-qubit gates in every cycle are chosen randomly
using a pseudo-random number generator (PRNG). The
generator is initialized with a seed s which is the third
parameter for our family of RQCs. The single-qubit gate
applied to a particular qubit in a given cycle depends only
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FIG. S24. Typical distribution of readout errors over the Sycamore processor, for both isolated and simultaneous operation.
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different cycles. Specifically, in the supremacy RQCs we
loop through the direct neighbors of every qubit over the
eight-cycle sequence ABCDCDAB and in the evaluation
RQCs we use the four-cycle sequence EFGH where A, B,
..., H are coupler activation patterns shown in Fig. S25.
The sequence is repeated in subsequent cycles. The cost
of SFA simulation is highly sensitive to the specific se-
quence employed in a circuit, see VIIG 2. Border qubits
have fewer than four neighbors and no gate is applied
to them in some cycles. The half cycle preceding the
measurement consists of the single-qubit gates only. The
overall structure of our RQCs is shown in Fig. 3 of the
main paper.

D. Randomness

Single-qubit gates in every cycle are chosen randomly
using a pseudo-random number generator (PRNG). The
generator is initialized with a seed s which is the third
parameter for our family of RQCs. The single-qubit gate
applied to a particular qubit in a given cycle depends only
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FIG. S25. Coupler activation patterns. Coupler activation pattern determines which qubits are allowed to interact
simultaneously in a cycle. Quantum supremacy RQCs utilize the staggered patterns shown in the top row in the sequence
ABCDCDAB, repeated in subsequent cycles. Performance evaluation RQCs employ the patterns shown in the bottom row in
the sequence EFGH, likewise repeated in subsequent cycles. The former sequence makes SFA simulation harder by facilitating
prompt transfer of entanglement created at promising circuit cuts into the bulk of each circuit partition.

on s. Consequently, two RQCs with the same s apply the
same single-qubit gate to a given qubit in a given cycle
as long as the qubit and the cycle belong in both RQCs
as determined by their size n and depth m parameters.

Conversely, the choice of single-qubit gates is the sole
property of our RQCs that depends on s. In particular,
the same two-qubit gate is applied to a given qubit pair
in a given cycle by all RQCs that contain the pair and
the cycle.

E. Quantum gates

In our experiment, we configure three single-qubit
gates. Each one is a π/2-rotation around an axis lying
on the equator of the Bloch sphere. Up to global phase,
the gates are

X1/2 ≡ RX(π/2) =
1√
2

[
1 −i
−i 1

]
, (50)

Y 1/2 ≡ RY (π/2) =
1√
2

[
1 −1
1 1

]
, (51)

W 1/2 ≡ RX+Y (π/2) =
1√
2

[
1 −

√
i√

−i 1

]
(52)

where W = (X + Y )/
√
2 and

√
±i denotes the princi-

pal value of the square root. The first two belong to the
single-qubit Clifford group, while W 1/2 is a non-Clifford
gate. Single-qubit gates in the first cycle are chosen in-
dependently and uniformly at random from the set of the

three gates above. In subsequent cycles, each single-qubit
gate is chosen independently and uniformly at random
from among the gates above except the gate applied to
the qubit in the preceding cycle. This prevents simplifi-
cations of some simulation paths in SFA. Consequently,
there are 3n2nm possible random choices for a RQC with
n qubits and m cycles.
Two-qubit gates in our RQCs are not randomized, but

are determined by qubit pair and cycle number. The
gates preserve the number of ground and excited states
of the qubits which gives their matrices block diagonal
structure with 1×1, 2×2 and 1×1 blocks. Therefore, up
to global phase they belong to U(1)⊕U(2)⊕U(1)/U(1)
and thus can be described by five real parameters (see
Fig. S16, and Eq. 43). Each gate in this family can be
decomposed into four Z-rotations described by three free
parameters and the two-parameter fermionic simulation
gate

fSim(θ, φ) =



1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iφ


 (53)

which is the product of a fractional iSWAP and controlled
phase gate (see Fig. S14b).

In our experiment, we tune up the two-qubit gates
close to θ ≈ π/2 and φ ≈ π/6 radians and then in-
fer more accurate values of all five parameters for each
qubit pair using XEB. Consequently, all five parameters
of the two-qubit gate depend on the qubit pair. While
inferred unitaries are suitable for RQC sampling, future
applications of the Sycamore processor, for example, in
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quantum chemistry, will require precise targeting of the
entangling parameters [48, 55]. The three parameters
which control the Z-rotations implicit in the two-qubit
gates can be canceled out with active Z-rotations turning
an arbitrary five-parameter gate into pure fSim(θ, φ). In
our RQCs, we have decided not to apply such correction
gates. This choice affords us greater number of interac-
tions within the available circuit depth budget and intro-
duces additional implicit non-Clifford single-qubit gates
into the RQCs.

The Z-rotations have two origins. First, they capture
the phase shifts due to qubit frequency excursions dur-
ing the two-qubit gate. Second, they account for phase
changes due to different idle frequencies of the interact-
ing qubits. The latter introduces dependency of the three
parameters defining the Z-rotations on the time at which
the gate is applied. By contrast, for a given qubit pair θ
and φ do not depend on the cycle.
The fSim(π/2, π/6) gate is the product of a non-

Clifford controlled phase gate and an iSWAP which is
a two-qubit Clifford gate.

F. Programmability and universality

Programmability of Sycamore rests on our ability to
tune up a variety of gate sets including sets that are uni-
versal for quantum computation. For example, the set of
gates employed in our quantum supremacy demonstra-
tion is universal, as we show in this section.

The proof consists of two parts. First, we show that
the CZ gate can be obtained as a composition of two
fSim gates and single-qubit rotations. Second, we outline
how the well-known proof that the H and T gates are
universal for SU(2) [56] can be adapted for X1/2 and
W 1/2. The conclusion follows from the fact that the gate
set consisting of the CZ gate and SU(2) is universal [57].

1. Decomposition of CZ into fSim gates

Here, we show how to decompose a controlled-phase
gate into two fSim gates and several single-qubit gates.
The fSim gate is native to our hardware and can be de-
composed into

fSim(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφ(I−Z)⊗(I−Z)/4 ,
(54)

where the iSWAP angle θ � π/2 and the controlled-phase
angle φ � π/6. The controlled-phase part can be further
decomposed into

e−iφ(I−Z)⊗(I−Z)/4

= e−iφ/4 eiφ(Z⊗I+I⊗Z)/4 e−iφZ⊗Z/4 . (55)

To simplify notations, we introduce the two-qubit gate

Υ(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφZ⊗Z/4

= eiφ/4 e−iφ(Z⊗I+I⊗Z)/4 fSim(θ, φ) , (56)

which is equivalent to the fSim gate up to single-qubit Z
rotations. The sign of θ in Υ(θ, φ) can be changed by the
single-qubit transformation,

Z1 Υ(θ, φ)Z1 = Υ(−θ, φ) , (57)

where Z1 = Z ⊗ I (Z2 = I ⊗ Z works equally well).
Multiplying two Υ gates with opposite values of θ on

both sides the operator X1 = X ⊗ I, we have

Υ(−θ, φ)X1 Υ(θ, φ) = eiθY⊗Y/2 X1 e−iθY⊗Y/2

= cos θ X1 + sin θ Z ⊗ Y . (58)

With the identity (58), we have

Υ(−θ, φ) eiαX1 Υ(θ, φ) = cosα
(
cos

φ

2
I ⊗ I − i sin

φ

2
Z ⊗ Z

)
+ i sinα

(
cos θ X ⊗ I + sin θ Z ⊗ Y

)

=
(
cosα cos

φ

2
I + i sinα cos θ X

)
⊗ I − iZ ⊗

(
cosα sin

φ

2
Z − sinα sin θ Y

)
, (59)

where 0 ≤ α ≤ π/2 is to be determined. We introduce
the Schmidt operators

Γ1(α) = cosα cos(φ/2) I + i sinα cos θ X , (60)

Γ2(α) = cosα sin(φ/2)Z − sinα sin θ Y , (61)

and the unitary (59) takes the simple form

Υ(−θ, φ) eiαX1 Υ(θ, φ) = Γ1 ⊗ I − iZ ⊗ Γ2 . (62)

The Schmidt rank of this unitary is two. Therefore, it is
equivalent to a controlled-phase gate (also with Schmidt

rank two) up to some single-qubit unitaries. The two
non-zero Schmidt coefficients of the unitary (59) are
equal to the operator norms of Γ1, 2.
The target controlled-phase gate that we want to de-

compose into the fSim gate is

diag
(
1, 1, 1, e−iδ

)
= e−iδ(I−Z)⊗(I−Z)/4 , (63)

where 0 ≤ δ ≤ 2π. It has two non-zero Schmidt coef-
ficients cos(δ/4) and sin(δ/4). For example, we set the
operator norm of Γ2 to be equal to the second Schmidt
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FIG. S25. Coupler activation patterns. Coupler activation pattern determines which qubits are allowed to interact
simultaneously in a cycle. Quantum supremacy RQCs utilize the staggered patterns shown in the top row in the sequence
ABCDCDAB, repeated in subsequent cycles. Performance evaluation RQCs employ the patterns shown in the bottom row in
the sequence EFGH, likewise repeated in subsequent cycles. The former sequence makes SFA simulation harder by facilitating
prompt transfer of entanglement created at promising circuit cuts into the bulk of each circuit partition.

on s. Consequently, two RQCs with the same s apply the
same single-qubit gate to a given qubit in a given cycle
as long as the qubit and the cycle belong in both RQCs
as determined by their size n and depth m parameters.

Conversely, the choice of single-qubit gates is the sole
property of our RQCs that depends on s. In particular,
the same two-qubit gate is applied to a given qubit pair
in a given cycle by all RQCs that contain the pair and
the cycle.

E. Quantum gates

In our experiment, we configure three single-qubit
gates. Each one is a π/2-rotation around an axis lying
on the equator of the Bloch sphere. Up to global phase,
the gates are

X1/2 ≡ RX(π/2) =
1√
2

[
1 −i
−i 1

]
, (50)

Y 1/2 ≡ RY (π/2) =
1√
2

[
1 −1
1 1

]
, (51)

W 1/2 ≡ RX+Y (π/2) =
1√
2

[
1 −

√
i√

−i 1

]
(52)

where W = (X + Y )/
√
2 and

√
±i denotes the princi-

pal value of the square root. The first two belong to the
single-qubit Clifford group, while W 1/2 is a non-Clifford
gate. Single-qubit gates in the first cycle are chosen in-
dependently and uniformly at random from the set of the

three gates above. In subsequent cycles, each single-qubit
gate is chosen independently and uniformly at random
from among the gates above except the gate applied to
the qubit in the preceding cycle. This prevents simplifi-
cations of some simulation paths in SFA. Consequently,
there are 3n2nm possible random choices for a RQC with
n qubits and m cycles.
Two-qubit gates in our RQCs are not randomized, but

are determined by qubit pair and cycle number. The
gates preserve the number of ground and excited states
of the qubits which gives their matrices block diagonal
structure with 1×1, 2×2 and 1×1 blocks. Therefore, up
to global phase they belong to U(1)⊕U(2)⊕U(1)/U(1)
and thus can be described by five real parameters (see
Fig. S16, and Eq. 43). Each gate in this family can be
decomposed into four Z-rotations described by three free
parameters and the two-parameter fermionic simulation
gate

fSim(θ, φ) =



1 0 0 0
0 cos(θ) −i sin(θ) 0
0 −i sin(θ) cos(θ) 0
0 0 0 e−iφ


 (53)

which is the product of a fractional iSWAP and controlled
phase gate (see Fig. S14b).

In our experiment, we tune up the two-qubit gates
close to θ ≈ π/2 and φ ≈ π/6 radians and then in-
fer more accurate values of all five parameters for each
qubit pair using XEB. Consequently, all five parameters
of the two-qubit gate depend on the qubit pair. While
inferred unitaries are suitable for RQC sampling, future
applications of the Sycamore processor, for example, in
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quantum chemistry, will require precise targeting of the
entangling parameters [48, 55]. The three parameters
which control the Z-rotations implicit in the two-qubit
gates can be canceled out with active Z-rotations turning
an arbitrary five-parameter gate into pure fSim(θ, φ). In
our RQCs, we have decided not to apply such correction
gates. This choice affords us greater number of interac-
tions within the available circuit depth budget and intro-
duces additional implicit non-Clifford single-qubit gates
into the RQCs.

The Z-rotations have two origins. First, they capture
the phase shifts due to qubit frequency excursions dur-
ing the two-qubit gate. Second, they account for phase
changes due to different idle frequencies of the interact-
ing qubits. The latter introduces dependency of the three
parameters defining the Z-rotations on the time at which
the gate is applied. By contrast, for a given qubit pair θ
and φ do not depend on the cycle.
The fSim(π/2, π/6) gate is the product of a non-

Clifford controlled phase gate and an iSWAP which is
a two-qubit Clifford gate.

F. Programmability and universality

Programmability of Sycamore rests on our ability to
tune up a variety of gate sets including sets that are uni-
versal for quantum computation. For example, the set of
gates employed in our quantum supremacy demonstra-
tion is universal, as we show in this section.

The proof consists of two parts. First, we show that
the CZ gate can be obtained as a composition of two
fSim gates and single-qubit rotations. Second, we outline
how the well-known proof that the H and T gates are
universal for SU(2) [56] can be adapted for X1/2 and
W 1/2. The conclusion follows from the fact that the gate
set consisting of the CZ gate and SU(2) is universal [57].

1. Decomposition of CZ into fSim gates

Here, we show how to decompose a controlled-phase
gate into two fSim gates and several single-qubit gates.
The fSim gate is native to our hardware and can be de-
composed into

fSim(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφ(I−Z)⊗(I−Z)/4 ,
(54)

where the iSWAP angle θ � π/2 and the controlled-phase
angle φ � π/6. The controlled-phase part can be further
decomposed into

e−iφ(I−Z)⊗(I−Z)/4

= e−iφ/4 eiφ(Z⊗I+I⊗Z)/4 e−iφZ⊗Z/4 . (55)

To simplify notations, we introduce the two-qubit gate

Υ(θ, φ) = e−iθ(X⊗X+Y⊗Y )/2 e−iφZ⊗Z/4

= eiφ/4 e−iφ(Z⊗I+I⊗Z)/4 fSim(θ, φ) , (56)

which is equivalent to the fSim gate up to single-qubit Z
rotations. The sign of θ in Υ(θ, φ) can be changed by the
single-qubit transformation,

Z1 Υ(θ, φ)Z1 = Υ(−θ, φ) , (57)

where Z1 = Z ⊗ I (Z2 = I ⊗ Z works equally well).
Multiplying two Υ gates with opposite values of θ on

both sides the operator X1 = X ⊗ I, we have

Υ(−θ, φ)X1 Υ(θ, φ) = eiθY⊗Y/2 X1 e−iθY⊗Y/2

= cos θ X1 + sin θ Z ⊗ Y . (58)

With the identity (58), we have

Υ(−θ, φ) eiαX1 Υ(θ, φ) = cosα
(
cos

φ

2
I ⊗ I − i sin

φ

2
Z ⊗ Z

)
+ i sinα

(
cos θ X ⊗ I + sin θ Z ⊗ Y

)

=
(
cosα cos

φ

2
I + i sinα cos θ X

)
⊗ I − iZ ⊗

(
cosα sin

φ

2
Z − sinα sin θ Y

)
, (59)

where 0 ≤ α ≤ π/2 is to be determined. We introduce
the Schmidt operators

Γ1(α) = cosα cos(φ/2) I + i sinα cos θ X , (60)

Γ2(α) = cosα sin(φ/2)Z − sinα sin θ Y , (61)

and the unitary (59) takes the simple form

Υ(−θ, φ) eiαX1 Υ(θ, φ) = Γ1 ⊗ I − iZ ⊗ Γ2 . (62)

The Schmidt rank of this unitary is two. Therefore, it is
equivalent to a controlled-phase gate (also with Schmidt

rank two) up to some single-qubit unitaries. The two
non-zero Schmidt coefficients of the unitary (59) are
equal to the operator norms of Γ1, 2.
The target controlled-phase gate that we want to de-

compose into the fSim gate is

diag
(
1, 1, 1, e−iδ

)
= e−iδ(I−Z)⊗(I−Z)/4 , (63)

where 0 ≤ δ ≤ 2π. It has two non-zero Schmidt coef-
ficients cos(δ/4) and sin(δ/4). For example, we set the
operator norm of Γ2 to be equal to the second Schmidt
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coefficient of the target unitary

∣∣Γ2(α)
∣∣ =

√(
cosα sin(φ/2)

)2
+

(
sinα sin θ

)2

= sin(δ/4) , (64)

and the parameter α can be determined

sinα =

√
sin(δ/4)2 − sin(φ/2)2

sin(θ)2 − sin(φ/2)2
. (65)

This equation has a solution if and only if one of the
following two conditions is satisfied

|sin θ| ≤ sin(δ/4) ≤ |sin(φ/2)| , (66)

|sin(φ/2)| ≤ sin(δ/4) ≤ |sin θ| . (67)

A large set of controlled-phase gates can be implemented
with the typical values of θ and φ of the fSim gate, except
for those that are very close to the identity.

To fix the local basis of the first qubit in Eq. (59), we
introduce two X rotations of the same angle

e−iξX/2 Γ1(α) e−iξX/2 = cos(δ/4) I , (68)

e−iξX/2 Z e−iξX/2 = Z , (69)

where the angle ξ is

ξ = arctan

(
tanα cos θ

cos(φ/2)

)
+

π

2

(
1− sgn

(
cos(φ/2)

))
.

(70)

To fix the local basis of the second qubit in Eq. (59), we
introduce two X rotations of opposite angles

eiηX/2 Γ2(α) e−iηX/2 = sin(δ/4)Z , (71)

where the angle η is

η = arctan

(
tanα sin θ

sin(φ/2)

)
+

π

2

(
1− sgn

(
sin(φ/2)

))
.

(72)

Applying these local X rotations before and after the
gate sequence in Eq. (59), we have

e−i(ξX1−ηX2)/2 Υ(−θ, φ) eiαX1 Υ(θ, φ) e−i(ξX1+ηX2)/2

= cos(δ/4) I ⊗ I − i sin(δ/4)Z ⊗ Z , (73)

which is the desired controlled-phase gate up to some
single-qubit Z rotations.

The target controlled-phase gate equals to the CZ gate
for δ = π. We numerically checked that the decomposi-
tion (73) yields the CZ gate for all 86 fSim gates (with
different values of θ and φ) in our device.

2. Universality for SU(2)

Here, we show how the argument for the well-known
result that the H and T gates are universal for SU(2)
[56] can be adapted for the X1/2 and W 1/2 gates. At
the core of the argument lies the observation that T ≡
RZ(π/4) followed by HTH ≡ RX(π/4) is a single-qubit
rotation by angle α which is an irrational multiple of π.
Specifically, α is such that

cos
α

2
= cos2

π

8
=

1

2

(
1 +

1√
2

)
. (74)

By Theorem B.1 in Appendix B of [56], α/π is irrational
because the monic minimal polynomial with rational co-
efficients of eiα

x4 + x3 +
1

4
x2 + x + 1 (75)

is not cyclotomic (since not all its coefficients are inte-
gers).

Similarly, W 1/2 ≡ RX+Y (π/2) followed by X1/2 ≡
RX(π/2) is a single-qubit rotation by angle β such that

cos
β

2
= cos2

π

4
− 1√

2
sin2

π

4
=

1

2

(
1− 1√

2

)
. (76)

The monic minimal polynomial with rational coefficients
of eiβ is (75), the same as that of eiα. Therefore, β is also
an irrational multiple of π. The rest of the universality
argument for H and T also applies in the case of X1/2

and W 1/2.

G. Circuit variants

Since XEB entails classical simulation, it is hard or im-
possible to use it to estimate experimental fidelity of cir-
cuits which are hard or impossible to simulate classically.
As described above, we designed our RQCs to ensure
that an effective partitioning for SFA exists for circuits
with fewer than 51 qubits. This gives rise to a significant
gap in the cost of classical simulation between quantum
supremacy circuits and most of our performance evalua-
tion circuits. This gap facilitates performance evaluation
of the Sycamore processor near the quantum supremacy
frontier. In practice, however, we would like greater con-
trol over the simulation hardness, for two reasons. First,
performance evaluation is still very costly for large n ap-
proaching the supremacy frontier. Second, we would like
to be able to estimate the fidelity of supremacy RQCs
more directly, even though classical simulation of this
case is unfeasible by definition.

In order to achieve more fine-grained control over the
cost of classical simulation of our RQCs, we exploit the
fact that the experimental fidelity depends primarily on
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Circuit variant Gates elided Sequence of patterns

non-simplifiable full none ABCDCDAB
non-simplifiable elided some ABCDCDAB
non-simplifiable patch all ABCDCDAB

simplifiable full none EFGH
simplifiable elided some EFGH
simplifiable patch all EFGH

TABLE III. Circuit variants. Six variants of RQCs
employed in quantum supremacy demonstration (non-
simplifiable full) and performance evaluation (remaining five
variants) classified by transformations applied in order to con-
trol the cost of classical simulation. The eight coupler activa-
tion patterns A, B, ..., H are shown in Fig. S25.

the number and quality of the gates while the simulation
cost is highly sensitive to the structure of the quantum
circuit. Therefore, we approximate the experimental fi-
delity of RQCs which are hard or impossible to simulate
from the fidelity of similar RQCs obtained as the result
of transformations that reduce simulation cost without
significantly affecting experimental fidelity.

We employ two such transformations. Each decreases
simulation cost by reducing the bond dimension of
promising circuit cuts. The first one removes some or
all cross-partition gates. We say that the removed gates
have been elided and term the transformation gate eli-
sion. The second transformation changes the sequence of
coupler activation patterns shown in Fig. S25 to enable
the formation of wedges which reduce the bond dimen-
sion by slowing the spread of entanglement generated at
the circuit cut.

The two transformations complete the description of
RQCs used in our experiment. Consequently, each RQC
is uniquely determined by five parameters: number of
qubits n, number of cycles m, PRNG seed s, number
of elided gates and the sequence of coupler activation
patterns.

1. Gate elision

The most straightforward way to reduce the cost of
classical simulation of a RQC is to remove a number of
cross-partition gates across the most promising circuit
cut. In order to enable independent propagation by the
SFA of the wave function of each circuit partition for the
first few cycles, the gates are elided beginning with the
initial cycle. Each elided gate reduces the bond dimen-
sion of the partitioning by a factor of two or four, see
Section X.

We refer to RQCs with a small number of elided gates
as elided circuits. A particularly dramatic speedup is
possible when all two-qubit gates across the partitions
are elided leading to two disconnected circuits running
in parallel. We refer to such disconnected RQCs as patch
circuits. Base RQCs in which no gates have been elided
are referred to as full circuits.

If the error probability of the elided two-qubit gate is
similar to the error probability of the two-qubit identity
gate which it is replaced with, the circuit resulting from
gate elision exhibits fidelity that is similar to the fidelity
of the original circuit. This assumption holds when the
two-qubit gate errors are dominated by the same deco-
herence processes that govern the single-qubit gate er-
rors such as finite T1 and T2. Indeed, for circuit sizes
where XEB on full circuits is possible, we have observed
good agreement between fidelity estimates produced for
patch, elided and full circuits. For harder circuits, we
have observed good agreement between fidelity estimates
for patch and elided circuits. See Section VIII for detailed
discussion of these results.

2. Wedge formation

The most competitive algorithm for our hardest cir-
cuits, SFA (see Sec. XA) scales proportionally to the
bond dimension of the circuit partitioning which is equal
to the product of Schmidt rank of all cross-partition
gates (see Sec. XD). The Schmidt decomposition of
most two-qubit gates in our RQCs consists of four terms
(a few gates can be replaced with simpler gates with
Schmidt rank of two, see Section X). Therefore most
cross-partition gates contribute a factor of four to the
bond dimension of the partitioning. However, when two
consecutive cross-partition gates share a qubit forming
a wedge as shown in Fig. S26, the Schmidt decomposi-
tion of the resulting three-qubit unitary also has only
four terms. In other words, the second cross-partition
gate does not generally produce substantial new entan-
glement (as quantified by the Schmidt rank) among the
partitions in excess of the entanglement produced by the
first gate. Consequently, every wedge reduces the bond
dimension of the partitioning by a factor of four.

The eight-cycle sequence ABCDCDAB and the four
constituent coupler activation patterns A, B, C and D
shown in Fig. S25 have been designed to prevent forma-
tion of wedges across promising circuit cuts. In other
words, the sequence ensures that entanglement created
in a given cycle by cross-partition gates is transferred
into the bulk of each partition in the following cycle.

On the other hand, the four-cycle sequence EFGH en-
ables formation of wedges and thus efficient simulation
of RQCs using SFA. We employ the latter sequence in
most evaluation circuits and use the former eight-cycle
sequence for the quantum supremacy circuits and largest
evaluation circuits, see Table III.

VIII. LARGE SCALE XEB RESULTS

In Section VI, we have detailed the device calibration
processes used for individual components such as qubits,
couplers, and coupled pairs of qubits. We have also intro-
duced cross-entropy benchmarking (XEB) as a method
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coefficient of the target unitary

∣∣Γ2(α)
∣∣ =

√(
cosα sin(φ/2)

)2
+

(
sinα sin θ

)2

= sin(δ/4) , (64)

and the parameter α can be determined

sinα =

√
sin(δ/4)2 − sin(φ/2)2

sin(θ)2 − sin(φ/2)2
. (65)

This equation has a solution if and only if one of the
following two conditions is satisfied

|sin θ| ≤ sin(δ/4) ≤ |sin(φ/2)| , (66)

|sin(φ/2)| ≤ sin(δ/4) ≤ |sin θ| . (67)

A large set of controlled-phase gates can be implemented
with the typical values of θ and φ of the fSim gate, except
for those that are very close to the identity.

To fix the local basis of the first qubit in Eq. (59), we
introduce two X rotations of the same angle

e−iξX/2 Γ1(α) e−iξX/2 = cos(δ/4) I , (68)

e−iξX/2 Z e−iξX/2 = Z , (69)

where the angle ξ is

ξ = arctan

(
tanα cos θ

cos(φ/2)

)
+

π

2

(
1− sgn

(
cos(φ/2)

))
.

(70)

To fix the local basis of the second qubit in Eq. (59), we
introduce two X rotations of opposite angles

eiηX/2 Γ2(α) e−iηX/2 = sin(δ/4)Z , (71)

where the angle η is

η = arctan

(
tanα sin θ

sin(φ/2)

)
+

π

2

(
1− sgn

(
sin(φ/2)

))
.

(72)

Applying these local X rotations before and after the
gate sequence in Eq. (59), we have

e−i(ξX1−ηX2)/2 Υ(−θ, φ) eiαX1 Υ(θ, φ) e−i(ξX1+ηX2)/2

= cos(δ/4) I ⊗ I − i sin(δ/4)Z ⊗ Z , (73)

which is the desired controlled-phase gate up to some
single-qubit Z rotations.

The target controlled-phase gate equals to the CZ gate
for δ = π. We numerically checked that the decomposi-
tion (73) yields the CZ gate for all 86 fSim gates (with
different values of θ and φ) in our device.

2. Universality for SU(2)

Here, we show how the argument for the well-known
result that the H and T gates are universal for SU(2)
[56] can be adapted for the X1/2 and W 1/2 gates. At
the core of the argument lies the observation that T ≡
RZ(π/4) followed by HTH ≡ RX(π/4) is a single-qubit
rotation by angle α which is an irrational multiple of π.
Specifically, α is such that

cos
α

2
= cos2

π

8
=

1

2

(
1 +

1√
2

)
. (74)

By Theorem B.1 in Appendix B of [56], α/π is irrational
because the monic minimal polynomial with rational co-
efficients of eiα

x4 + x3 +
1

4
x2 + x + 1 (75)

is not cyclotomic (since not all its coefficients are inte-
gers).

Similarly, W 1/2 ≡ RX+Y (π/2) followed by X1/2 ≡
RX(π/2) is a single-qubit rotation by angle β such that

cos
β

2
= cos2

π

4
− 1√

2
sin2

π

4
=

1

2

(
1− 1√

2

)
. (76)

The monic minimal polynomial with rational coefficients
of eiβ is (75), the same as that of eiα. Therefore, β is also
an irrational multiple of π. The rest of the universality
argument for H and T also applies in the case of X1/2

and W 1/2.

G. Circuit variants

Since XEB entails classical simulation, it is hard or im-
possible to use it to estimate experimental fidelity of cir-
cuits which are hard or impossible to simulate classically.
As described above, we designed our RQCs to ensure
that an effective partitioning for SFA exists for circuits
with fewer than 51 qubits. This gives rise to a significant
gap in the cost of classical simulation between quantum
supremacy circuits and most of our performance evalua-
tion circuits. This gap facilitates performance evaluation
of the Sycamore processor near the quantum supremacy
frontier. In practice, however, we would like greater con-
trol over the simulation hardness, for two reasons. First,
performance evaluation is still very costly for large n ap-
proaching the supremacy frontier. Second, we would like
to be able to estimate the fidelity of supremacy RQCs
more directly, even though classical simulation of this
case is unfeasible by definition.

In order to achieve more fine-grained control over the
cost of classical simulation of our RQCs, we exploit the
fact that the experimental fidelity depends primarily on
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Circuit variant Gates elided Sequence of patterns

non-simplifiable full none ABCDCDAB
non-simplifiable elided some ABCDCDAB
non-simplifiable patch all ABCDCDAB

simplifiable full none EFGH
simplifiable elided some EFGH
simplifiable patch all EFGH

TABLE III. Circuit variants. Six variants of RQCs
employed in quantum supremacy demonstration (non-
simplifiable full) and performance evaluation (remaining five
variants) classified by transformations applied in order to con-
trol the cost of classical simulation. The eight coupler activa-
tion patterns A, B, ..., H are shown in Fig. S25.

the number and quality of the gates while the simulation
cost is highly sensitive to the structure of the quantum
circuit. Therefore, we approximate the experimental fi-
delity of RQCs which are hard or impossible to simulate
from the fidelity of similar RQCs obtained as the result
of transformations that reduce simulation cost without
significantly affecting experimental fidelity.

We employ two such transformations. Each decreases
simulation cost by reducing the bond dimension of
promising circuit cuts. The first one removes some or
all cross-partition gates. We say that the removed gates
have been elided and term the transformation gate eli-
sion. The second transformation changes the sequence of
coupler activation patterns shown in Fig. S25 to enable
the formation of wedges which reduce the bond dimen-
sion by slowing the spread of entanglement generated at
the circuit cut.

The two transformations complete the description of
RQCs used in our experiment. Consequently, each RQC
is uniquely determined by five parameters: number of
qubits n, number of cycles m, PRNG seed s, number
of elided gates and the sequence of coupler activation
patterns.

1. Gate elision

The most straightforward way to reduce the cost of
classical simulation of a RQC is to remove a number of
cross-partition gates across the most promising circuit
cut. In order to enable independent propagation by the
SFA of the wave function of each circuit partition for the
first few cycles, the gates are elided beginning with the
initial cycle. Each elided gate reduces the bond dimen-
sion of the partitioning by a factor of two or four, see
Section X.

We refer to RQCs with a small number of elided gates
as elided circuits. A particularly dramatic speedup is
possible when all two-qubit gates across the partitions
are elided leading to two disconnected circuits running
in parallel. We refer to such disconnected RQCs as patch
circuits. Base RQCs in which no gates have been elided
are referred to as full circuits.

If the error probability of the elided two-qubit gate is
similar to the error probability of the two-qubit identity
gate which it is replaced with, the circuit resulting from
gate elision exhibits fidelity that is similar to the fidelity
of the original circuit. This assumption holds when the
two-qubit gate errors are dominated by the same deco-
herence processes that govern the single-qubit gate er-
rors such as finite T1 and T2. Indeed, for circuit sizes
where XEB on full circuits is possible, we have observed
good agreement between fidelity estimates produced for
patch, elided and full circuits. For harder circuits, we
have observed good agreement between fidelity estimates
for patch and elided circuits. See Section VIII for detailed
discussion of these results.

2. Wedge formation

The most competitive algorithm for our hardest cir-
cuits, SFA (see Sec. XA) scales proportionally to the
bond dimension of the circuit partitioning which is equal
to the product of Schmidt rank of all cross-partition
gates (see Sec. XD). The Schmidt decomposition of
most two-qubit gates in our RQCs consists of four terms
(a few gates can be replaced with simpler gates with
Schmidt rank of two, see Section X). Therefore most
cross-partition gates contribute a factor of four to the
bond dimension of the partitioning. However, when two
consecutive cross-partition gates share a qubit forming
a wedge as shown in Fig. S26, the Schmidt decomposi-
tion of the resulting three-qubit unitary also has only
four terms. In other words, the second cross-partition
gate does not generally produce substantial new entan-
glement (as quantified by the Schmidt rank) among the
partitions in excess of the entanglement produced by the
first gate. Consequently, every wedge reduces the bond
dimension of the partitioning by a factor of four.

The eight-cycle sequence ABCDCDAB and the four
constituent coupler activation patterns A, B, C and D
shown in Fig. S25 have been designed to prevent forma-
tion of wedges across promising circuit cuts. In other
words, the sequence ensures that entanglement created
in a given cycle by cross-partition gates is transferred
into the bulk of each partition in the following cycle.

On the other hand, the four-cycle sequence EFGH en-
ables formation of wedges and thus efficient simulation
of RQCs using SFA. We employ the latter sequence in
most evaluation circuits and use the former eight-cycle
sequence for the quantum supremacy circuits and largest
evaluation circuits, see Table III.

VIII. LARGE SCALE XEB RESULTS

In Section VI, we have detailed the device calibration
processes used for individual components such as qubits,
couplers, and coupled pairs of qubits. We have also intro-
duced cross-entropy benchmarking (XEB) as a method
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Circuit variant n m Single-qubit gates All two-qubit gates Cross-partition two-qubit gates

non-simplifiable full 53 20 1113 430 35
non-simplifiable elided 53 20 1113 408 13
non-simplifiable patch 53 20 1113 395 0

simplifiable full 38 14 570 210 18
simplifiable elided 38 14 570 204 12
simplifiable patch 38 14 570 192 0

TABLE IV. Gate counts. Number of gates in selected random quantum circuits employed for quantum supremacy demon-
stration and performance evaluation of the Sycamore processor.

FIG. S26. Cross-partition wedge. Two consecutive cross-
partition gates which share a qubit form a wedge, as illus-
trated here with gates highlighted in turquoise and magenta.
Schmidt rank of a single two-qubit gate is at most four.
Schmidt rank of a wedge is also at most four. Therefore,
generally wedges are not efficient at increasing entanglement
across partitions and can be simulated efficiently by the SFA.

that allows us to evaluate the performance of a quantum
system. In this section, we describe how we use a few cir-
cuit variations to benchmark our Sycamore processor at a
larger scale. In particular, we present a modular version
of XEB with “patch circuits” that does not require ex-
ponential classical computation resources for estimating
XEB fidelities FXEB of larger systems. We also describe
the effect of choice of unitary model on large-scale FXEB,
as well as how we use patch circuits to monitor the sta-
bility of the full system.

A. Limitations of full circuits

We first discuss what we refer to as “full circuits”,
where for a given set of qubits, all possible two-qubit
gates participate in the circuit. With full circuits, we
benchmarked the system as a function of size, where as
discussed below the classical resources and techniques
used to compute the FXEB is a function of the number
of qubits. The order in which each qubit was added is
labeled in Fig. S27. The rationale behind this ordering
is explained in Section VII. At each system size, we ex-
ecuted 10 randomly generated circuit instances on the

FIG. S27. Qubit ordering for large-scale XEB exper-
iments. Illustration of the order in which qubits are added
for large-scale experiments. The partition between left (black)
and right (blue) qubits along the boundary (dashed red lines)
is used in patch and elided circuits, as explained below.

processor and sampled output bitstrings 500k times for
each circuit (unless otherwise specified). To minimize
potential instance-to-instance fluctuations, we chose the
gate sequences in a persistent, “stable” manner: using
a known seed for a random number generator, for each
circuit, each time a new qubit is added, we maintain the
same gateset for all the “existing” qubits and new gates
are only introduced to qubits and pairs associated with
the added qubit (see Section VII for details).

Once a sufficient number of bitstrings are collected,
FXEB can be calculated for each system size, following
the method described in Section IV. As the system size
increases, the computational complexity of XEB analysis
grows exponentially, which can be qualitatively divided
into three regimes. For system size from 12 to 37 qubits,
XEB analysis was carried out by evolving the full quan-
tum state (Schrödinger method) on a high-performance
server (88 hyper-threads, 1.5TB memory in our case) us-
ing the “qsim” program. At 38 qubits we used a n1-
ultramem-160 VM in Google’s cloud (160 hyperthreads,
3.8TB memory). Above 38 qubits, Google’s large-scale
cluster computing became necessary, and in addition a
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FIG. S28. Comparison between XEB with patch cir-
cuits and full circuits. Full vs. patch circuit benchmarking
up to 38 qubits with 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system. We plot the
results for patch circuits out to 53 qubits.

hybrid Schrödinger-Feynman approach, the “qsimh” pro-
gram, was used to improve the efficiency: in this case,
we break the system up into two patches, where each
patch can be efficiently computed via the Schrödinger
method and then connected by a Feynman path-integral
approach (see Section X for more details). Finally we
used a Schrödinger algorithm in the Jülich supercom-
puter for some circuits up to 43 qubits.
In order to reduce the computational cost, we intro-

duce two modified circuit types in the following sections.
By using slightly simplified gate sequences, these two
methods can provide good approximate predictions of
system performance all the way out to the “quantum
supremacy” regime.

B. Patch circuits: a quick performance indicator
for large systems

The simplest approach to large-scale performance es-
timation is referred to as “patch circuits,” which pre-
dicts the performance of the full system by multiplying
together the fidelities of non-interacting subsystems, or
“patches”. In this work, we use two such subsystems,
where each patch is roughly half the size of the full sys-
tem. The two subsystems are run simultaneously, so that
effects such as gate and measurement crosstalk between
patches are included, but the two patches are analyzed
separately when computing the fidelity. The two patches
are defined by the gates removed along their boundary,
as illustrated in Fig. S27. For sufficiently large systems,
these removed two-qubit gates represent a small portion
of the whole circuit. As a consequence, FXEB of the full
system can be estimated as the product of the fidelities

of the two subsystems; compared with full circuits, the
main missing factor is the absence of entanglement be-
tween the two patches.
We evaluate the efficacy of using patch circuits by com-

paring it against full circuits with the same set of qubits.
The experimental results can be seen in Fig. 4a (main
text), where we show fidelities measured by these two
methods for systems from 12 qubits to 53 qubits, in an in-
terleaved fashion. We re-plot this data here in Fig. S28 as
well. As expected, the fidelities obtained via patch XEB
show a consistent exponential decay (up to fluctuations
arising from qubit-dependent gate fidelities and a small
amount of system fluctuations) as a function of system
size. For every system size investigated, we found that
patch and full XEB provide fidelities that are in good
agreement with each other, with a typical deviation of
∼5% of the fidelity itself (we attribute the worst-case
disagreement of 10% at 34 qubits due to a temporary
system fluctuation in between the two datasets, which
was also seen in interleaved measurement fidelity data).
Theoretically, one would expect patch circuits to result in
∼ 10% higher fidelity than full circuits due to the slightly
reduced gate count. We find that patch circuits perform
slightly worse than expected, which we believe is due to
the fact that the two-qubit gate unitaries are optimized
for full operation and not patch operation. In any case,
agreement between patch and full circuits shows that
patch circuits can be a good estimator for full circuits,
which is quite remarkable given the drastic difference in
entanglement generated by the two methods. These re-
sults give us a good preview of the system performance
in all three regimes discussed earlier.
The advantage of using patch circuits lies in its ex-

ponentially reduced computational cost, as it only re-
quires calculating FXEB of subsystems at half the full
size (or less if a larger number of smaller patches is used).
This allows for quick estimates of large-scale system per-
formance on a day-to-day basis, including for system
and circuit sizes in the “quantum supremacy” regime.
As a consequence, we typically use patch circuits as a
quick system performance indicator, which we use for
rapid turnarounds between system calibration and per-
formance evaluation, as well as for monitoring full system
stability (see Section VIIIH). We also note that patch cir-
cuits can be used well beyond 50 qubits, and in fact can
be extended to arbitrary numbers of qubits while keep-
ing the analysis time at most linear in the number of
qubits (or even constant if the patches can be analyzed
in parallel), assuming that the patch size stays roughly
constant and more non-interacting patches are added as
the number of qubits grows.

C. Elided circuits: a more rigorous performance
estimator for large systems

For a more rigorous prediction of full FXEB, we intro-
duce a more sophisticated approach referred to as “elided
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Circuit variant n m Single-qubit gates All two-qubit gates Cross-partition two-qubit gates

non-simplifiable full 53 20 1113 430 35
non-simplifiable elided 53 20 1113 408 13
non-simplifiable patch 53 20 1113 395 0

simplifiable full 38 14 570 210 18
simplifiable elided 38 14 570 204 12
simplifiable patch 38 14 570 192 0

TABLE IV. Gate counts. Number of gates in selected random quantum circuits employed for quantum supremacy demon-
stration and performance evaluation of the Sycamore processor.

FIG. S26. Cross-partition wedge. Two consecutive cross-
partition gates which share a qubit form a wedge, as illus-
trated here with gates highlighted in turquoise and magenta.
Schmidt rank of a single two-qubit gate is at most four.
Schmidt rank of a wedge is also at most four. Therefore,
generally wedges are not efficient at increasing entanglement
across partitions and can be simulated efficiently by the SFA.

that allows us to evaluate the performance of a quantum
system. In this section, we describe how we use a few cir-
cuit variations to benchmark our Sycamore processor at a
larger scale. In particular, we present a modular version
of XEB with “patch circuits” that does not require ex-
ponential classical computation resources for estimating
XEB fidelities FXEB of larger systems. We also describe
the effect of choice of unitary model on large-scale FXEB,
as well as how we use patch circuits to monitor the sta-
bility of the full system.

A. Limitations of full circuits

We first discuss what we refer to as “full circuits”,
where for a given set of qubits, all possible two-qubit
gates participate in the circuit. With full circuits, we
benchmarked the system as a function of size, where as
discussed below the classical resources and techniques
used to compute the FXEB is a function of the number
of qubits. The order in which each qubit was added is
labeled in Fig. S27. The rationale behind this ordering
is explained in Section VII. At each system size, we ex-
ecuted 10 randomly generated circuit instances on the

FIG. S27. Qubit ordering for large-scale XEB exper-
iments. Illustration of the order in which qubits are added
for large-scale experiments. The partition between left (black)
and right (blue) qubits along the boundary (dashed red lines)
is used in patch and elided circuits, as explained below.

processor and sampled output bitstrings 500k times for
each circuit (unless otherwise specified). To minimize
potential instance-to-instance fluctuations, we chose the
gate sequences in a persistent, “stable” manner: using
a known seed for a random number generator, for each
circuit, each time a new qubit is added, we maintain the
same gateset for all the “existing” qubits and new gates
are only introduced to qubits and pairs associated with
the added qubit (see Section VII for details).

Once a sufficient number of bitstrings are collected,
FXEB can be calculated for each system size, following
the method described in Section IV. As the system size
increases, the computational complexity of XEB analysis
grows exponentially, which can be qualitatively divided
into three regimes. For system size from 12 to 37 qubits,
XEB analysis was carried out by evolving the full quan-
tum state (Schrödinger method) on a high-performance
server (88 hyper-threads, 1.5TB memory in our case) us-
ing the “qsim” program. At 38 qubits we used a n1-
ultramem-160 VM in Google’s cloud (160 hyperthreads,
3.8TB memory). Above 38 qubits, Google’s large-scale
cluster computing became necessary, and in addition a
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FIG. S28. Comparison between XEB with patch cir-
cuits and full circuits. Full vs. patch circuit benchmarking
up to 38 qubits with 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system. We plot the
results for patch circuits out to 53 qubits.

hybrid Schrödinger-Feynman approach, the “qsimh” pro-
gram, was used to improve the efficiency: in this case,
we break the system up into two patches, where each
patch can be efficiently computed via the Schrödinger
method and then connected by a Feynman path-integral
approach (see Section X for more details). Finally we
used a Schrödinger algorithm in the Jülich supercom-
puter for some circuits up to 43 qubits.
In order to reduce the computational cost, we intro-

duce two modified circuit types in the following sections.
By using slightly simplified gate sequences, these two
methods can provide good approximate predictions of
system performance all the way out to the “quantum
supremacy” regime.

B. Patch circuits: a quick performance indicator
for large systems

The simplest approach to large-scale performance es-
timation is referred to as “patch circuits,” which pre-
dicts the performance of the full system by multiplying
together the fidelities of non-interacting subsystems, or
“patches”. In this work, we use two such subsystems,
where each patch is roughly half the size of the full sys-
tem. The two subsystems are run simultaneously, so that
effects such as gate and measurement crosstalk between
patches are included, but the two patches are analyzed
separately when computing the fidelity. The two patches
are defined by the gates removed along their boundary,
as illustrated in Fig. S27. For sufficiently large systems,
these removed two-qubit gates represent a small portion
of the whole circuit. As a consequence, FXEB of the full
system can be estimated as the product of the fidelities

of the two subsystems; compared with full circuits, the
main missing factor is the absence of entanglement be-
tween the two patches.
We evaluate the efficacy of using patch circuits by com-

paring it against full circuits with the same set of qubits.
The experimental results can be seen in Fig. 4a (main
text), where we show fidelities measured by these two
methods for systems from 12 qubits to 53 qubits, in an in-
terleaved fashion. We re-plot this data here in Fig. S28 as
well. As expected, the fidelities obtained via patch XEB
show a consistent exponential decay (up to fluctuations
arising from qubit-dependent gate fidelities and a small
amount of system fluctuations) as a function of system
size. For every system size investigated, we found that
patch and full XEB provide fidelities that are in good
agreement with each other, with a typical deviation of
∼5% of the fidelity itself (we attribute the worst-case
disagreement of 10% at 34 qubits due to a temporary
system fluctuation in between the two datasets, which
was also seen in interleaved measurement fidelity data).
Theoretically, one would expect patch circuits to result in
∼ 10% higher fidelity than full circuits due to the slightly
reduced gate count. We find that patch circuits perform
slightly worse than expected, which we believe is due to
the fact that the two-qubit gate unitaries are optimized
for full operation and not patch operation. In any case,
agreement between patch and full circuits shows that
patch circuits can be a good estimator for full circuits,
which is quite remarkable given the drastic difference in
entanglement generated by the two methods. These re-
sults give us a good preview of the system performance
in all three regimes discussed earlier.
The advantage of using patch circuits lies in its ex-

ponentially reduced computational cost, as it only re-
quires calculating FXEB of subsystems at half the full
size (or less if a larger number of smaller patches is used).
This allows for quick estimates of large-scale system per-
formance on a day-to-day basis, including for system
and circuit sizes in the “quantum supremacy” regime.
As a consequence, we typically use patch circuits as a
quick system performance indicator, which we use for
rapid turnarounds between system calibration and per-
formance evaluation, as well as for monitoring full system
stability (see Section VIIIH). We also note that patch cir-
cuits can be used well beyond 50 qubits, and in fact can
be extended to arbitrary numbers of qubits while keep-
ing the analysis time at most linear in the number of
qubits (or even constant if the patches can be analyzed
in parallel), assuming that the patch size stays roughly
constant and more non-interacting patches are added as
the number of qubits grows.

C. Elided circuits: a more rigorous performance
estimator for large systems

For a more rigorous prediction of full FXEB, we intro-
duce a more sophisticated approach referred to as “elided
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FIG. S29. Comparison between XEB with elided cir-
cuits and full circuits. Full vs. elided circuit benchmark-
ing up to 38 qubits at 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system.

circuits”. Similar to patch circuits, we partition a given
set of qubits into two subsets separated by a boundary,
but elide (remove) only a fraction of the two-qubit gates
along this boundary during a few early cycles of the se-
quence (more specifically, we elide the earliest gates in
time, meaning early layers will have none of their gates
along the boundary while later layers will have all of their
usual gates across the boundary). Accordingly, the two
subsets of qubits are no longer isolated from each other
and we cannot simply compute their fidelities separately
and multiply. Rather, we must still compute the evolu-
tion of the full system. Given that a sufficient number
of gates are elided, we can take advantage of the “weak
link” between patches with a hybrid analysis technique:
we compute each patch via the Schrödinger method and
then connect them with a Feynman path-integral ap-
proach (see Section X for more details on this “qsimh”
program).

Compared with patch circuits, elided circuits more
closely approach a description of the full system perfor-
mance under a full circuit: in addition to capturing is-
sues such as control and readout crosstalk, elided circuits
allow entanglement to form between the two weakly con-
nected subsystems. It covers essentially all the possible
processes that occur in the full circuit, and therefore can
be used to predict system performance at a dramatically
reduced computational cost, albeit significantly costlier
than patch circuits.

In order to validate the use of elided circuits as a sys-
tem performance estimator, we evaluated its accuracy
via a direct comparison with full circuits. In Fig. S29
we show two sets of fidelities from interleaved full and
elided circuit experiments. For every system size investi-
gated, using elided circuits yields a fidelity value that is
in good agreement with the one obtained with the corre-

sponding full circuits. The average ratio of elided circuit
fidelity to full circuit fidelity over all verification circuits
was found to be 1.01, with a standard deviation of 5%,
dominated by system fluctuations. It is this agreement
that certifies elided circuits as a precise predictor for full
circuits (within a systematic relative uncertainty of 5%),
which we rely on to extrapolate the system performance
in the regimes where full circuit analysis is too expensive
to perform (i.e., Fig. 4b of the main text).
Compared with full circuits, elided circuits can result

in a reduced amount of quantum entanglement in the
system. The amount of reduced entanglement can be
bounded from above by counting the number of iSWAP
gates across the boundary: one iSWAP gate generates at
most two units of bipartite entanglements (ebits). This
upper bound translates directly into the exponential cost
of a Schrödinger-Feynman simulation. For elided circuits
with 50 qubits and 14 cycles, the full circuit has approxi-
mately 25 ebits of entanglement, while with 6 elisions the
elided circuit has at most 12 ebits entanglement between
the two patches. For the 53-qubit elided circuits used
in the main paper, there were enough iSWAPs across
the boundary that the amount of entanglement between
patches for full vs. elided circuits should be close, giv-
ing us even more confidence in using elided circuits to
predict the fidelity of the circuit used to claim quantum
supremacy.

D. Choice of unitary model for two-qubit
entangling gates

In Section VI, we discussed how the two-qubit gate
unitaries can be measured by two different approaches:
isolated two-qubit XEB and per-layer simultaneous two-
qubit XEB. These two methods resulted in two different
unitary models when deducing the best-fit unitary. Since
we must specify the two-qubit gate unitary matrices in
order to compute FXEB of the larger system, a natural
question is which unitary model should be used. To ad-
dress this question, we point out that full XEB on the
large system occurs in repeated cycles, where during each
two-qubit gate layer, all the two-qubit gates in the same
orientation take place at the same time (see Fig. 3 in
the main text). As a consequence, the two-qubit gate
layers during simultaneous pair XEB in Fig. S19 emu-
late the corresponding layer when running full XEB on a
large system. Accordingly, learning the unitaries in par-
allel operation captures any small coherent modifications
induced by the simultaneous application of the other two-
qubit gates, such as flux control crosstalk and dispersive
shifts from stray interactions. This is evident from the
fact that by re-learning the two-qubit unitary parame-
ters, the errors extracted from simultaneous pair XEB
become purity-limited (see Fig. S19). This correspon-
dence assures us that unitary parameters extracted from
simultaneous pair XEB provides a more accurate descrip-
tion of the full system when full XEB is performed.
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Simultaneous, w/ arbitrary unitaries
Simultaneous, w/ "Sycamore" unitaries
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Isolated, w/ arbitrary unitaries

Effect of unitary model choice on circuit fidelity

FIG. S30. Effect of unitary model on full system fi-
delity. a, Patch circuit fidelity versus number of qubits and
choice of unitary model. b, Same but versus number of cycles
and for the non-simplifiable supremacy circuits. Blue: patch
XEB fidelities using the unitaries deduced from the best-fit
fSim unitary from isolated pair XEB. Green: patch XEB fi-
delities using the unitaries deduced from the best-fit fSim uni-
tary from per-layer simultaneous pair XEB. Orange: patch
XEB fidelities using the unitaries deduced from the best-fit
“Sycamore unitary” (θ = π/2, φ = π/6) from per-layer si-
multaneous pair XEB. As expected, the best fidelities arise
from fitting to the most general unitary in parallel operation,
although the fidelities are high enough to achieve quantum
supremacy with the Sycamore unitary model as well.

In Fig. S30, we show patch circuit fidelities at different
system sizes, where the fidelity is evaluated using three
different unitary models: the best-fit unitaries from iso-
lated pair XEB, the best-fit unitaries from simultaneous
pair XEB, and the best-fit “Sycamore” unitaries from si-
multaneous pair XEB. The Sycamore unitaries are the
unitaries obtained when keeping the swap angle fixed at
θ = π/2 and conditional phase fixed at φ = π/6 for all

qubits, and then fitting only for two single-qubit phase
terms. For the purpose of benchmarking the system fi-
delity for the operations we performed, we have focused
on using unitaries learned from simultaneous pair XEB,
which provide the most accurate description of the sys-
tem. The validity of this approach is experimentally veri-
fied—for the same gate sequences, using the simultaneous
pair XEB unitaries leads to the best full-system fidelity
values at every system size. This is direct evidence that
the unitaries learned from simultaneous pair XEB form a
more accurate description of the system than those from
isolated pair XEB.
On the other hand, in order to be useful for generic

quantum algorithms, it will be desirable to use calibrated
gatesets that are independent of the specific gate se-
quences used. For this purpose, it is important to check
the circuit fidelity under the other two unitary models,
where the two-qubit gate unitaries were calibrated in
more generic settings. One can see that fidelities cal-
culated from these two unitary models still demonstrate
nearly as good performance despite the addition of small
coherent control errors. They differ from the fidelities
using the simultaneous pair XEB unitaries by less than
a factor of 2 at 50 qubits (fidelity goes from 9 × 10−3

to 5 × 10−3 at 50 qubits). This is remarkable since it
suggests going from a 2-qubit setting to 50-qubit setting,
our full system calibration precision degrades only by a
factor of < 2 despite the system size increasing by a fac-
tor of 25. This high precision in gate calibration gives us
confidence to use our processors in NISQ algorithms.

E. Understanding system performance: error
model prediction

In this section, we perform additional analysis to com-
pare the measured fidelities to that predicted from the
constituent gate and measurement errors.
The most commonly used error model in quantum

computing theory is the digital error model. Analogous
to the independent noise model in classical information
theory, the digital error model is based on the assumption
that there are no space and time correlations between er-
rors of quantum gates [26, 58, 59]. If this assumption is
valid, it should be possible to construct the fidelity of a
large quantum system from the fidelities of its constituent
parts: single- and two-qubit gates, and measurement. It
is important to point out that the gate fidelity metric that
should be used here is the entanglement fidelity, 1 − eP
(see Section V for more details). This is the correct quan-
tity to describe the fidelity of quantum operations since,
in contrast to other metrics such as the commonly used
average fidelity, it is independent of the dimension of the
Hilbert space.
In Fig. S31, we show fidelities as a function of both

system size and number of cycles (circuit depth), mea-
sured with patch circuits. In each plot, we compare
the measured fidelities to the predicted fidelities, which
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FIG. S29. Comparison between XEB with elided cir-
cuits and full circuits. Full vs. elided circuit benchmark-
ing up to 38 qubits at 14 cycles, showing close agreement to
within the intrinsic fluctuations of the system.

circuits”. Similar to patch circuits, we partition a given
set of qubits into two subsets separated by a boundary,
but elide (remove) only a fraction of the two-qubit gates
along this boundary during a few early cycles of the se-
quence (more specifically, we elide the earliest gates in
time, meaning early layers will have none of their gates
along the boundary while later layers will have all of their
usual gates across the boundary). Accordingly, the two
subsets of qubits are no longer isolated from each other
and we cannot simply compute their fidelities separately
and multiply. Rather, we must still compute the evolu-
tion of the full system. Given that a sufficient number
of gates are elided, we can take advantage of the “weak
link” between patches with a hybrid analysis technique:
we compute each patch via the Schrödinger method and
then connect them with a Feynman path-integral ap-
proach (see Section X for more details on this “qsimh”
program).

Compared with patch circuits, elided circuits more
closely approach a description of the full system perfor-
mance under a full circuit: in addition to capturing is-
sues such as control and readout crosstalk, elided circuits
allow entanglement to form between the two weakly con-
nected subsystems. It covers essentially all the possible
processes that occur in the full circuit, and therefore can
be used to predict system performance at a dramatically
reduced computational cost, albeit significantly costlier
than patch circuits.

In order to validate the use of elided circuits as a sys-
tem performance estimator, we evaluated its accuracy
via a direct comparison with full circuits. In Fig. S29
we show two sets of fidelities from interleaved full and
elided circuit experiments. For every system size investi-
gated, using elided circuits yields a fidelity value that is
in good agreement with the one obtained with the corre-

sponding full circuits. The average ratio of elided circuit
fidelity to full circuit fidelity over all verification circuits
was found to be 1.01, with a standard deviation of 5%,
dominated by system fluctuations. It is this agreement
that certifies elided circuits as a precise predictor for full
circuits (within a systematic relative uncertainty of 5%),
which we rely on to extrapolate the system performance
in the regimes where full circuit analysis is too expensive
to perform (i.e., Fig. 4b of the main text).
Compared with full circuits, elided circuits can result

in a reduced amount of quantum entanglement in the
system. The amount of reduced entanglement can be
bounded from above by counting the number of iSWAP
gates across the boundary: one iSWAP gate generates at
most two units of bipartite entanglements (ebits). This
upper bound translates directly into the exponential cost
of a Schrödinger-Feynman simulation. For elided circuits
with 50 qubits and 14 cycles, the full circuit has approxi-
mately 25 ebits of entanglement, while with 6 elisions the
elided circuit has at most 12 ebits entanglement between
the two patches. For the 53-qubit elided circuits used
in the main paper, there were enough iSWAPs across
the boundary that the amount of entanglement between
patches for full vs. elided circuits should be close, giv-
ing us even more confidence in using elided circuits to
predict the fidelity of the circuit used to claim quantum
supremacy.

D. Choice of unitary model for two-qubit
entangling gates

In Section VI, we discussed how the two-qubit gate
unitaries can be measured by two different approaches:
isolated two-qubit XEB and per-layer simultaneous two-
qubit XEB. These two methods resulted in two different
unitary models when deducing the best-fit unitary. Since
we must specify the two-qubit gate unitary matrices in
order to compute FXEB of the larger system, a natural
question is which unitary model should be used. To ad-
dress this question, we point out that full XEB on the
large system occurs in repeated cycles, where during each
two-qubit gate layer, all the two-qubit gates in the same
orientation take place at the same time (see Fig. 3 in
the main text). As a consequence, the two-qubit gate
layers during simultaneous pair XEB in Fig. S19 emu-
late the corresponding layer when running full XEB on a
large system. Accordingly, learning the unitaries in par-
allel operation captures any small coherent modifications
induced by the simultaneous application of the other two-
qubit gates, such as flux control crosstalk and dispersive
shifts from stray interactions. This is evident from the
fact that by re-learning the two-qubit unitary parame-
ters, the errors extracted from simultaneous pair XEB
become purity-limited (see Fig. S19). This correspon-
dence assures us that unitary parameters extracted from
simultaneous pair XEB provides a more accurate descrip-
tion of the full system when full XEB is performed.
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FIG. S30. Effect of unitary model on full system fi-
delity. a, Patch circuit fidelity versus number of qubits and
choice of unitary model. b, Same but versus number of cycles
and for the non-simplifiable supremacy circuits. Blue: patch
XEB fidelities using the unitaries deduced from the best-fit
fSim unitary from isolated pair XEB. Green: patch XEB fi-
delities using the unitaries deduced from the best-fit fSim uni-
tary from per-layer simultaneous pair XEB. Orange: patch
XEB fidelities using the unitaries deduced from the best-fit
“Sycamore unitary” (θ = π/2, φ = π/6) from per-layer si-
multaneous pair XEB. As expected, the best fidelities arise
from fitting to the most general unitary in parallel operation,
although the fidelities are high enough to achieve quantum
supremacy with the Sycamore unitary model as well.

In Fig. S30, we show patch circuit fidelities at different
system sizes, where the fidelity is evaluated using three
different unitary models: the best-fit unitaries from iso-
lated pair XEB, the best-fit unitaries from simultaneous
pair XEB, and the best-fit “Sycamore” unitaries from si-
multaneous pair XEB. The Sycamore unitaries are the
unitaries obtained when keeping the swap angle fixed at
θ = π/2 and conditional phase fixed at φ = π/6 for all

qubits, and then fitting only for two single-qubit phase
terms. For the purpose of benchmarking the system fi-
delity for the operations we performed, we have focused
on using unitaries learned from simultaneous pair XEB,
which provide the most accurate description of the sys-
tem. The validity of this approach is experimentally veri-
fied—for the same gate sequences, using the simultaneous
pair XEB unitaries leads to the best full-system fidelity
values at every system size. This is direct evidence that
the unitaries learned from simultaneous pair XEB form a
more accurate description of the system than those from
isolated pair XEB.
On the other hand, in order to be useful for generic

quantum algorithms, it will be desirable to use calibrated
gatesets that are independent of the specific gate se-
quences used. For this purpose, it is important to check
the circuit fidelity under the other two unitary models,
where the two-qubit gate unitaries were calibrated in
more generic settings. One can see that fidelities cal-
culated from these two unitary models still demonstrate
nearly as good performance despite the addition of small
coherent control errors. They differ from the fidelities
using the simultaneous pair XEB unitaries by less than
a factor of 2 at 50 qubits (fidelity goes from 9 × 10−3

to 5 × 10−3 at 50 qubits). This is remarkable since it
suggests going from a 2-qubit setting to 50-qubit setting,
our full system calibration precision degrades only by a
factor of < 2 despite the system size increasing by a fac-
tor of 25. This high precision in gate calibration gives us
confidence to use our processors in NISQ algorithms.

E. Understanding system performance: error
model prediction

In this section, we perform additional analysis to com-
pare the measured fidelities to that predicted from the
constituent gate and measurement errors.
The most commonly used error model in quantum

computing theory is the digital error model. Analogous
to the independent noise model in classical information
theory, the digital error model is based on the assumption
that there are no space and time correlations between er-
rors of quantum gates [26, 58, 59]. If this assumption is
valid, it should be possible to construct the fidelity of a
large quantum system from the fidelities of its constituent
parts: single- and two-qubit gates, and measurement. It
is important to point out that the gate fidelity metric that
should be used here is the entanglement fidelity, 1 − eP
(see Section V for more details). This is the correct quan-
tity to describe the fidelity of quantum operations since,
in contrast to other metrics such as the commonly used
average fidelity, it is independent of the dimension of the
Hilbert space.
In Fig. S31, we show fidelities as a function of both

system size and number of cycles (circuit depth), mea-
sured with patch circuits. In each plot, we compare
the measured fidelities to the predicted fidelities, which

Quantum supremacy A3.37



36

a

b

Number of qubits, n

 X
EB

 fi
de

lit
y

XE
B 
fid

el
ity

Prediction vs. m (patch circuits @ n=51 qubits)

Prediction vs. n (patch circuits @ m=14 cycles)

Measured
Predicted (gate error only)
Predicted (gate and readout error)

Measured
Predicted (gate error only)
Predicted (gate and readout error)

Number of cycles, m

FIG. S31. Predicted vs. measured large-scale XEB fi-
delity. a, Data and two predictions for 14-cycle patch circuits
vs. number of qubits. Predictions are based on the product
of single- and two-qubit gate entanglement fidelities under
simultaneous operation. Blue curve contains measured fideli-
ties. Orange is the prediction based only on gate errors during
parallel operation, but without taking measurement error into
account. Green is the same but multiplied by the measured
readout fidelities. b, Same as the first panel, but vs. num-
ber of cycles at a fixed number of qubits n = 51. Again, the
prediction from simultaneous gate fidelities and measurement
fidelity is a good prediction of the actual system performance.

are calculated from a simple multiplication of individual
gate entanglement fidelities as measured during simulta-
neous operation, along with the measurement fidelities
obtained during simultaneous measurement. We note
that the measured readout fidelities actually also auto-
matically include the effect of state preparation errors
as well. More explicitly, if a circuit contains the set of
single-qubit gates G1, the set of two-qubit gates G2, and

the set of qubits Q, then we approximate the fidelity F
as

F =
∏
g∈G1

(1− eg)
∏
g∈G2

(1− eg)
∏
q∈Q

(1− eq), (77)

where eg are the individual gate Pauli errors and eq are
the state preparation and measurement errors of individ-
ual qubits. It is evident that there is a good agreement
between the measured and predicted fidelities, with de-
viations of up to only 10-20%. Given that the sequence
here involves tens of qubits and ∼ 1000 quantum gates,
this level of agreement provides strong evidence to the
validity of the digital error model.
This conclusion can be further strengthened by the

close agreement between the fidelities of full circuits,
patch circuits, and elided circuits. Even though these
three methods differ only slightly in the gate sequence,
they can result in systems with drastically different levels
of computational complexity and entanglement between
subsystems. The agreement between the fidelities mea-
sured by these different methods, as well as the agreement
with the predicted fidelity from individual gates, gives
compelling evidence confirming the assumptions made
by the digital error model. Moreover, these assumptions
remain valid even in the presence of quantum entangle-
ment.
The validation of the digital error model has crucial

consequences, in particular for quantum error correction.
The absence of space or time correlations in quantum
noise has been a commonly assumed property in quan-
tum error correction since the very first paper on the
topic [58]. Our data is evidence that such a property is
achievable with existing quantum processors.

F. Distribution of bitstring probabilities

In Section IV, we motivate two different estimates for
fidelity F , one based on the cross entropy, Eq. (28), and
the other based on linear cross entropy, Eq. (27). In
this section, we examine the probabilities of sampled bit-
strings and compare them against theoretical distribu-
tions. We use bitstring samples from non-supremacy re-
gion to demonstrate the analysis methodology, then ap-
ply it to the sample in the supremacy region.
The theoretical PDF for the bitstring probability p

with linear XEB is

Pl(x|F ) = (Fx + (1− F ))e−x

where x ≡ Dp is the probability p scaled by the Hilbert
space dimension D, and F is the linear cross entropy
fidelity. The PDF for log p is

Pc(x|F ) = (1 + F (ex − 1))ex−ex

where x ≡ log(Dp) and F is the cross entropy fidelity.
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FIG. S32. Histograms of ideal probabilities. The ideal
probability p is calculated from the final state amplitudes of
a (20-qubit 14-cycle) random circuit. The blue, orange, and
green histogram is the ideal probabilities of bitstrings sampled
uniformly at random, from the experiment, and ideal output,
respectively. a, The distribution of Dp and theoretical curves
Pl(x|Fl) normalized to histogram counts for Fl = 0, F̂l, 1, re-
spectively. b, The distribution of log(Dp) and theoretical

curves Pc(x|Fc) for Fc = 0, F̂c, 1, respectively.

From a set of bitstrings {qi}, the fidelity is estimated
from the ideal probabilities {pi = ps(qi)} as

F̂l = 〈Dp〉 − 1, (78)

F̂c = 〈log(Dp)〉+ γ, (79)

where γ is the Euler-Mascheroni constant, see Sec. IVB.
Figure S32 shows the distribution of {pi} from 0.5 mil-

lion bitstrings obtained in an experiment with a 20-qubit
14-cycle random quantum circuit. For comparison, we
produce 0.5 million bitstrings sampled uniformly at ran-
dom and 0.5 million bitstrings sampled from the output
distribution of the ideal circuit and show them in the
same figure. The theoretical distribution curves are also
shown, where the fidelity estimated from data is fed into

FIG. S33. The Kolmogorov distribution function. This
function is used to compute p-value from a given DKS and
number of samples Ns.

the curve Pl(x|F̂ ) and Pc(x|F̂ ).
We see good agreements between experiment and the-

ory. To quantify the agreements, we use the Kolmogorov-
Smirnov test [60] to characterize the goodness of fit of
data {pi} to theoretical PDFs. First we compute the
Kolmogorov-Smirnov statistics DKS , that is, the distance
between data and theory as the supremum of point-wise
distances between the empirical cumulative distribution
function of data ECDF(p) and the theoretical cumulative
distribution function CDF(p):

DKS = sup
i

|ECDF(pi)− CDF(pi)|.

We then convert the distance DKS to a p-value using the
Kolmogorov distribution shown in Fig. S33. The p-value
is used for rejecting the null hypothesis that the data
{pi} is consistent with the theoretical distribution. The
whole Kolmogorov-Smirnov test is done using the scipy
package [61] and checked against R package ks.test [62].
Both packages produce consistent results.
We test the ideal probabilities of bitstrings observed in

the experiment {pi} against 2 theoretical distributions,

one with estimated fidelity F = F̂ and one with fidelity
F = 0. The Kolmogorov-Smirnov statistics DKS and the
p-value of every circuit are shown in figure S34. Note that
the p-values for F = 0 are not shown because they are
� 10−20 due to the large DKS ≈ 0.07 with Ns = 5× 105

points in the sample. That is evident from reading off
Fig. S33.
We reject the null hypothesis that the experimental

bitstrings are consistent with the uniform random distri-
bution with very high confidence for this (20-qubit 14-
cycle) random circuit.
Now we turn our attention to the supremacy circuits.
We use random circuits with gate elisions for check-

ing the distributions because it is exponentially expen-
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FIG. S31. Predicted vs. measured large-scale XEB fi-
delity. a, Data and two predictions for 14-cycle patch circuits
vs. number of qubits. Predictions are based on the product
of single- and two-qubit gate entanglement fidelities under
simultaneous operation. Blue curve contains measured fideli-
ties. Orange is the prediction based only on gate errors during
parallel operation, but without taking measurement error into
account. Green is the same but multiplied by the measured
readout fidelities. b, Same as the first panel, but vs. num-
ber of cycles at a fixed number of qubits n = 51. Again, the
prediction from simultaneous gate fidelities and measurement
fidelity is a good prediction of the actual system performance.

are calculated from a simple multiplication of individual
gate entanglement fidelities as measured during simulta-
neous operation, along with the measurement fidelities
obtained during simultaneous measurement. We note
that the measured readout fidelities actually also auto-
matically include the effect of state preparation errors
as well. More explicitly, if a circuit contains the set of
single-qubit gates G1, the set of two-qubit gates G2, and

the set of qubits Q, then we approximate the fidelity F
as

F =
∏
g∈G1

(1− eg)
∏
g∈G2

(1− eg)
∏
q∈Q

(1− eq), (77)

where eg are the individual gate Pauli errors and eq are
the state preparation and measurement errors of individ-
ual qubits. It is evident that there is a good agreement
between the measured and predicted fidelities, with de-
viations of up to only 10-20%. Given that the sequence
here involves tens of qubits and ∼ 1000 quantum gates,
this level of agreement provides strong evidence to the
validity of the digital error model.
This conclusion can be further strengthened by the

close agreement between the fidelities of full circuits,
patch circuits, and elided circuits. Even though these
three methods differ only slightly in the gate sequence,
they can result in systems with drastically different levels
of computational complexity and entanglement between
subsystems. The agreement between the fidelities mea-
sured by these different methods, as well as the agreement
with the predicted fidelity from individual gates, gives
compelling evidence confirming the assumptions made
by the digital error model. Moreover, these assumptions
remain valid even in the presence of quantum entangle-
ment.
The validation of the digital error model has crucial

consequences, in particular for quantum error correction.
The absence of space or time correlations in quantum
noise has been a commonly assumed property in quan-
tum error correction since the very first paper on the
topic [58]. Our data is evidence that such a property is
achievable with existing quantum processors.

F. Distribution of bitstring probabilities

In Section IV, we motivate two different estimates for
fidelity F , one based on the cross entropy, Eq. (28), and
the other based on linear cross entropy, Eq. (27). In
this section, we examine the probabilities of sampled bit-
strings and compare them against theoretical distribu-
tions. We use bitstring samples from non-supremacy re-
gion to demonstrate the analysis methodology, then ap-
ply it to the sample in the supremacy region.
The theoretical PDF for the bitstring probability p

with linear XEB is

Pl(x|F ) = (Fx + (1− F ))e−x

where x ≡ Dp is the probability p scaled by the Hilbert
space dimension D, and F is the linear cross entropy
fidelity. The PDF for log p is

Pc(x|F ) = (1 + F (ex − 1))ex−ex

where x ≡ log(Dp) and F is the cross entropy fidelity.
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FIG. S32. Histograms of ideal probabilities. The ideal
probability p is calculated from the final state amplitudes of
a (20-qubit 14-cycle) random circuit. The blue, orange, and
green histogram is the ideal probabilities of bitstrings sampled
uniformly at random, from the experiment, and ideal output,
respectively. a, The distribution of Dp and theoretical curves
Pl(x|Fl) normalized to histogram counts for Fl = 0, F̂l, 1, re-
spectively. b, The distribution of log(Dp) and theoretical

curves Pc(x|Fc) for Fc = 0, F̂c, 1, respectively.

From a set of bitstrings {qi}, the fidelity is estimated
from the ideal probabilities {pi = ps(qi)} as

F̂l = 〈Dp〉 − 1, (78)

F̂c = 〈log(Dp)〉+ γ, (79)

where γ is the Euler-Mascheroni constant, see Sec. IVB.
Figure S32 shows the distribution of {pi} from 0.5 mil-

lion bitstrings obtained in an experiment with a 20-qubit
14-cycle random quantum circuit. For comparison, we
produce 0.5 million bitstrings sampled uniformly at ran-
dom and 0.5 million bitstrings sampled from the output
distribution of the ideal circuit and show them in the
same figure. The theoretical distribution curves are also
shown, where the fidelity estimated from data is fed into

FIG. S33. The Kolmogorov distribution function. This
function is used to compute p-value from a given DKS and
number of samples Ns.

the curve Pl(x|F̂ ) and Pc(x|F̂ ).
We see good agreements between experiment and the-

ory. To quantify the agreements, we use the Kolmogorov-
Smirnov test [60] to characterize the goodness of fit of
data {pi} to theoretical PDFs. First we compute the
Kolmogorov-Smirnov statistics DKS , that is, the distance
between data and theory as the supremum of point-wise
distances between the empirical cumulative distribution
function of data ECDF(p) and the theoretical cumulative
distribution function CDF(p):

DKS = sup
i

|ECDF(pi)− CDF(pi)|.

We then convert the distance DKS to a p-value using the
Kolmogorov distribution shown in Fig. S33. The p-value
is used for rejecting the null hypothesis that the data
{pi} is consistent with the theoretical distribution. The
whole Kolmogorov-Smirnov test is done using the scipy
package [61] and checked against R package ks.test [62].
Both packages produce consistent results.
We test the ideal probabilities of bitstrings observed in

the experiment {pi} against 2 theoretical distributions,

one with estimated fidelity F = F̂ and one with fidelity
F = 0. The Kolmogorov-Smirnov statistics DKS and the
p-value of every circuit are shown in figure S34. Note that
the p-values for F = 0 are not shown because they are
� 10−20 due to the large DKS ≈ 0.07 with Ns = 5× 105

points in the sample. That is evident from reading off
Fig. S33.
We reject the null hypothesis that the experimental

bitstrings are consistent with the uniform random distri-
bution with very high confidence for this (20-qubit 14-
cycle) random circuit.
Now we turn our attention to the supremacy circuits.
We use random circuits with gate elisions for check-

ing the distributions because it is exponentially expen-
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FIG. S34. The Kolmogorov-Smirnov test results for
each of 10 circuits for a (20-qubit 14-cycle) random
circuit. See text for the definition of DKS and p-value. The
upper plot is for linear XEB, and the lower one is for log XEB.

sive to calculate the ideal theoretical probability of a bit-
string without gate elisions. The effect on fidelity from
gate elisions is well understood, see Sec. VIII C. The gate
elisions are chosen to minimize the effect while making
the classical estimation feasible, see Sec. VIIG 1. We
sample Ns = 3 × 106 bitstrings {qi|i = 1...Ns} from
each of 10 (53-qubit 20-cycle) random circuits, and com-
pute the theoretical ideal probabilities of each bitstring
{pi|i = 1...Ns}.

The distributions of Dp and log(Dp) from one such
circuit along with the corresponding theoretical curves
are shown in Fig. S35.

We again use the Kolmogorov-Smirnov test to charac-
terize the goodness of fit of data {pi} to theoretical PDFs

with estimated fidelity F = F̂ and zero fidelity F = 0.
The Kolmogorov-Smirnov statistics DKS and the p-value
of every circuit are shown in figure S36.

The p-value for the null hypothesis of zero fidelity is

FIG. S35. Distribution of bitstring probabilities from
a 53-qubit 20-cycle circuit. We calculate the theoretical
probabilities of experimentally-observed bitstrings. a, The
distribution of Dp and the theoretical curve Pl(x|F̂l) normal-
ized to histogram counts. b, The distribution of log(Dp) with

theoretical curve Pc(x|F̂c).

generally small for every circuit, with a maximum of
0.045 for circuit number 1. We say that the null hy-
pothesis of zero fidelity is rejected better than a 95%
confidence level for each circuit. On the other hand, the
p-value of null hypothesis of estimated fidelity F̂ is gener-
ally large. The p-value is between 0.18 and 0.98 for linear
XEB, and between 0.33 and 0.98 for log XEB. That in-
dicates that the empirical cumulative distribution func-
tions ECDF(pi) from data is quite consistent with the

theoretical CDF(pi|F̂ ).

As will be seen in Fig. S38 in section VIIIG be-
low, the fidelity of individual circuits are consistent with
each other within the statistical uncertainties. There-
fore it makes sense to do a Kolmogorov-Smirnov test on
all samples combined, containing 30 million bitstrings.
The estimated fidelities from the combined sample are
F̂l = 2.24×10−3 and F̂c = 2.34×10−3, respectively. The
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FIG. S36. The Kolmogorov-Smirnov test results for
random circuits with 53 qubits. The upper plot is for
linear XEB, and the lower one is for log XEB.

DKS p-value

F = F̂ F = 0 F = F̂ F = 0

Linear XEB 1.3× 10−4 9.6× 10−4 0.66 < 2.2× 10−16

Log XEB 9.5× 10−5 9.6× 10−4 0.95 < 2.2× 10−16

TABLE V. The Kolmogorov-Smirnov test results on
combined samples.

DKS and p-values are listed in table V. The p-value for
the null hypothesis of F = 0 is very small: p-value =
3× 10−24 from scipy, and p-value < 2.2× 10−16 from R.
We note the more conservative value in the table. The
null hypothesis of F = 0 is rejected with much higher
confidence levels than individual circuits.

G. Statistical uncertainties of XEB measurements

In this section we check the statistical uncertainties of
estimated linear XEB and XEB fidelities against theoret-
ical predictions.
The statistical uncertainties of F̂l and F̂c are estimated

from data using the standard error-on-mean formula as

σ̂Fl
= D

√
Var(p)/Ns,

σ̂Fc
=

√
Var(log p)/Ns,

where Var(x) is the variance estimator of sample {xi}.
Because the distribution of p and log p have finite vari-
ances both experimentally and theoretically, we can use
the bootstrap procedure [63] to verify the estimate of
statistical uncertainties.
The fidelity distribution from 4000 bootstrap samples

are shown in Fig. S37. The distribution of F̂l and F̂c are
each fit to a Gaussian distribution function using maxi-
mum likelihood.
The Kolmogorov-Smirnov test on the Gaussian fit pro-

duces p-values of 0.99 and 0.41 for F̂l and F̂c bootstrap
distributions, respectively. It indicates that the central
limit theorem is at work and the distributions are con-
sistent with Gaussian distributions.
The estimated statistical uncertainty, the standard de-

viation of the bootstrap distribution, and the σ parame-
ter of the Gaussian fit are compared against each other
to verify that the statistical uncertainty estimate is mini-
mally biased. For the example circuit used in the figures,
the three parameters are 5.78, 5.78, 5.78 (×10−3) for σ̂Fl

,
respectively. The same parameters for σ̂Fc

are 7.40, 7.46,
7.46 (×10−3). The relative differences are less than 1%,
consistent with the expected agreement of parameters for
4000 bootstrap samples.
We repeat the bootstrap procedure on all ten 53-qubit

20-cycle circuits with 2500 bootstrap resamples. The sta-
tistical uncertainty estimates are all within 3.1% of the
bootstrap standard deviation.
The combined linear cross entropy fidelity and statisti-

cal uncertainty of 10 random circuits is calculated using
inverse-variance weighting to be F̂l = (2.24±0.18)×10−3.
The theoretical prediction of the statistical uncertainty,√
(1 + 2F − F 2)/Ns, is 1.8 × 10−4, which agrees with

the experimental estimate. As a comparison, the com-
bined cross entropy fidelity is F̂c = (2.34 ± 0.23) ×
10−3. The theoretical prediction of statistical uncer-
tainty,

√
(π2/6− F 2)/Ns, is 2.3 × 10−4, which agrees

with the experimental estimate as well. Thus, the cross
entropy fidelity and linear cross entropy fidelity estima-
tors produce consistent results. Furthermore, the statis-
tical uncertainty of the linear cross entropy estimator is
smaller, as expected from its theoretical formula.
In Fig. S38, we also show the linear XEB fidelities

and 5σ statistical uncertainties of all 10 elided circuit
instances for each circuit depth from Fig. 4b of the main
text. Variations between the fidelities of different cir-
cuit instances are consistent with the expected statisti-
cal noise due to the finite number of samples. In the last
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FIG. S34. The Kolmogorov-Smirnov test results for
each of 10 circuits for a (20-qubit 14-cycle) random
circuit. See text for the definition of DKS and p-value. The
upper plot is for linear XEB, and the lower one is for log XEB.

sive to calculate the ideal theoretical probability of a bit-
string without gate elisions. The effect on fidelity from
gate elisions is well understood, see Sec. VIII C. The gate
elisions are chosen to minimize the effect while making
the classical estimation feasible, see Sec. VIIG 1. We
sample Ns = 3 × 106 bitstrings {qi|i = 1...Ns} from
each of 10 (53-qubit 20-cycle) random circuits, and com-
pute the theoretical ideal probabilities of each bitstring
{pi|i = 1...Ns}.

The distributions of Dp and log(Dp) from one such
circuit along with the corresponding theoretical curves
are shown in Fig. S35.

We again use the Kolmogorov-Smirnov test to charac-
terize the goodness of fit of data {pi} to theoretical PDFs

with estimated fidelity F = F̂ and zero fidelity F = 0.
The Kolmogorov-Smirnov statistics DKS and the p-value
of every circuit are shown in figure S36.

The p-value for the null hypothesis of zero fidelity is

FIG. S35. Distribution of bitstring probabilities from
a 53-qubit 20-cycle circuit. We calculate the theoretical
probabilities of experimentally-observed bitstrings. a, The
distribution of Dp and the theoretical curve Pl(x|F̂l) normal-
ized to histogram counts. b, The distribution of log(Dp) with

theoretical curve Pc(x|F̂c).

generally small for every circuit, with a maximum of
0.045 for circuit number 1. We say that the null hy-
pothesis of zero fidelity is rejected better than a 95%
confidence level for each circuit. On the other hand, the
p-value of null hypothesis of estimated fidelity F̂ is gener-
ally large. The p-value is between 0.18 and 0.98 for linear
XEB, and between 0.33 and 0.98 for log XEB. That in-
dicates that the empirical cumulative distribution func-
tions ECDF(pi) from data is quite consistent with the

theoretical CDF(pi|F̂ ).

As will be seen in Fig. S38 in section VIIIG be-
low, the fidelity of individual circuits are consistent with
each other within the statistical uncertainties. There-
fore it makes sense to do a Kolmogorov-Smirnov test on
all samples combined, containing 30 million bitstrings.
The estimated fidelities from the combined sample are
F̂l = 2.24×10−3 and F̂c = 2.34×10−3, respectively. The
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FIG. S36. The Kolmogorov-Smirnov test results for
random circuits with 53 qubits. The upper plot is for
linear XEB, and the lower one is for log XEB.

DKS p-value

F = F̂ F = 0 F = F̂ F = 0

Linear XEB 1.3× 10−4 9.6× 10−4 0.66 < 2.2× 10−16

Log XEB 9.5× 10−5 9.6× 10−4 0.95 < 2.2× 10−16

TABLE V. The Kolmogorov-Smirnov test results on
combined samples.

DKS and p-values are listed in table V. The p-value for
the null hypothesis of F = 0 is very small: p-value =
3× 10−24 from scipy, and p-value < 2.2× 10−16 from R.
We note the more conservative value in the table. The
null hypothesis of F = 0 is rejected with much higher
confidence levels than individual circuits.

G. Statistical uncertainties of XEB measurements

In this section we check the statistical uncertainties of
estimated linear XEB and XEB fidelities against theoret-
ical predictions.
The statistical uncertainties of F̂l and F̂c are estimated

from data using the standard error-on-mean formula as

σ̂Fl
= D

√
Var(p)/Ns,

σ̂Fc
=

√
Var(log p)/Ns,

where Var(x) is the variance estimator of sample {xi}.
Because the distribution of p and log p have finite vari-
ances both experimentally and theoretically, we can use
the bootstrap procedure [63] to verify the estimate of
statistical uncertainties.
The fidelity distribution from 4000 bootstrap samples

are shown in Fig. S37. The distribution of F̂l and F̂c are
each fit to a Gaussian distribution function using maxi-
mum likelihood.
The Kolmogorov-Smirnov test on the Gaussian fit pro-

duces p-values of 0.99 and 0.41 for F̂l and F̂c bootstrap
distributions, respectively. It indicates that the central
limit theorem is at work and the distributions are con-
sistent with Gaussian distributions.
The estimated statistical uncertainty, the standard de-

viation of the bootstrap distribution, and the σ parame-
ter of the Gaussian fit are compared against each other
to verify that the statistical uncertainty estimate is mini-
mally biased. For the example circuit used in the figures,
the three parameters are 5.78, 5.78, 5.78 (×10−3) for σ̂Fl

,
respectively. The same parameters for σ̂Fc

are 7.40, 7.46,
7.46 (×10−3). The relative differences are less than 1%,
consistent with the expected agreement of parameters for
4000 bootstrap samples.
We repeat the bootstrap procedure on all ten 53-qubit

20-cycle circuits with 2500 bootstrap resamples. The sta-
tistical uncertainty estimates are all within 3.1% of the
bootstrap standard deviation.
The combined linear cross entropy fidelity and statisti-

cal uncertainty of 10 random circuits is calculated using
inverse-variance weighting to be F̂l = (2.24±0.18)×10−3.
The theoretical prediction of the statistical uncertainty,√
(1 + 2F − F 2)/Ns, is 1.8 × 10−4, which agrees with

the experimental estimate. As a comparison, the com-
bined cross entropy fidelity is F̂c = (2.34 ± 0.23) ×
10−3. The theoretical prediction of statistical uncer-
tainty,

√
(π2/6− F 2)/Ns, is 2.3 × 10−4, which agrees

with the experimental estimate as well. Thus, the cross
entropy fidelity and linear cross entropy fidelity estima-
tors produce consistent results. Furthermore, the statis-
tical uncertainty of the linear cross entropy estimator is
smaller, as expected from its theoretical formula.
In Fig. S38, we also show the linear XEB fidelities

and 5σ statistical uncertainties of all 10 elided circuit
instances for each circuit depth from Fig. 4b of the main
text. Variations between the fidelities of different cir-
cuit instances are consistent with the expected statisti-
cal noise due to the finite number of samples. In the last
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FIG. S37. Distribution of fidelity from 4000 bootstrap sam-
ples. a, The distribution of bootstrap F̂l. The theoretical
curve is a Gaussian fit normalized to histogram counts. b,
The distribution of bootstrap F̂c, with Gaussian fit.

panel, we also show the smaller statistical uncertainties
of the fidelity averaged over the 10 circuit instances for
each depth.

H. System stability and systematic uncertainties

In addition to statistical errors, XEB fidelity is also
subject to systematic drift as the system performance
may fluctuate and/or degrade over time. To quantify
these mechanisms, we perform a patch circuits time sta-
bility measurement on 53 qubits using a circuit of 16
cycles and 1 million bitstrings for 17.4 hours after cali-
bration. In between these measurements, we measured
the fidelity of other 53-qubit circuits with 16 to 20 cy-
cles. The analyzed results are shown in Fig. S39. The
statistical uncertainties of the fidelities are estimated to
be 1.29× 10−4, as indicated by the error bars.

We repeated the stability measurements twice, with
different circuits and on different days. Fig. S39 shows
the one that exhibits greater degradation as a conserva-
tive estimate of the effect. The measurement indicates a
degradation of fidelity within the range of time. A lin-
ear fit with F = p0 + p1t results in estimated parameters
p̂0 = (5.51± 0.055)× 10−3, p̂1 = (−6.87± 0.64)× 10−5,
and a correlation coefficient of p̂0 and p̂1, ρ, to be -0.76.
The χ2 per degree of freedom is 26.3/11.
The p-value for the χ2 for 11 degrees of freedom is

0.0058, indicating that it is not a very good fit. Because
the correctness of the estimates of statistical uncertain-
ties has been verified in Section VIIIG, this is attributed
to systematic fluctuation in addition to degradation. It
is supported by the larger variance of fidelity than the
1 σ band in Fig. S39.
The 1 σ band depends on the statistical uncertainties

of fidelities and the variance of time on the x-axis, but is
independent of the variance of fidelity. To take the vari-
ance of fidelity into account, we use the variance of the
residuals of the linear fit as an estimator of the variance of
fidelity. The standard deviation of residuals is estimated
to be 1.84×10−4, which is added to σp0

in quadrature to
be the total σp0

. The estimate is total σp0
= 1.92×10−4,

3.5 times larger than the statistical-only σp0
of 5.5×10−5.

The uncertainty on a fidelity measured at time t can be
estimated by the standard error propagation, assuming
that t is uncorrelated with either p0 or p1.

σF =
[
σ2
p0

+ 2tσp0σp1ρ + σ2
p1

t2
]1/2

(80)

The value of σF as well as the ratio σF /F in the range
of measured fidelities monotonically decreases. We take
max(σF /F ) as the estimate of relative systematic uncer-
tainty for fidelities measured in the same run. The value
is found to be 4.4% and is used in subsequent analysis.
The physical origin of the observed system fluctuations

can be attributed to many possible channels: 1/f flux
noise, qubit T1 fluctuations, control signal drift, etc. We
speculate that the dominant mechanism is the moderate
interaction between a small number of TLS’s and a few
qubits at their idling and/or readout biases. In Fig. S40a,
we show the result of measuring per-layer simultaneous
pair XEB at a fixed depth of 14 cycles repeatedly over
time. The quantity plotted is the ratio of the worst pair
fidelity to best fidelity observed over the course of 30
minutes. This type of repetitive measurement allows us
to pinpoint which pairs dominate the fluctuations in full
system fidelity. Note that because we used fidelity at a
fixed cycle depth rather than the one extracted from the
exponential decay, these numbers contain the effect of
fluctuating measurement fidelity as well.
As shown in Fig. S40a, the depth-14 fidelity of most

pairs fluctuates downward by only ∼1% at depth 14,
which translates to either a ∼1% fluctuation in mea-
surement fidelity for a pair, or a ∼0.08% fluctuation
in the two-qubit gate fidelity for a pair. Before find-
ing the unstable TLS defect in Fig. S40b, a single qubit
dominated the fluctuations in full system fidelity seen
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FIG. S38. Per-instance elided circuit fidelities and statistical uncertainties. XEB fidelities of all 10 elided circuit instances for
each circuit depth from Fig. 4b of the main text. a to e, Here, each panel corresponds to a single circuit depth m. In these
panels, ±5σ statistical error bars, where σ = 1/

√
Ns, are shown for each of the individual circuit instance fidelities. Also shown

is a band corresponding to ±σ for a single instance, but about the mean fidelity of the 10 instances, showing that the variations
between circuits can be explained by statistical fluctuations from the finite number of samples. f, Fidelity averaged over all
10 circuits along with ±5σ error bars are shown (the same quantity is plotted in Fig. 4b of the main text but on a log scale),
where in this case σ = 1/

√
10Ns. Here, for all circuit depths, the mean fidelity is more than 5σ above 0.001.

in Fig. S40c. After we moved this problematic qubit far
from the fluctuating TLS, the fluctuations in fidelity dur-
ing the actual quantum supremacy experiment (Fig. S39)
were dominated by a handful of pairs containing qubits
in the “degenerate” readout region (described in section
VI). For these qubits, due to constraints from readout
crosstalk we had little freedom in what readout detun-
ings we could choose, and so the best we could do was
to put some qubits near defects or transmon-resonator
transition modes during readout. We speculate that this
is where the remaining dominant fluctuations originate.

I. The fidelity result and the null hypothesis on
quantum supremacy

We use the mean fidelity of ten 53-qubit 20-cycle cir-
cuits as the final benchmark of the system. In sec-
tion VIIIG we estimated the fidelity and statistical un-
certainty to be (2.24±0.18)×10−3 using the linear cross
entropy. In section VIIIH we estimated the relative sys-
tematic uncertainty due to drift to be 4.4%. Combin-
ing these 2 estimations we arrive at the final fidelity as
(2.24± 0.10(syst.)± 0.18(stat.))× 10−3.

As we show in section X, a noisy sampling of a ran-

dom quantum circuit at fidelity F = 10−3 requires 5000
years with a classical computer with CPU power equiva-
lent to 1 million cores, and it scales linearly with fidelity
F . It takes a quantum computer less than an hour to
complete the same noisy sampling. Therefore we form
the null hypothesis that the fidelity of the quantum com-
puter is F ≤ 10−3, and the alternative hypothesis that
F > 10−3. If the alternative hypothesis is true, we can
say that a classical computer can not perform the same
noisy sampling task as the quantum computer.

The total uncertainty on fidelity is estimated with ad-
dition in quadrature of systematic uncertainty and statis-
tical uncertainty. The mean fidelity of 10 random circuits
with 53 qubits and 20 cycles is (2.24± 0.21)× 10−3. The
null hypothesis is therefore rejected with a significance of
6 σ.

While our analysis of the uncertainty in FXEB was
computed from both statistical and systematic errors,
some care should be taken in the consideration of sys-
tematic errors as they pertain to the claim of quantum
supremacy. Systematic errors should be included if we
wish to use the XEB fidelity value, for example compar-
ing fidelities of patch, elided and full circuits. However
for quantum supremacy, a false claim would arise if FXEB

was zero, but we obtained a non-zero value because of a
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FIG. S37. Distribution of fidelity from 4000 bootstrap sam-
ples. a, The distribution of bootstrap F̂l. The theoretical
curve is a Gaussian fit normalized to histogram counts. b,
The distribution of bootstrap F̂c, with Gaussian fit.

panel, we also show the smaller statistical uncertainties
of the fidelity averaged over the 10 circuit instances for
each depth.

H. System stability and systematic uncertainties

In addition to statistical errors, XEB fidelity is also
subject to systematic drift as the system performance
may fluctuate and/or degrade over time. To quantify
these mechanisms, we perform a patch circuits time sta-
bility measurement on 53 qubits using a circuit of 16
cycles and 1 million bitstrings for 17.4 hours after cali-
bration. In between these measurements, we measured
the fidelity of other 53-qubit circuits with 16 to 20 cy-
cles. The analyzed results are shown in Fig. S39. The
statistical uncertainties of the fidelities are estimated to
be 1.29× 10−4, as indicated by the error bars.

We repeated the stability measurements twice, with
different circuits and on different days. Fig. S39 shows
the one that exhibits greater degradation as a conserva-
tive estimate of the effect. The measurement indicates a
degradation of fidelity within the range of time. A lin-
ear fit with F = p0 + p1t results in estimated parameters
p̂0 = (5.51± 0.055)× 10−3, p̂1 = (−6.87± 0.64)× 10−5,
and a correlation coefficient of p̂0 and p̂1, ρ, to be -0.76.
The χ2 per degree of freedom is 26.3/11.
The p-value for the χ2 for 11 degrees of freedom is

0.0058, indicating that it is not a very good fit. Because
the correctness of the estimates of statistical uncertain-
ties has been verified in Section VIIIG, this is attributed
to systematic fluctuation in addition to degradation. It
is supported by the larger variance of fidelity than the
1 σ band in Fig. S39.
The 1 σ band depends on the statistical uncertainties

of fidelities and the variance of time on the x-axis, but is
independent of the variance of fidelity. To take the vari-
ance of fidelity into account, we use the variance of the
residuals of the linear fit as an estimator of the variance of
fidelity. The standard deviation of residuals is estimated
to be 1.84×10−4, which is added to σp0

in quadrature to
be the total σp0

. The estimate is total σp0
= 1.92×10−4,

3.5 times larger than the statistical-only σp0
of 5.5×10−5.

The uncertainty on a fidelity measured at time t can be
estimated by the standard error propagation, assuming
that t is uncorrelated with either p0 or p1.

σF =
[
σ2
p0

+ 2tσp0σp1ρ + σ2
p1

t2
]1/2

(80)

The value of σF as well as the ratio σF /F in the range
of measured fidelities monotonically decreases. We take
max(σF /F ) as the estimate of relative systematic uncer-
tainty for fidelities measured in the same run. The value
is found to be 4.4% and is used in subsequent analysis.
The physical origin of the observed system fluctuations

can be attributed to many possible channels: 1/f flux
noise, qubit T1 fluctuations, control signal drift, etc. We
speculate that the dominant mechanism is the moderate
interaction between a small number of TLS’s and a few
qubits at their idling and/or readout biases. In Fig. S40a,
we show the result of measuring per-layer simultaneous
pair XEB at a fixed depth of 14 cycles repeatedly over
time. The quantity plotted is the ratio of the worst pair
fidelity to best fidelity observed over the course of 30
minutes. This type of repetitive measurement allows us
to pinpoint which pairs dominate the fluctuations in full
system fidelity. Note that because we used fidelity at a
fixed cycle depth rather than the one extracted from the
exponential decay, these numbers contain the effect of
fluctuating measurement fidelity as well.
As shown in Fig. S40a, the depth-14 fidelity of most

pairs fluctuates downward by only ∼1% at depth 14,
which translates to either a ∼1% fluctuation in mea-
surement fidelity for a pair, or a ∼0.08% fluctuation
in the two-qubit gate fidelity for a pair. Before find-
ing the unstable TLS defect in Fig. S40b, a single qubit
dominated the fluctuations in full system fidelity seen
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FIG. S38. Per-instance elided circuit fidelities and statistical uncertainties. XEB fidelities of all 10 elided circuit instances for
each circuit depth from Fig. 4b of the main text. a to e, Here, each panel corresponds to a single circuit depth m. In these
panels, ±5σ statistical error bars, where σ = 1/

√
Ns, are shown for each of the individual circuit instance fidelities. Also shown

is a band corresponding to ±σ for a single instance, but about the mean fidelity of the 10 instances, showing that the variations
between circuits can be explained by statistical fluctuations from the finite number of samples. f, Fidelity averaged over all
10 circuits along with ±5σ error bars are shown (the same quantity is plotted in Fig. 4b of the main text but on a log scale),
where in this case σ = 1/

√
10Ns. Here, for all circuit depths, the mean fidelity is more than 5σ above 0.001.

in Fig. S40c. After we moved this problematic qubit far
from the fluctuating TLS, the fluctuations in fidelity dur-
ing the actual quantum supremacy experiment (Fig. S39)
were dominated by a handful of pairs containing qubits
in the “degenerate” readout region (described in section
VI). For these qubits, due to constraints from readout
crosstalk we had little freedom in what readout detun-
ings we could choose, and so the best we could do was
to put some qubits near defects or transmon-resonator
transition modes during readout. We speculate that this
is where the remaining dominant fluctuations originate.

I. The fidelity result and the null hypothesis on
quantum supremacy

We use the mean fidelity of ten 53-qubit 20-cycle cir-
cuits as the final benchmark of the system. In sec-
tion VIIIG we estimated the fidelity and statistical un-
certainty to be (2.24±0.18)×10−3 using the linear cross
entropy. In section VIIIH we estimated the relative sys-
tematic uncertainty due to drift to be 4.4%. Combin-
ing these 2 estimations we arrive at the final fidelity as
(2.24± 0.10(syst.)± 0.18(stat.))× 10−3.

As we show in section X, a noisy sampling of a ran-

dom quantum circuit at fidelity F = 10−3 requires 5000
years with a classical computer with CPU power equiva-
lent to 1 million cores, and it scales linearly with fidelity
F . It takes a quantum computer less than an hour to
complete the same noisy sampling. Therefore we form
the null hypothesis that the fidelity of the quantum com-
puter is F ≤ 10−3, and the alternative hypothesis that
F > 10−3. If the alternative hypothesis is true, we can
say that a classical computer can not perform the same
noisy sampling task as the quantum computer.

The total uncertainty on fidelity is estimated with ad-
dition in quadrature of systematic uncertainty and statis-
tical uncertainty. The mean fidelity of 10 random circuits
with 53 qubits and 20 cycles is (2.24± 0.21)× 10−3. The
null hypothesis is therefore rejected with a significance of
6 σ.

While our analysis of the uncertainty in FXEB was
computed from both statistical and systematic errors,
some care should be taken in the consideration of sys-
tematic errors as they pertain to the claim of quantum
supremacy. Systematic errors should be included if we
wish to use the XEB fidelity value, for example compar-
ing fidelities of patch, elided and full circuits. However
for quantum supremacy, a false claim would arise if FXEB

was zero, but we obtained a non-zero value because of a
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FIG. S39. Stability of repeated 53-qubit 16-cycle patch circuit
benchmarking over 17.4 hours, without any system recalibra-
tion. Statistical error bars from the finite bitstring sample
number are included. The intrinsic system fluctuations are
likely dominated by a small number of TLSs moderately cou-
pled to a few qubits at their idling and/or readout biases.

fluctuation. Systematic fluctuations produce a change
in magnitude of XEB, as seen in the data in this sec-
tion, which is thus a multiplicative-type error that does
not change the XEB fidelity value when it is zero. A
false positive is only produced by a additive-type statis-
tical fluctuations and thus it is the only mechanism that
should be considered when computing the uncertainty.
Therefore, the 6 σ significance of our claim should be
considered as conservative.
Some skeptics have warned that a quantum computer

may not be possible [64? ], for example due to the
fragility of quantum information at large qubit number
and exponentially large Hilbert space. The demonstra-
tion here of quantum behavior at 1016 Hilbert space is
strong confirmation that nothing unusual or unexpected
happens to our current understanding of quantum me-
chanics at this scale.

IX. SENSITIVITY OF XEB TO ERRORS

An important requirement for a procedure used to
evaluate quantum processors, such as XEB, is sensitiv-
ity to errors. Qubit amplitudes are complex variables
and therefore quantum errors are inherently continuous.
Nevertheless, they can be given a discrete description, for
example in the form of a finite set of Pauli operators. The
digital error model is used for instance in quantum error
correction where errors are discretized by syndrome ex-
traction. In this section we examine the impact of both
discrete and continuous errors on the fidelity estimate
obtained from the XEB algorithm.
The XEB procedure uses a set of random quantum

circuits U = {U1, . . . , US} with n qubits and m cycles.
Every circuit is executed Ns times on the quantum pro-
cessor under test. Each execution of the circuit Uj ap-
plies the quantum operation Λj , which is an imperfect
realization of Uj , to the input state |0〉 〈0|. The re-
sult of the experiment is a set B of SNs bitstrings qi,j
sampled from the distributions pe(qi,j) = 〈qi,j | ρj |qi,j〉
where ρj = Λj(|0〉 〈0|) is the output state in the experi-
ments with circuit Uj . For each bitstring qi,j , a simula-
tor computes the ideal probability ps(qi,j) = | 〈qi,j |ψj〉 |2
where |ψj〉 = Uj |0〉 is the ideal output state of the cir-
cuit Uj . Finally, XEB uses Eq. (27) or (28) to compute
an estimate FXEB(B,U) of fidelity F (|ψj〉 〈ψj | , ρj) =
〈ψj | ρj |ψj〉 averaged over circuits U . The result quan-
tifies how well the quantum processor is able to realize
quantum circuits of size n and depth m. See section IV
for more details on XEB.
The estimate FXEB(B,U) is a function of bistrings B

obtained in experiment and of the set of quantum circuits
U used to compute ideal probabilities. This enables a test
of the sensitivity of the method to errors by replacing the
error-free reference circuits U = {U1, . . . , US} with cir-
cuits UE = {U1,E , . . . , US,E} where Uj,E is the quantum
circuit obtained from Uj by the insertion at a particu-
lar location in the circuit of a gate E representing the
error. We identify errors inserted at different circuit lo-
cations that lead to the same output distribution since
XEB cannot differentiate between them.
We first consider the impact of a discrete single-qubit

Pauli error E placed in a random location in the circuit.
In Fig. S41 we plot FXEB(B,UE) where B are bitstrings
observed in our experiment and UE are quantum circuits
modified by the insertion of an additional X or Z gate
following an existing single-qubit gate. Each fidelity es-
timate corresponds to a different circuit location where
the error gate has been inserted. For every n, the highest
fidelity values correspond to the insertion of the Z gate
in the final cycle of the circuit. They have no impact
on measurements and thus are equivalent to absence of
error. The corresponding fidelity estimates match the
estimates for the unmodified circuits.
The probability of only seeing the error E is approx-

imately q = ep where e is the probability of E arising
at the particular circuit location and p is the probability
that no other error occurs. The fraction q of executions
realize circuit Uj,E ∈ UE yielding bitstrings BE while the
remaining fraction 1 − q yield bitstrings B∗. XEB aver-
ages over circuit executions, so

FXEB(B,UE) =

qFXEB(BE ,UE) + (1− q)FXEB(B∗,UE). (81)

Since bitstrings BE originated in a perfect realization of
UE we have FXEB(BE ,UE) � 1 with high probability.
Also, assuming the circuits randomize the output quan-
tum state sufficiently, we have FXEB(B∗,UE) � 1/

√
D,

where D = 2n, see Eq. (25) and Fig. S7. Therefore, for
large n
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FIG. S40. Identifying sources of fluctuations with repetitive per-layer simultaneous pair XEB. a, Per-pair ratio
of worst fidelity to best fidelity measured via per-layer simultaneous pair XEB at a depth of 14 cycles over the course of 30
minutes. During this time, fluctuations were dominated by a single TLS. b, Measured qubit T1 vs. f10 for Q1,7 at two different
times a few minutes apart (red vs. blue points), showing an unstable TLS that was dominating the fluctuations in full system
fidelity seen in c,. Moving Q1,7 far from this TLS led to the stability seen in Fig. S39.

FXEB(B,UE) � q +
1− q√

D
� q (82)

with high probability.
Now, the probability p that no error other than E oc-

curs is approximately equal to the experimental fidelity
F which is approximated by FXEB(B,U), so

FXEB(B,UE) � eFXEB(B,U) (83)

which means that XEB result obtained using circuits
modified to include E is approximately proportional to
the XEB result obtained using the error-free reference
circuits. Moreover, the ratio of the two XEB results is
approximately equal to the probability of E.

The data in Fig. S41 agrees with the approximate pro-
portionality in Eq. (83) and allows us to estimate the
median probability of a Pauli error. Based on the drop
in XEB fidelity estimate by a factor of almost 100 due
to the insertion of one single-qubit Pauli error into the
circuit, the probability is on the order of 1%. While more
work on the gate failure model needs to be done to cor-
rectly relate Sycamore gate error rates to the probability
of specific Pauli errors, we already see that e has the same

order of magnitude as our per cycle and per qubit error
given by e2c/2 � 0.5%, see Table II. A possible resolu-
tion of the factor of two discrepancy may lie in the fact
that more than one gate failure can manifest itself as a
particular Pauli error E in a particular circuit location.

Lastly, we consider the impact of continuous errors on
XEB result. Fig. S42 shows the fidelity estimate obtained
from XEB using bitstrings observed in our experiment
and quantum circuits modified to include a single rota-
tion RZ(θ). The middle point of the plot is equal to the
fidelity estimate obtained for one of the discrete errors
in Fig. S41 whereas the leftmost and rightmost points
correspond to the fidelity estimate obtained from XEB
using the error-free reference circuit.

The analysis above illustrates how questions about the
behavior and performance of quantum processors can
be formulated in terms of modifications to the reference
quantum circuits and how XEB can help investigate these
questions. While XEB has proven itself a powerful tool
for calibration and performance evaluation (see sections
VI and VIII), more work is required to assess its efficacy
as a diagnostic tool for quantum processors.
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FIG. S39. Stability of repeated 53-qubit 16-cycle patch circuit
benchmarking over 17.4 hours, without any system recalibra-
tion. Statistical error bars from the finite bitstring sample
number are included. The intrinsic system fluctuations are
likely dominated by a small number of TLSs moderately cou-
pled to a few qubits at their idling and/or readout biases.

fluctuation. Systematic fluctuations produce a change
in magnitude of XEB, as seen in the data in this sec-
tion, which is thus a multiplicative-type error that does
not change the XEB fidelity value when it is zero. A
false positive is only produced by a additive-type statis-
tical fluctuations and thus it is the only mechanism that
should be considered when computing the uncertainty.
Therefore, the 6 σ significance of our claim should be
considered as conservative.
Some skeptics have warned that a quantum computer

may not be possible [64? ], for example due to the
fragility of quantum information at large qubit number
and exponentially large Hilbert space. The demonstra-
tion here of quantum behavior at 1016 Hilbert space is
strong confirmation that nothing unusual or unexpected
happens to our current understanding of quantum me-
chanics at this scale.

IX. SENSITIVITY OF XEB TO ERRORS

An important requirement for a procedure used to
evaluate quantum processors, such as XEB, is sensitiv-
ity to errors. Qubit amplitudes are complex variables
and therefore quantum errors are inherently continuous.
Nevertheless, they can be given a discrete description, for
example in the form of a finite set of Pauli operators. The
digital error model is used for instance in quantum error
correction where errors are discretized by syndrome ex-
traction. In this section we examine the impact of both
discrete and continuous errors on the fidelity estimate
obtained from the XEB algorithm.
The XEB procedure uses a set of random quantum

circuits U = {U1, . . . , US} with n qubits and m cycles.
Every circuit is executed Ns times on the quantum pro-
cessor under test. Each execution of the circuit Uj ap-
plies the quantum operation Λj , which is an imperfect
realization of Uj , to the input state |0〉 〈0|. The re-
sult of the experiment is a set B of SNs bitstrings qi,j
sampled from the distributions pe(qi,j) = 〈qi,j | ρj |qi,j〉
where ρj = Λj(|0〉 〈0|) is the output state in the experi-
ments with circuit Uj . For each bitstring qi,j , a simula-
tor computes the ideal probability ps(qi,j) = | 〈qi,j |ψj〉 |2
where |ψj〉 = Uj |0〉 is the ideal output state of the cir-
cuit Uj . Finally, XEB uses Eq. (27) or (28) to compute
an estimate FXEB(B,U) of fidelity F (|ψj〉 〈ψj | , ρj) =
〈ψj | ρj |ψj〉 averaged over circuits U . The result quan-
tifies how well the quantum processor is able to realize
quantum circuits of size n and depth m. See section IV
for more details on XEB.
The estimate FXEB(B,U) is a function of bistrings B

obtained in experiment and of the set of quantum circuits
U used to compute ideal probabilities. This enables a test
of the sensitivity of the method to errors by replacing the
error-free reference circuits U = {U1, . . . , US} with cir-
cuits UE = {U1,E , . . . , US,E} where Uj,E is the quantum
circuit obtained from Uj by the insertion at a particu-
lar location in the circuit of a gate E representing the
error. We identify errors inserted at different circuit lo-
cations that lead to the same output distribution since
XEB cannot differentiate between them.
We first consider the impact of a discrete single-qubit

Pauli error E placed in a random location in the circuit.
In Fig. S41 we plot FXEB(B,UE) where B are bitstrings
observed in our experiment and UE are quantum circuits
modified by the insertion of an additional X or Z gate
following an existing single-qubit gate. Each fidelity es-
timate corresponds to a different circuit location where
the error gate has been inserted. For every n, the highest
fidelity values correspond to the insertion of the Z gate
in the final cycle of the circuit. They have no impact
on measurements and thus are equivalent to absence of
error. The corresponding fidelity estimates match the
estimates for the unmodified circuits.
The probability of only seeing the error E is approx-

imately q = ep where e is the probability of E arising
at the particular circuit location and p is the probability
that no other error occurs. The fraction q of executions
realize circuit Uj,E ∈ UE yielding bitstrings BE while the
remaining fraction 1 − q yield bitstrings B∗. XEB aver-
ages over circuit executions, so

FXEB(B,UE) =

qFXEB(BE ,UE) + (1− q)FXEB(B∗,UE). (81)

Since bitstrings BE originated in a perfect realization of
UE we have FXEB(BE ,UE) � 1 with high probability.
Also, assuming the circuits randomize the output quan-
tum state sufficiently, we have FXEB(B∗,UE) � 1/

√
D,

where D = 2n, see Eq. (25) and Fig. S7. Therefore, for
large n
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FIG. S40. Identifying sources of fluctuations with repetitive per-layer simultaneous pair XEB. a, Per-pair ratio
of worst fidelity to best fidelity measured via per-layer simultaneous pair XEB at a depth of 14 cycles over the course of 30
minutes. During this time, fluctuations were dominated by a single TLS. b, Measured qubit T1 vs. f10 for Q1,7 at two different
times a few minutes apart (red vs. blue points), showing an unstable TLS that was dominating the fluctuations in full system
fidelity seen in c,. Moving Q1,7 far from this TLS led to the stability seen in Fig. S39.

FXEB(B,UE) � q +
1− q√

D
� q (82)

with high probability.
Now, the probability p that no error other than E oc-

curs is approximately equal to the experimental fidelity
F which is approximated by FXEB(B,U), so

FXEB(B,UE) � eFXEB(B,U) (83)

which means that XEB result obtained using circuits
modified to include E is approximately proportional to
the XEB result obtained using the error-free reference
circuits. Moreover, the ratio of the two XEB results is
approximately equal to the probability of E.

The data in Fig. S41 agrees with the approximate pro-
portionality in Eq. (83) and allows us to estimate the
median probability of a Pauli error. Based on the drop
in XEB fidelity estimate by a factor of almost 100 due
to the insertion of one single-qubit Pauli error into the
circuit, the probability is on the order of 1%. While more
work on the gate failure model needs to be done to cor-
rectly relate Sycamore gate error rates to the probability
of specific Pauli errors, we already see that e has the same

order of magnitude as our per cycle and per qubit error
given by e2c/2 � 0.5%, see Table II. A possible resolu-
tion of the factor of two discrepancy may lie in the fact
that more than one gate failure can manifest itself as a
particular Pauli error E in a particular circuit location.

Lastly, we consider the impact of continuous errors on
XEB result. Fig. S42 shows the fidelity estimate obtained
from XEB using bitstrings observed in our experiment
and quantum circuits modified to include a single rota-
tion RZ(θ). The middle point of the plot is equal to the
fidelity estimate obtained for one of the discrete errors
in Fig. S41 whereas the leftmost and rightmost points
correspond to the fidelity estimate obtained from XEB
using the error-free reference circuit.

The analysis above illustrates how questions about the
behavior and performance of quantum processors can
be formulated in terms of modifications to the reference
quantum circuits and how XEB can help investigate these
questions. While XEB has proven itself a powerful tool
for calibration and performance evaluation (see sections
VI and VIII), more work is required to assess its efficacy
as a diagnostic tool for quantum processors.
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FIG. S41. Impact of one single-qubit Pauli error on fidelity estimate from XEB. a, Distributions of fidelity estimates
from XEB using measured bitstrings and quantum circuits with one bit-flip or one phase-flip error. For each n, shades of blue
represent the normalized histogram of the estimates obtained for the error gate placed at different circuit locations. The highest
fidelity estimates correspond to phase-flip errors immediately preceding measurement and are equal to the fidelity estimates
from XEB using error-free circuits. b, Quartiles of the distributions shown in a (blue) compared to the fidelity estimates from
XEB using measured bitstrings and unmodified quantum circuits (red). Both plots use linear scale between 10−4 and −10−4

and logarithmic scale everywhere else.

X. CLASSICAL SIMULATIONS

A. Local Schrödinger and Schrödinger-Feynman
simulators

We have developed two quantum circuit simulators:
qsim and qsimh. The first simulator, qsim, is a
Schrödinger full state vector simulator. It computes all
2n amplitudes, where n is the number of qubits. Essen-
tially, the simulator performs matrix-vector multiplica-
tions repeatedly. One matrix-vector multiplication cor-
responds to applying one gate. For a 2-qubit gate act-
ing on qubits q1 and q2 (q1 < q2), it can be depicted
schematically by the following pseudocode.

#iterate over all values of qubits q > q2
for (int i = 0; i < 2^n; i += 2 * 2^q2) {
#iterate values for q1 < q < q2
for (int j = 0; j < 2^q2; j += 2 * 2^q1) {
#iterate values for q < q1
for (int k = 0; k < 2^q1; k += 1) {
#apply gate for fixed values
#for all q not in [q1,q2]
int l = i + j + k;

float v0[4]; #gate input

float v1[4]; #gate output

#copy input
v0[0] = v[l];
v0[1] = v[l + 2^q1];
v0[2] = v[l + 2^q2];
v0[3] = v[l + 2^q1 + 2^q2];

#apply gate
for (r = 0; r < 4; r += 1) {
v1[r] = 0;
for (s = 0; s < 4; s += 1) {
v1[r] += U[r][s] * v0[s];

}
}

#copy output
v[l] = v1[0];
v[l + 2^q1] = v1[1];
v[l + 2^q2] = v1[2];
v[l + 2^q1 + 2^q2] = v1[3];

}
}

}

Here U is a 4x4 gate matrix and v is the full state vec-
tor. To make the simulator faster, we use gate fusion
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FIG. S42. Impact of the Rz(θ) error on XEB. Fidelity
estimates computed by XEB from measured bitstrings and
circuits with n = 20 qubits and m = 14 cycles modified to
include Rz(θ) error applied in 10th cycle to one of the qubits
as a function of θ (orange dots). Also shown is XEB fidelity
computed using the same bitstrings and unmodified circuits
(blue solid line) and a simple model which predicts the effect
of the error (green dashed line).

qubits, n run time in seconds
32 111
34 473
36 1954
38 8213

TABLE VI. Circuit simulation run times using qsim on a
single Google cloud node (n1-ultramem-160).

[65], single precision arithmetic, AVX/FMA instructions
for vectorization, and OpenMP for multi-threading. We
are able to simulate 38-qubit circuits on a single Google
cloud node that has 3844 GB memory and four CPUs
with 20 cores each (n1-ultramem-160). The run times
for different circuit sizes at depth 14 are listed in Table
VI.

The second simulator, qsimh, is a hybrid Schrödinger-
Feynman algorithm (SFA) simulator [37]. We cut the
lattice into two parts and use the Schmidt decomposition
for the 2-qubit gates on the cut. If the Schmidt rank of
each gate is r and the number of gates on the cut is g
then there are rg paths, corresponding to all the possible
choices of Schmidt terms for each 2-qubit gate across the
cut. To obtain fidelity equal to unity, we need to simulate
all the rg paths and sum the results. The total run time
is proportional to (2n1 +2n2)rg, where n1 and n2 are the
qubit numbers in the first and second parts. Each part is
simulated by qsim using the Schrödinger algorithm. Path
simulations are independent of each other and can be
trivially parallelized to run on supercomputers or in data
centers. Note that one can run simulations with fidelity
F < 1 just by summing over a fraction F of all the paths
(see Ref. [37] and Sec. XD). In order to speed up the
computation, we save a copy of the state after the first p

2-qubit gates across the cut, so the remaining rg−p paths
can be computed without re-starting the simulation from
the beginning. We call the specific choice of Schmidt
terms for the first p gates in the cut a prefix.

B. Feynman simulator

qFlex was introduced in Ref. [49] and later adapted
to GPU architectures in Ref. [66] to allow efficient com-
putation on Summit, currently the world’s Top-1 super-
computer. Given a random quantum circuit, qFlex com-
putes output bitstring amplitudes by adding all the Feyn-
man path contributions via tensor network (TN) contrac-
tions [67, 68], and so it follows what we call a Feynman
approach (FA) to circuit sampling. TN simulators are
known to outperform all other methods for circuits with
low depth or a large number of qubits (e.g., Ref. [66]
successfully simulates 121 qubits at low depth using this
technique), as well as for small sample sizes (Ns), since
simulation cost scales linearly with Ns.
TN simulators compute one amplitude (or a few ampli-

tudes; see below) per contraction of the entire network.
In order to sample bitstrings for a given circuit, a set of
random output bitstrings is chosen before the computa-
tion starts. Then, the amplitudes for these bitstrings are
computed and either accepted or rejected using frugal
rejection sampling [37]. This ensures that the selected
subset of bitstrings is indistinguishable from bitstrings
sampled from a quantum computer. The cost of the TN
simulation is therefore linear in the number of output bit-
strings. This makes TN methods more competitive for
small sets of output bitstrings.
The optimization of qFlex considers a large number

of factors to achieve the best time-to-solution on current
supercomputers, an approach that often diverges from
purely theoretical considerations on the complexity of TN
contractions. More precisely, qFlex implements several
features such as:

• Avoidance of distributed tensor contrac-
tions: by “cutting” the TN (slicing some indexes),
the contraction of the TN is decomposed into many
paths that can be contracted locally and indepen-
dently, therefore avoiding internode communica-
tion, which is the main cause for the slowdown of
distributed tensor contractions.

• Contraction orderings for high arithmetic in-
tensity: TN contraction orderings are chosen so
that the expensive part of the computation con-
sists of a small number of tensor contractions with
high arithmetic intensity. This lowers the time-to-
solution.

• Highly efficient tensor contractions on GPU:
the back-end TAL-SH library [69] provides fully
asynchronous execution of tensor operations on
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FIG. S41. Impact of one single-qubit Pauli error on fidelity estimate from XEB. a, Distributions of fidelity estimates
from XEB using measured bitstrings and quantum circuits with one bit-flip or one phase-flip error. For each n, shades of blue
represent the normalized histogram of the estimates obtained for the error gate placed at different circuit locations. The highest
fidelity estimates correspond to phase-flip errors immediately preceding measurement and are equal to the fidelity estimates
from XEB using error-free circuits. b, Quartiles of the distributions shown in a (blue) compared to the fidelity estimates from
XEB using measured bitstrings and unmodified quantum circuits (red). Both plots use linear scale between 10−4 and −10−4

and logarithmic scale everywhere else.

X. CLASSICAL SIMULATIONS

A. Local Schrödinger and Schrödinger-Feynman
simulators

We have developed two quantum circuit simulators:
qsim and qsimh. The first simulator, qsim, is a
Schrödinger full state vector simulator. It computes all
2n amplitudes, where n is the number of qubits. Essen-
tially, the simulator performs matrix-vector multiplica-
tions repeatedly. One matrix-vector multiplication cor-
responds to applying one gate. For a 2-qubit gate act-
ing on qubits q1 and q2 (q1 < q2), it can be depicted
schematically by the following pseudocode.

#iterate over all values of qubits q > q2
for (int i = 0; i < 2^n; i += 2 * 2^q2) {
#iterate values for q1 < q < q2
for (int j = 0; j < 2^q2; j += 2 * 2^q1) {
#iterate values for q < q1
for (int k = 0; k < 2^q1; k += 1) {
#apply gate for fixed values
#for all q not in [q1,q2]
int l = i + j + k;

float v0[4]; #gate input

float v1[4]; #gate output

#copy input
v0[0] = v[l];
v0[1] = v[l + 2^q1];
v0[2] = v[l + 2^q2];
v0[3] = v[l + 2^q1 + 2^q2];

#apply gate
for (r = 0; r < 4; r += 1) {
v1[r] = 0;
for (s = 0; s < 4; s += 1) {
v1[r] += U[r][s] * v0[s];

}
}

#copy output
v[l] = v1[0];
v[l + 2^q1] = v1[1];
v[l + 2^q2] = v1[2];
v[l + 2^q1 + 2^q2] = v1[3];

}
}

}

Here U is a 4x4 gate matrix and v is the full state vec-
tor. To make the simulator faster, we use gate fusion
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FIG. S42. Impact of the Rz(θ) error on XEB. Fidelity
estimates computed by XEB from measured bitstrings and
circuits with n = 20 qubits and m = 14 cycles modified to
include Rz(θ) error applied in 10th cycle to one of the qubits
as a function of θ (orange dots). Also shown is XEB fidelity
computed using the same bitstrings and unmodified circuits
(blue solid line) and a simple model which predicts the effect
of the error (green dashed line).

qubits, n run time in seconds
32 111
34 473
36 1954
38 8213

TABLE VI. Circuit simulation run times using qsim on a
single Google cloud node (n1-ultramem-160).

[65], single precision arithmetic, AVX/FMA instructions
for vectorization, and OpenMP for multi-threading. We
are able to simulate 38-qubit circuits on a single Google
cloud node that has 3844 GB memory and four CPUs
with 20 cores each (n1-ultramem-160). The run times
for different circuit sizes at depth 14 are listed in Table
VI.

The second simulator, qsimh, is a hybrid Schrödinger-
Feynman algorithm (SFA) simulator [37]. We cut the
lattice into two parts and use the Schmidt decomposition
for the 2-qubit gates on the cut. If the Schmidt rank of
each gate is r and the number of gates on the cut is g
then there are rg paths, corresponding to all the possible
choices of Schmidt terms for each 2-qubit gate across the
cut. To obtain fidelity equal to unity, we need to simulate
all the rg paths and sum the results. The total run time
is proportional to (2n1 +2n2)rg, where n1 and n2 are the
qubit numbers in the first and second parts. Each part is
simulated by qsim using the Schrödinger algorithm. Path
simulations are independent of each other and can be
trivially parallelized to run on supercomputers or in data
centers. Note that one can run simulations with fidelity
F < 1 just by summing over a fraction F of all the paths
(see Ref. [37] and Sec. XD). In order to speed up the
computation, we save a copy of the state after the first p

2-qubit gates across the cut, so the remaining rg−p paths
can be computed without re-starting the simulation from
the beginning. We call the specific choice of Schmidt
terms for the first p gates in the cut a prefix.

B. Feynman simulator

qFlex was introduced in Ref. [49] and later adapted
to GPU architectures in Ref. [66] to allow efficient com-
putation on Summit, currently the world’s Top-1 super-
computer. Given a random quantum circuit, qFlex com-
putes output bitstring amplitudes by adding all the Feyn-
man path contributions via tensor network (TN) contrac-
tions [67, 68], and so it follows what we call a Feynman
approach (FA) to circuit sampling. TN simulators are
known to outperform all other methods for circuits with
low depth or a large number of qubits (e.g., Ref. [66]
successfully simulates 121 qubits at low depth using this
technique), as well as for small sample sizes (Ns), since
simulation cost scales linearly with Ns.
TN simulators compute one amplitude (or a few ampli-

tudes; see below) per contraction of the entire network.
In order to sample bitstrings for a given circuit, a set of
random output bitstrings is chosen before the computa-
tion starts. Then, the amplitudes for these bitstrings are
computed and either accepted or rejected using frugal
rejection sampling [37]. This ensures that the selected
subset of bitstrings is indistinguishable from bitstrings
sampled from a quantum computer. The cost of the TN
simulation is therefore linear in the number of output bit-
strings. This makes TN methods more competitive for
small sets of output bitstrings.
The optimization of qFlex considers a large number

of factors to achieve the best time-to-solution on current
supercomputers, an approach that often diverges from
purely theoretical considerations on the complexity of TN
contractions. More precisely, qFlex implements several
features such as:

• Avoidance of distributed tensor contrac-
tions: by “cutting” the TN (slicing some indexes),
the contraction of the TN is decomposed into many
paths that can be contracted locally and indepen-
dently, therefore avoiding internode communica-
tion, which is the main cause for the slowdown of
distributed tensor contractions.

• Contraction orderings for high arithmetic in-
tensity: TN contraction orderings are chosen so
that the expensive part of the computation con-
sists of a small number of tensor contractions with
high arithmetic intensity. This lowers the time-to-
solution.

• Highly efficient tensor contractions on GPU:
the back-end TAL-SH library [69] provides fully
asynchronous execution of tensor operations on
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PFlop/s* efficiency (%)
qubits cycles FXEB (%) Ns nodes runtime peak sust. peak sust. power (MW) energy (MWh)

53

12
0.5 1M

4550

1.29 hours
235.2 111.7 57.4 27.3 5.73

8.21
1.4 0.5M 1.81 hours** 11.2**
1.4 3M 10.8 hours** 62.7**

14

2.22× 10−6 1M 0.72 hours

347.5 252.3 84.8 61.6 7.25

6.11
0.5 1M 67.7 days** 1.18× 104**
1.0 0.5M 67.7 days** 1.18× 104**
1.0 3M 1.11 years** 7.07× 104**

TABLE VII. Runtimes, efficiency and energy consumption for the simulation of random circuit sampling of
Ns bitstrings from Sycamore with fidelity F using qFlex on Summit. Simulations used 4550 nodes out of 4608,
which represents about 99% of Summit. Single batches of 64 amplitudes were computed on each MPI task using a socket with
three GPUs (two sockets per node); given that one of the 9100 MPI tasks acts as master, 9099 batches of amplitudes were
computed. For the circuit with 12 cycles, 144/256 paths for these batches were computed in 1.29 hours, which leads to the
sampling of about 1M bitstrings with fidelity F ≈ 0.5% (see Ref. [49] for details on the sampling procedure); runtimes and
energy consumption for other sample sizes and fidelities are extrapolated linearly in Ns and F from this run. At 14 cycles,
128/524288 paths were computed in 0.72 hours, which leads to the sampling of about 1M bitstrings with fidelity 2.22× 10−6.
In this case, one would need to consider 288101 paths on all 9099 batches in order to sample about 1M (0.5M) bitstrings with
fidelity F ≈ 0.5% (1.0%). By extrapolation, we estimate that such computations would take 1625 hours (68 days). For Ns =3M
bitstrings and F ≈ 1.0%, extrapolation gives us an estimated runtime of 1.1 years. Performance is higher for the simulation
with 14 cycles, due to higher arithmetic intensity tensor contractions. Power consumption is also larger in this case. Job, MPI,
and TAL-SH library initialization and shutdown times, as well as initial and final IO times are not considered in the runtime,
but they are in the total energy consumption. *Single precision. **Extrapolated from the simulation with a fractional fidelity.

FIG. S43. Logarithm base 2 of the bond (index) dimensions of the tensor network to contract for the simulation
of sampling from Sycamore with 12 cycles (top) and 14 cycles (bottom) using qFlex. The left plots represent the
tensor network given by the circuit. The middle plots represent the tensor network obtained from a circuit where fSim gates have
been transformed, when possible (see main text). The right plots represent the tensor network after the gate transformations
and cuts (gray bonds) have been applied; the log2 of the bond dimensions of the indexes cut are written explicitly. For 12
cycles, there are 25×21×22 = 28 = 256 cut instances (paths); for 14 cycles, there are 27×27×25 = 219 = 524288 cut instances.
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FIG. S44. TN contraction ordering for the computation of a batch of amplitudes for the simulation of Sycamore
with 12 and 14 cycles. Dotted qubits are used for fast sampling; the output index is left open. Three indexes are cut, with
remaining bond dimensions given in Fig. S43, and all possible cut instances are labelled by variables α, β, and γ (panel 1).
Tensors A, B, and C are independent of cut instances, and so are contracted only once (panels 2 and 3) and reused several
times. Given a particular instance of α and β, tensors D (panels 3 and 4) and subsequently E (panels 5 and 6) are contracted;
tensor E will be reused in the inner loop. For each instance of γ (inner loop), tensor F is contracted (panels 7 and 8), which
gives the contribution to the batch of amplitudes (open indexes on C and specified output bits otherwise) from a particular
(α, β, γ) instance (path). The sequence of tensor contractions leading to building a tensor are enumerated, where each tensor
is contracted to the one formed previously. For simplicity, the contraction of two single-qubit tensors onto a pair before being
contracted with others (e.g., tensor 10 in the yellow sequence of panel 5) is not shown on a separate panel; these pairs of tensors
are computed first and are reused for all cut instances.

GPU and fast tensor transposition, allowing out-of-
core tensor contractions for instances that exceed
GPU memory. This achieves very high efficiency
(see Table VII) on high arithmetic intensity con-
tractions.

In addition, qFlex implements two techniques in order
to lower the cost of the simulation:

• Noisy simulation: the cost of a simulation of fi-
delity F < 1 (F ≈ 5× 10−3 in practice) is lowered
by a factor 1/F , i.e., is linear in F [37, 49].

• Fast sampling technique: the overhead in apply-
ing the frugal rejection sampling mentioned above
is removed by this technique, giving an order of
magnitude speedup [49]. This involves the com-
putation of the amplitudes of a few correlated bit-
strings (batch) per circuit TN contraction.

As shown in Table VII, qFlex is successful in simulat-
ing Sycamore with 12 cycles on Summit, sampling 1M
bitstrings with fidelity close to 0.5% in 1.29 hours. At 14
cycles, we perform a partial simulation and extrapolate
the simulation time for the sampling of 1M bitstrings
with fidelity close to 0.5% using Summit, giving an
estimated 68 days to complete the task. Sampling
3M bitstrings at 14 cycles with fidelity close to 1.0%
(average experimentally realized fidelity) would take

an estimated 1.1 years to complete. Other estimates
for different sample sizes and fidelities can be found
in Table VII. At 16 cycles and beyond, however, the
enormous amount of Feynman paths required so that
the computation does not exceed the 512 GB of RAM
of each Summit node makes the computation impractical.

The contraction of the TNs involved in the compu-
tation of amplitudes from Sycamore using qFlex is pre-
ceded by a simplification of the circuits, which allows
us to decrease the bond (index) dimension of some of
the indexes of the TN. This comes from the realization
that fSim(θ = π/2, φ) = −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP (see Sections VI and VII E); note
that the SWAP gate can be applied either at the be-
ginning or at the end of the sequence. We apply this
transformation to all fSim gates at the beginning (end)
of the circuit that affect qubits that are not affected by
any other two-qubit gate before (after) in the circuit. The
SWAP is then applied to the input (output) qubits and
their respective one-qubit gates trivially, and the bond
dimension remaining from this gate is 2, corresponding
to the cphase gate, as opposed to the bond dimension
4 of the original fSim gate. Note that in practice this
identity is only approximate, since θ ≈ π/2; we find that
transforming all gates described above causes a drop in
fidelity to about 95%.
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PFlop/s* efficiency (%)
qubits cycles FXEB (%) Ns nodes runtime peak sust. peak sust. power (MW) energy (MWh)

53

12
0.5 1M

4550

1.29 hours
235.2 111.7 57.4 27.3 5.73

8.21
1.4 0.5M 1.81 hours** 11.2**
1.4 3M 10.8 hours** 62.7**

14

2.22× 10−6 1M 0.72 hours

347.5 252.3 84.8 61.6 7.25

6.11
0.5 1M 67.7 days** 1.18× 104**
1.0 0.5M 67.7 days** 1.18× 104**
1.0 3M 1.11 years** 7.07× 104**

TABLE VII. Runtimes, efficiency and energy consumption for the simulation of random circuit sampling of
Ns bitstrings from Sycamore with fidelity F using qFlex on Summit. Simulations used 4550 nodes out of 4608,
which represents about 99% of Summit. Single batches of 64 amplitudes were computed on each MPI task using a socket with
three GPUs (two sockets per node); given that one of the 9100 MPI tasks acts as master, 9099 batches of amplitudes were
computed. For the circuit with 12 cycles, 144/256 paths for these batches were computed in 1.29 hours, which leads to the
sampling of about 1M bitstrings with fidelity F ≈ 0.5% (see Ref. [49] for details on the sampling procedure); runtimes and
energy consumption for other sample sizes and fidelities are extrapolated linearly in Ns and F from this run. At 14 cycles,
128/524288 paths were computed in 0.72 hours, which leads to the sampling of about 1M bitstrings with fidelity 2.22× 10−6.
In this case, one would need to consider 288101 paths on all 9099 batches in order to sample about 1M (0.5M) bitstrings with
fidelity F ≈ 0.5% (1.0%). By extrapolation, we estimate that such computations would take 1625 hours (68 days). For Ns =3M
bitstrings and F ≈ 1.0%, extrapolation gives us an estimated runtime of 1.1 years. Performance is higher for the simulation
with 14 cycles, due to higher arithmetic intensity tensor contractions. Power consumption is also larger in this case. Job, MPI,
and TAL-SH library initialization and shutdown times, as well as initial and final IO times are not considered in the runtime,
but they are in the total energy consumption. *Single precision. **Extrapolated from the simulation with a fractional fidelity.

FIG. S43. Logarithm base 2 of the bond (index) dimensions of the tensor network to contract for the simulation
of sampling from Sycamore with 12 cycles (top) and 14 cycles (bottom) using qFlex. The left plots represent the
tensor network given by the circuit. The middle plots represent the tensor network obtained from a circuit where fSim gates have
been transformed, when possible (see main text). The right plots represent the tensor network after the gate transformations
and cuts (gray bonds) have been applied; the log2 of the bond dimensions of the indexes cut are written explicitly. For 12
cycles, there are 25×21×22 = 28 = 256 cut instances (paths); for 14 cycles, there are 27×27×25 = 219 = 524288 cut instances.
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FIG. S44. TN contraction ordering for the computation of a batch of amplitudes for the simulation of Sycamore
with 12 and 14 cycles. Dotted qubits are used for fast sampling; the output index is left open. Three indexes are cut, with
remaining bond dimensions given in Fig. S43, and all possible cut instances are labelled by variables α, β, and γ (panel 1).
Tensors A, B, and C are independent of cut instances, and so are contracted only once (panels 2 and 3) and reused several
times. Given a particular instance of α and β, tensors D (panels 3 and 4) and subsequently E (panels 5 and 6) are contracted;
tensor E will be reused in the inner loop. For each instance of γ (inner loop), tensor F is contracted (panels 7 and 8), which
gives the contribution to the batch of amplitudes (open indexes on C and specified output bits otherwise) from a particular
(α, β, γ) instance (path). The sequence of tensor contractions leading to building a tensor are enumerated, where each tensor
is contracted to the one formed previously. For simplicity, the contraction of two single-qubit tensors onto a pair before being
contracted with others (e.g., tensor 10 in the yellow sequence of panel 5) is not shown on a separate panel; these pairs of tensors
are computed first and are reused for all cut instances.

GPU and fast tensor transposition, allowing out-of-
core tensor contractions for instances that exceed
GPU memory. This achieves very high efficiency
(see Table VII) on high arithmetic intensity con-
tractions.

In addition, qFlex implements two techniques in order
to lower the cost of the simulation:

• Noisy simulation: the cost of a simulation of fi-
delity F < 1 (F ≈ 5× 10−3 in practice) is lowered
by a factor 1/F , i.e., is linear in F [37, 49].

• Fast sampling technique: the overhead in apply-
ing the frugal rejection sampling mentioned above
is removed by this technique, giving an order of
magnitude speedup [49]. This involves the com-
putation of the amplitudes of a few correlated bit-
strings (batch) per circuit TN contraction.

As shown in Table VII, qFlex is successful in simulat-
ing Sycamore with 12 cycles on Summit, sampling 1M
bitstrings with fidelity close to 0.5% in 1.29 hours. At 14
cycles, we perform a partial simulation and extrapolate
the simulation time for the sampling of 1M bitstrings
with fidelity close to 0.5% using Summit, giving an
estimated 68 days to complete the task. Sampling
3M bitstrings at 14 cycles with fidelity close to 1.0%
(average experimentally realized fidelity) would take

an estimated 1.1 years to complete. Other estimates
for different sample sizes and fidelities can be found
in Table VII. At 16 cycles and beyond, however, the
enormous amount of Feynman paths required so that
the computation does not exceed the 512 GB of RAM
of each Summit node makes the computation impractical.

The contraction of the TNs involved in the compu-
tation of amplitudes from Sycamore using qFlex is pre-
ceded by a simplification of the circuits, which allows
us to decrease the bond (index) dimension of some of
the indexes of the TN. This comes from the realization
that fSim(θ = π/2, φ) = −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP (see Sections VI and VII E); note
that the SWAP gate can be applied either at the be-
ginning or at the end of the sequence. We apply this
transformation to all fSim gates at the beginning (end)
of the circuit that affect qubits that are not affected by
any other two-qubit gate before (after) in the circuit. The
SWAP is then applied to the input (output) qubits and
their respective one-qubit gates trivially, and the bond
dimension remaining from this gate is 2, corresponding
to the cphase gate, as opposed to the bond dimension
4 of the original fSim gate. Note that in practice this
identity is only approximate, since θ ≈ π/2; we find that
transforming all gates described above causes a drop in
fidelity to about 95%.
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After the above simplification is applied, we proceed
to cut (slice) some of the indexes of the TN (see Ref. [49]
for details). The size of the slice of the index involved
in each cut (the effective bond dimension of the index)
is variable, and is chosen differently for different num-
ber of cycles on the circuit. Cutting indexes decomposes
the contraction of the TN into several simpler contrac-
tions, whose results are summed after computing them
independently on different nodes of the supercomputer.

Fig. S43 shows the bond dimensions of the TN corre-
sponding to the circuits with 12 and 14 cycles simulated.
We can see the decrease in bond dimension after the fSim
simplification is applied, as well as the remaining bond
dimension on the indexes cut for each case.

Finally, we contract the tensor network corresponding
to the computation of a set of amplitudes (for fast sam-
pling) for a particular batch of output bitstrings. The
contraction ordering, which is chosen (together with the
size and position of the cuts) in order to minimize the
time-to-solution of the computation (which involves a
careful consideration of the memory resources used and
the efficiency achieved on the GPUs) is shown in Fig. S44.
The computation can be summarized in the following
pseudo-code, where α, β, and γ are variables that de-
note the different instances of the cuts:

# Qubits on C are used for fast sampling.
# size_of_batch amps. per circuit contraction.
size_of_batch = 2^num_qubits(C)

# Placeholder for all amplitudes in the batch.
batch_of_amplitudes = zeros(size_of_batch)

# Start contracting...
contract(A) # Panel 2
contract(B) # Panel 2
contract(C) # Panel 2

# alpha labels instances of 1st cut
for each alpha {

# beta labels instances of 2nd cut
for each beta {

contract(D) # Panels 3 & 4
contract(E) # Panels 5 & 6

# gamma labels instances of 3rd cut
for each gamma {

contract(F) # Panels 7 & 8

# Add contribution from this
# path (alpha, beta, gamma).
batch_of_amplitudes += F

}
}

}

Dotted qubits on Fig. S44 denote the region used for
fast sampling, where output indexes are left open. The

circuit TN contraction leads to the computation of 64
amplitudes of correlated bitstrings (tensor F ). Note that
computing only a fraction F of the paths results in am-
plitudes with a fidelity roughly equal to F . Computing
a set of perfect fidelity batches of amplitudes, where the
number of batches is smaller than the number of bit-
strings to sample also provides a similar fidelity F in the
sampling task, where F is equal to the ratio of the num-
ber of batches to the number of bitstrings in the sample.
A hybrid approach (fraction of batches, each only with
a fraction of paths), which we use in practice, also pro-
vides a similar sampling fidelity. See Refs. [37, 49] and
Section XA for more details.

A new feature of qFlex, implemented for this work, is
the possibility to perform out-of-core tensor contractions
(of tensors that exceed GPU memory) over more than
one GPU on the same node. Although the arithmetic
intensity requirements to achieve high efficiency are
now higher (about an arithmetic intensity of 3000 for
an efficiency close to 90% over three GPUs, as opposed
to 1000 for a similar efficiency using a single GPU),
the fact that a large part of a node is performing a
single TN contraction lets us work with larger tensors,
which implies reducing the number of cuts, as well as
increasing the bond dimension of each cut; this, in turn,
achieves better overall time-to-solution for sampling
than simulations based on TNs with smaller tensors and
with a lower memory footprint during their contraction
(which could perhaps show a higher GPU efficiency due
to the simultaneous use of each GPU for independent
TNs). It is worth noting that the TN contraction
ordering presented in Fig. S44 provides us with the best
time-to-solution after considering several possibilities for
the simulation of sampling from Sycamore using qFlex
for both 12 and 14 cycles. This is generally not the case,
since different numbers of cycles generate different TNs,
which generally have different contraction schemes for
best simulation time-to-solution.

Sampling of random circuits on Sycamore is difficult
to simulate with TN simulators at 16 cycles and be-
yond. Indeed, FA simulators suffer from an exponential
scaling of runtime with circuit depth. For qFlex, this
is manifested in the large size of the tensors involved
in the circuit TN contraction (this size grows exponen-
tially with the number of cycles of the circuit), which
require a large number of cuts in order not to exceed
the RAM of a computation node, and which in turn gen-
erates an impractical number of Feynman paths. For
other simulators, such as the one presented in Ref. [70],
the number of projected variables is expected to be so
large that the computation time (which increases expo-
nentially with the number of projected variables) on a
state-of-the-art supercomputer makes the computation
impractical; see Section XE for a detailed analysis. For
TN-based simulators that attempt the circuit contraction
distributed over several nodes (without cuts) [71], we ex-
pect the size of the largest tensor encountered during the
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TN contraction (which grows exponentially with depth)
to exceed the RAM available on any current supercom-
puter. Not having enough memory for a simulation is
the problem that led to developing FA simulators in the
first place, for circuits of close to 50 qubits and beyond,
for which the Schrödinger simulator (see Section XC)
requires more memory to store the wave function than
available. FA simulators give best performance as com-
pared to other methods in situations with a large num-
ber of qubits and low depth. For circuits where both the
number of qubits and the number of cycles are consid-
ered large enough to make the computation expensive,
and contribute equally in doing so (formally, each linear
dimension of the qubit grid is comparable to the time di-
mension), like the supremacy circuits considered in this
work, we expect SFA of Section XA to be the leading ap-
proach for sampling from a random circuit, given a large
enough sample size (∼ 1M in this work); note the linear
dependence of the runtime of FA with sample size, which
is absent for SFA.

C. Supercomputer Schrödinger simulator

We also performed supercomputer Schrödinger sim-
ulations in the Jülich Supercomputing Centre. For a
comprehensive description of the universal quantum com-
puter simulators JUQCS-E and JUQCS-A, see Refs. [72]
and [73].

For a given quantum circuit U designed to generate
a random state, JUQCS-E [73] executes U and com-
putes (in double precision floating point) the probabil-
ity distribution pU (j) for each output or bitstring j ∈
{0, . . . , D− 1}, where D = 2n, n denoting the number of
qubits. JUQCS-E can also compute (in double precision
floating point) the corresponding distribution function

PU (k) =
∑k

j=0 pU (j) and sample bitstrings from it. We
denote by U the set of m states generated by executing
the circuit U . A new feature of JUQCS-E, not docu-
mented in Ref. 73, allows the user to specify a set Q of
M bitstrings for which JUQCS-E calculates pU (j) for all
j ∈ Q and saves them in a file.

Similarly, for the same circuit U , JUQCS-A [73] com-
putes (with adaptive two-byte encoding) the probability
distribution pA(j) for each bitstring j ∈ {0, . . . , D − 1}.
Although numerical experiments with Shor’s algorithm
for up to 48 qubits indicate that the results produced
by JUQCS-A are sufficiently accurate, there is, in gen-
eral, no guarantee that pA(j) ≈ pU (j). In this sense,
JUQCS-A can be viewed as an approximate simulator of
a quantum computing device.

In principle, sampling states with probabilities pA(j)
requires the knowledge of the distribution function

PA(k) =
∑k

j=0 pA(j). If D is large, and pA(j) ≈ O(1/D),

as in the case of random states, computing PA(k) requires
the sum over j to be performed with sufficiently high
precision. For instance, if D = 239, pA(j) ≈ O(10−12)
and even with double precision arithmetic (≈ 16 dig-

its), adding D = 239 small numbers requires some care.
Note that in practice, each MPI process only calculates
a partial sum, which helps to reduce the loss of signif-
icant digits. JUQCS-A can compute PA(k) in double
precision and sample bitstrings from it. We denote by
A the set of M bitstrings generated by JUQCS-A af-
ter executing the circuit U . Activating this feature re-
quires additional memory, effectively reducing the max-
imum number of qubits that can be simulated by three.
This reduction of the maximum number of qubits might
be avoided as follows. In the case at hand, we know that
all pA(j) ≈ O(1/D). Then, since pA(j) is known, one
might as well sample the states from a uniform distribu-
tion, list the weight wA(j) = NpA(j) for each generated
state j and use these weights to compute averages. We
do not pursue this possibility here because for the present
purpose, it is essential to be able to compute pU (j) and
therefore, the maximum number of qubits that can be
studied is limited by the amount of memory that JUQCS-
E, not JUQCS-A, needs to perform the simulation.

For an XEB comparison, the quantities of interest are

αU,U ≡ logD + γ +
D−1∑
j=0

pU (j) log pU (j), (84)

αA,U ≡ logD + γ +
D−1∑
j=0

pA(j) log pU (j), (85)

αA,A ≡ logD + γ +
D−1∑
j=0

pA(j) log pA(j), (86)

αX ,U ≡ logD + γ +
1

M

∑
j∈X

log pU (j), (87)

where X is one of the four sets U , A, M (a collection of
bitstrings generated by the experiment), or C (obtained
by generating bistrings distributed uniformly). If M is
sufficiently large (M = 500000 in the case at hand), we
may expect that αU ,U ≈ αU,U and αA,U ≈ αA,U .
In addition to the cross entropies Eqs. (84)–(87), we

also compute the linear cross entropies

α̂U,U ≡
D−1∑
j=0

pU (j)(DpU (j)− 1), (88)

α̂A,U ≡
D−1∑
j=0

pA(j)(DpU (j)− 1), (89)

α̂A,A ≡
D−1∑
j=0

pA(j)(DpA(j)− 1), (90)

α̂X ,U ≡ 1

M

∑
j∈X

(DpU (j)− 1). (91)

Table VIII presents simulation results for the α’s
defined by Eqs. (84)–(87) and for the α̂’s defined by
Eqs. (88)–(91), obtained by running JUQCS-E and
JUQCS-A on the supercomputers at the Jülich Super-
computer Centre. For testing quantum supremacy using
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After the above simplification is applied, we proceed
to cut (slice) some of the indexes of the TN (see Ref. [49]
for details). The size of the slice of the index involved
in each cut (the effective bond dimension of the index)
is variable, and is chosen differently for different num-
ber of cycles on the circuit. Cutting indexes decomposes
the contraction of the TN into several simpler contrac-
tions, whose results are summed after computing them
independently on different nodes of the supercomputer.

Fig. S43 shows the bond dimensions of the TN corre-
sponding to the circuits with 12 and 14 cycles simulated.
We can see the decrease in bond dimension after the fSim
simplification is applied, as well as the remaining bond
dimension on the indexes cut for each case.

Finally, we contract the tensor network corresponding
to the computation of a set of amplitudes (for fast sam-
pling) for a particular batch of output bitstrings. The
contraction ordering, which is chosen (together with the
size and position of the cuts) in order to minimize the
time-to-solution of the computation (which involves a
careful consideration of the memory resources used and
the efficiency achieved on the GPUs) is shown in Fig. S44.
The computation can be summarized in the following
pseudo-code, where α, β, and γ are variables that de-
note the different instances of the cuts:

# Qubits on C are used for fast sampling.
# size_of_batch amps. per circuit contraction.
size_of_batch = 2^num_qubits(C)

# Placeholder for all amplitudes in the batch.
batch_of_amplitudes = zeros(size_of_batch)

# Start contracting...
contract(A) # Panel 2
contract(B) # Panel 2
contract(C) # Panel 2

# alpha labels instances of 1st cut
for each alpha {

# beta labels instances of 2nd cut
for each beta {

contract(D) # Panels 3 & 4
contract(E) # Panels 5 & 6

# gamma labels instances of 3rd cut
for each gamma {

contract(F) # Panels 7 & 8

# Add contribution from this
# path (alpha, beta, gamma).
batch_of_amplitudes += F

}
}

}

Dotted qubits on Fig. S44 denote the region used for
fast sampling, where output indexes are left open. The

circuit TN contraction leads to the computation of 64
amplitudes of correlated bitstrings (tensor F ). Note that
computing only a fraction F of the paths results in am-
plitudes with a fidelity roughly equal to F . Computing
a set of perfect fidelity batches of amplitudes, where the
number of batches is smaller than the number of bit-
strings to sample also provides a similar fidelity F in the
sampling task, where F is equal to the ratio of the num-
ber of batches to the number of bitstrings in the sample.
A hybrid approach (fraction of batches, each only with
a fraction of paths), which we use in practice, also pro-
vides a similar sampling fidelity. See Refs. [37, 49] and
Section XA for more details.

A new feature of qFlex, implemented for this work, is
the possibility to perform out-of-core tensor contractions
(of tensors that exceed GPU memory) over more than
one GPU on the same node. Although the arithmetic
intensity requirements to achieve high efficiency are
now higher (about an arithmetic intensity of 3000 for
an efficiency close to 90% over three GPUs, as opposed
to 1000 for a similar efficiency using a single GPU),
the fact that a large part of a node is performing a
single TN contraction lets us work with larger tensors,
which implies reducing the number of cuts, as well as
increasing the bond dimension of each cut; this, in turn,
achieves better overall time-to-solution for sampling
than simulations based on TNs with smaller tensors and
with a lower memory footprint during their contraction
(which could perhaps show a higher GPU efficiency due
to the simultaneous use of each GPU for independent
TNs). It is worth noting that the TN contraction
ordering presented in Fig. S44 provides us with the best
time-to-solution after considering several possibilities for
the simulation of sampling from Sycamore using qFlex
for both 12 and 14 cycles. This is generally not the case,
since different numbers of cycles generate different TNs,
which generally have different contraction schemes for
best simulation time-to-solution.

Sampling of random circuits on Sycamore is difficult
to simulate with TN simulators at 16 cycles and be-
yond. Indeed, FA simulators suffer from an exponential
scaling of runtime with circuit depth. For qFlex, this
is manifested in the large size of the tensors involved
in the circuit TN contraction (this size grows exponen-
tially with the number of cycles of the circuit), which
require a large number of cuts in order not to exceed
the RAM of a computation node, and which in turn gen-
erates an impractical number of Feynman paths. For
other simulators, such as the one presented in Ref. [70],
the number of projected variables is expected to be so
large that the computation time (which increases expo-
nentially with the number of projected variables) on a
state-of-the-art supercomputer makes the computation
impractical; see Section XE for a detailed analysis. For
TN-based simulators that attempt the circuit contraction
distributed over several nodes (without cuts) [71], we ex-
pect the size of the largest tensor encountered during the
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TN contraction (which grows exponentially with depth)
to exceed the RAM available on any current supercom-
puter. Not having enough memory for a simulation is
the problem that led to developing FA simulators in the
first place, for circuits of close to 50 qubits and beyond,
for which the Schrödinger simulator (see Section XC)
requires more memory to store the wave function than
available. FA simulators give best performance as com-
pared to other methods in situations with a large num-
ber of qubits and low depth. For circuits where both the
number of qubits and the number of cycles are consid-
ered large enough to make the computation expensive,
and contribute equally in doing so (formally, each linear
dimension of the qubit grid is comparable to the time di-
mension), like the supremacy circuits considered in this
work, we expect SFA of Section XA to be the leading ap-
proach for sampling from a random circuit, given a large
enough sample size (∼ 1M in this work); note the linear
dependence of the runtime of FA with sample size, which
is absent for SFA.

C. Supercomputer Schrödinger simulator

We also performed supercomputer Schrödinger sim-
ulations in the Jülich Supercomputing Centre. For a
comprehensive description of the universal quantum com-
puter simulators JUQCS-E and JUQCS-A, see Refs. [72]
and [73].

For a given quantum circuit U designed to generate
a random state, JUQCS-E [73] executes U and com-
putes (in double precision floating point) the probabil-
ity distribution pU (j) for each output or bitstring j ∈
{0, . . . , D− 1}, where D = 2n, n denoting the number of
qubits. JUQCS-E can also compute (in double precision
floating point) the corresponding distribution function

PU (k) =
∑k

j=0 pU (j) and sample bitstrings from it. We
denote by U the set of m states generated by executing
the circuit U . A new feature of JUQCS-E, not docu-
mented in Ref. 73, allows the user to specify a set Q of
M bitstrings for which JUQCS-E calculates pU (j) for all
j ∈ Q and saves them in a file.

Similarly, for the same circuit U , JUQCS-A [73] com-
putes (with adaptive two-byte encoding) the probability
distribution pA(j) for each bitstring j ∈ {0, . . . , D − 1}.
Although numerical experiments with Shor’s algorithm
for up to 48 qubits indicate that the results produced
by JUQCS-A are sufficiently accurate, there is, in gen-
eral, no guarantee that pA(j) ≈ pU (j). In this sense,
JUQCS-A can be viewed as an approximate simulator of
a quantum computing device.

In principle, sampling states with probabilities pA(j)
requires the knowledge of the distribution function

PA(k) =
∑k

j=0 pA(j). If D is large, and pA(j) ≈ O(1/D),

as in the case of random states, computing PA(k) requires
the sum over j to be performed with sufficiently high
precision. For instance, if D = 239, pA(j) ≈ O(10−12)
and even with double precision arithmetic (≈ 16 dig-

its), adding D = 239 small numbers requires some care.
Note that in practice, each MPI process only calculates
a partial sum, which helps to reduce the loss of signif-
icant digits. JUQCS-A can compute PA(k) in double
precision and sample bitstrings from it. We denote by
A the set of M bitstrings generated by JUQCS-A af-
ter executing the circuit U . Activating this feature re-
quires additional memory, effectively reducing the max-
imum number of qubits that can be simulated by three.
This reduction of the maximum number of qubits might
be avoided as follows. In the case at hand, we know that
all pA(j) ≈ O(1/D). Then, since pA(j) is known, one
might as well sample the states from a uniform distribu-
tion, list the weight wA(j) = NpA(j) for each generated
state j and use these weights to compute averages. We
do not pursue this possibility here because for the present
purpose, it is essential to be able to compute pU (j) and
therefore, the maximum number of qubits that can be
studied is limited by the amount of memory that JUQCS-
E, not JUQCS-A, needs to perform the simulation.

For an XEB comparison, the quantities of interest are

αU,U ≡ logD + γ +
D−1∑
j=0

pU (j) log pU (j), (84)

αA,U ≡ logD + γ +
D−1∑
j=0

pA(j) log pU (j), (85)

αA,A ≡ logD + γ +
D−1∑
j=0

pA(j) log pA(j), (86)

αX ,U ≡ logD + γ +
1

M

∑
j∈X

log pU (j), (87)

where X is one of the four sets U , A, M (a collection of
bitstrings generated by the experiment), or C (obtained
by generating bistrings distributed uniformly). If M is
sufficiently large (M = 500000 in the case at hand), we
may expect that αU ,U ≈ αU,U and αA,U ≈ αA,U .
In addition to the cross entropies Eqs. (84)–(87), we

also compute the linear cross entropies

α̂U,U ≡
D−1∑
j=0

pU (j)(DpU (j)− 1), (88)

α̂A,U ≡
D−1∑
j=0

pA(j)(DpU (j)− 1), (89)

α̂A,A ≡
D−1∑
j=0

pA(j)(DpA(j)− 1), (90)

α̂X ,U ≡ 1

M

∑
j∈X

(DpU (j)− 1). (91)

Table VIII presents simulation results for the α’s
defined by Eqs. (84)–(87) and for the α̂’s defined by
Eqs. (88)–(91), obtained by running JUQCS-E and
JUQCS-A on the supercomputers at the Jülich Super-
computer Centre. For testing quantum supremacy using
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these machines, the maximum number of qubits that a
universal quantum computer simulator can handle is 43
(45 on the Sunway TaihuLight at Wuxi China [73]).

The fact that in all cases, αU,U ≈ αA,A ≈ 1 sup-
ports the hypothesis that the circuit U , executed by ei-
ther JUQCS-E or JUQCS-A, produces a Porter-Thomas
distribution. The fact that in all cases, αU,U ≈ 1 sup-
ports the theoretical result that replacing the sum over all
states by the sum over M = 500000 states yields an ac-
curate estimate of the former (see Section IV). Although
αA,A ≈ 1 in all cases, using the sample A generated
by JUQCS-A to compute αA,U shows an increasing de-
viation from one, the deviation becoming larger as the
number of qubits increases. In combination with the ob-
servation that αA,A ≈ 1, this suggests that JUQCS-A
produces a random state, albeit not the same state as
JUQCS-E. Taking into account that JUQCS-A stores the
coefficients of each of the basis states as two single-byte
numbers and not as two double precision floating point
numbers (as JUQCS-E does), this is hardly a surprise.

From Table VIII it is clear that the simulation results
for αX ,U and α̂X ,U where X = A,M, C are consistent.
The full XEB fidelity estimates αM,U and α̂M,U , that
is the values computed with the bitstrings produced by
the experiment, are close to the fidelity estimates of the
probabilistic model, patch XEB, and elided XEB, as seen
in Fig. 4(a) of the main text.

For reference, in Tables IX and X we present some
technical information about the supercomputer systems
used to perform the simulations reported in this appendix
and give some indication of the computer resources used.

D. Simulation of random circuit sampling with a
target fidelity

A classical simulator can leverage the fact that exper-
imental sampling from random circuits occurs at low fi-
delity FXEB by considering only a small fraction of the
Feynman paths (see Secs. XA and XB) involved in the
simulation [37], which provides speedups of at least a
factor of 1/FXEB. This is done by Schmidt decomposing
a few two-qubit gates in the circuit and counting only
a fraction of their contributing terms (paths). A key as-
sumption here is that the different paths result in orthog-
onal output states, as was studied in Ref. [37] and later
in Ref. [49]. In what follows, we argue that, provided
the generation of paths through decomposing gates, the
Schmidt decomposition is indeed the optimal approach
to achieving the largest speedup, i.e., that the fidelity
kept by considering only a fraction of paths is largest
when keeping the paths with the largest Schmidt coef-
ficient. This is different from proving the optimality of
the Schmidt decomposition of a single gate, since here
we refer to the fidelity of the entire output state, and de-
composed gates are embedded in a much larger circuit.
In addition, we show that, for the two-qubit gates used
in this work, the speedup is very close to linear in FXEB

(and not much larger), since their Schmidt spectrum is
close to flat. We close this section by relating the present
discussion to Section VIIG 2, where the formation of sim-
plifiable gate patterns in some two-qubit gate tilings of
the circuit is introduced.

In summary, this section provides a method to simu-
late approximate sampling with a classical computational
cost proportional to FXEB. Sec. XI argues, based on com-
plexity theory, that this scaling is optimal. We note that
Refs [76–78] propose an alternative method to approx-
imately sample the output distribution at low fidelity.
In essence, this method relies on the observation that,
for some noise models, the high weight Fourier compo-
nents of the noisy output distribution decay exponen-
tially to 0. Then this method proposes to estimate low
weight Fourier components with an additive error which
is polynomial in the computational cost. Nevertheless,
Ref. [79] shows that all Fourier components of the output
distribution of random circuits are exponentially small,
and therefore they can not be estimated in polynomial
time with this method. The conclusion is then that the
noisy output distribution can be approximated by sam-
pling bitstrings uniformly at random, the distribution for
which all Fourier components are 0. This is consistent
with Ref. [26] and Secs. IV and VIII E, but it will pro-
duce a sample with FXEB = 0, while the output of the
experimental samples at 53 qubits and m = 20 still has
FXEB ≥ 0.1%

1. Optimality of the Schmidt decomposition for gates
embedded in a random circuit

Consider a two-qubit gate Vab acting on qubits a and b.
We would like to replace it by a tensor product operator
Ma ⊗ Nb. The final state of the ideal circuit is

|ψ〉 := U2VabU1|0n〉 (92)

where U1(U2) is a unitary composed by all the gates ap-
plied before (after) Vab. The final normalized state of the
circuit with the replacement by Ma ⊗ Nb is

|φM,N 〉 := U2(Ma ⊗ Nb)U1|0n〉/‖U2(Ma ⊗ Nb)U1|0n〉‖.
(93)

We would like to find M, N which maximize the fidelity
of the two states, given by

〈ψ|φM,N 〉 = 〈0n|U†
1V †

ab|β〉/
√
〈β|β〉, (94)

where

|β〉 ≡ (Ma ⊗ Nb)U1|0n〉 (95)

As the overlap is invariant if we multiply (Ma⊗Nb) by
a constant, we fix the normalization tr[(Ma⊗Nb)

†(Ma⊗
Nb)] = 1.
We now make the assumption that the circuit is ran-

dom (or sufficiently scrambling) and that the Vab is a gate
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TABLE VIII. Simulation results for various α’s as defined by Eqs. (84)–(87), obtained by JUQCS-E and JUQCS-A. The results
for the α̂’s defined by Eqs. (88)–(91) are given in parenthesis. The set of bitstrings M has been obtained from experiments.
In the first column, the number in parenthesis is the circuit identification number. Horizontal lines indicate that data is not
available (and would require additional simulation runs to obtain it).

qubits αU,U αA,A αU,U αA,U (α̂A,U ) αM,U (α̂M,U ) αC,U (α̂C,U )

30 1.0000 1.0000 0.9997 0.8824 (0.8826) 0.0708 (0.0711) +0.0026 (+0.0017)
39(0) 1.0000 1.0000 0.9992 0.4746 (0.4762) 0.0281 (0.0261) −0.0003 (−0.0011)
39(1) 1.0000 1.0000 1.0002 —–; (—–) 0.0350 (0.0362) —–; (—–)
39(2) 1.0000 1.0000 0.9996 —–; (—–) 0.0351 (0.0332) —–; (—–)
39(3) 1.0000 1.0000 0.9999 —–; (—–) 0.0375 (0.0355) —–; (—–)
42(0) 1.0000 1.0001 0.9998 0.4264 (0.4268) 0.0287 (0.0258) −0.0024 (−0.0001)
42(1) 1.0000 1.0000 1.0027 —–; (—–) 0.0254 (0.0273) —–; (—–)
43(0) 1.0000 1.0001 1.0013 0.3807 (0.3784) 0.0182 (0.0177) −0.0010 (−0.0003)
43(1) 1.0000 1.0000 —– —–; (—–) 0.0217 (0.0204) —–; (—–)

TABLE IX. Specification of the computer systems at the Jülich Supercomputing Centre used to perform all simulations
reported in this appendix. The row “maximum # qubits” gives the maximum number of qubits n that JUQCS-E (JUQCS-A)
can simulate on a specific computer.

Supercomputer JURECA-CLUSTER [74] JURECA-BOOSTER [74] JUWELS [75]

CPU Intel Xeon Intel Xeon Phi 7250-F Dual Intel Xeon
E5-2680 v3 Haswell Knights Landing Platinum 8168

Peak performance 1.8 PFlop/s 5 PFlop/s 10.4 PFlops/s
Clock frequency 2.5 GHz 1.4 GHz 2.7 GHz
Memory/node 128 GB 96 GB + 16 GB (MCDRAM) 96 GB
# cores/node 2× 12 64 2× 24

# threads/core used 1 1 3
maximum # nodes used 256 512 2048

maximum # MPI processes used 4096 32768 32768
maximum # qubits 40 (43) 41 (44) 43 (46)

placed sufficiently in the middle of the computation that
the reduced density matrix of qubits a and b of U1|0n〉
shows maximal mixing between the two. In more detail,
let

ε :=

∥∥∥∥tr\(a,b)(U1|0n〉〈0n|U†
1 )−

I

4

∥∥∥∥
2

, (96)

with ‖X‖2 := tr(X†X)1/2 the Hilbert-Schmidt norm and
tr\(a,b) the partial trace of all qubits except a and b.
Using Eq. (96) and Eq. (94), we find

〈ψ|φM,N 〉 = tr(tr\(a,b)(U1|0n〉〈0n|U†
1 )V

†
ab(Ma ⊗ Nb)) (97)

=
1

4
tr[V †

ab(Ma ⊗ Nb)]± ‖(Ma ⊗ Nb)‖2‖Vab‖2ε.

As ‖(Ma ⊗ Nb)‖2 = 1 and ‖Vab‖2 = 2, we find

〈ψ|φM,N 〉 = 1

4
tr[V †

ab(Ma ⊗ Nb)]± 2ε. (98)

Refs. [80, 81] proved that for a random circuit U1 of
depth D in one dimension, ε ≤ (4/5)D. In two dimen-
sions we expect ε to go to zero even faster with depth, so

we can ignore the second term of Eq. (98) for sufficiently
large depth.

We now want to find Ma, Nb which are optimal for

max
Ma,Nb:‖Ma‖2=‖Nb‖2

tr[V †
ab(Ma ⊗ Nb)]. (99)

At this point, we have reduced the problem to finding
the optimal decomposition of the gate as a standalone
operator.

Consider the operator Schmidt decomposition of Vab:

Vab =
∑
i

λiRa,i ⊗ Sb,i, (100)

where Ra,i (Sb,i) are orthonormal set of operators in

the Hilbert-Schmidt inner product, i.e. tr(R†
a,iRa,j) =

tr(S†
a,iSb,j) = δij . The Schmidt singular values λ1 ≥

λ2 ≥ . . . are in decreasing order. Then it follows that
the solution of Eq. (99) is λ1, with optimal solution
Ma = Ra,1 and Nb = Sb,1. Indeed we can write Eq. (99)
as

max
|x〉,|y〉

〈x|V |y〉 (101)
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these machines, the maximum number of qubits that a
universal quantum computer simulator can handle is 43
(45 on the Sunway TaihuLight at Wuxi China [73]).

The fact that in all cases, αU,U ≈ αA,A ≈ 1 sup-
ports the hypothesis that the circuit U , executed by ei-
ther JUQCS-E or JUQCS-A, produces a Porter-Thomas
distribution. The fact that in all cases, αU,U ≈ 1 sup-
ports the theoretical result that replacing the sum over all
states by the sum over M = 500000 states yields an ac-
curate estimate of the former (see Section IV). Although
αA,A ≈ 1 in all cases, using the sample A generated
by JUQCS-A to compute αA,U shows an increasing de-
viation from one, the deviation becoming larger as the
number of qubits increases. In combination with the ob-
servation that αA,A ≈ 1, this suggests that JUQCS-A
produces a random state, albeit not the same state as
JUQCS-E. Taking into account that JUQCS-A stores the
coefficients of each of the basis states as two single-byte
numbers and not as two double precision floating point
numbers (as JUQCS-E does), this is hardly a surprise.

From Table VIII it is clear that the simulation results
for αX ,U and α̂X ,U where X = A,M, C are consistent.
The full XEB fidelity estimates αM,U and α̂M,U , that
is the values computed with the bitstrings produced by
the experiment, are close to the fidelity estimates of the
probabilistic model, patch XEB, and elided XEB, as seen
in Fig. 4(a) of the main text.

For reference, in Tables IX and X we present some
technical information about the supercomputer systems
used to perform the simulations reported in this appendix
and give some indication of the computer resources used.

D. Simulation of random circuit sampling with a
target fidelity

A classical simulator can leverage the fact that exper-
imental sampling from random circuits occurs at low fi-
delity FXEB by considering only a small fraction of the
Feynman paths (see Secs. XA and XB) involved in the
simulation [37], which provides speedups of at least a
factor of 1/FXEB. This is done by Schmidt decomposing
a few two-qubit gates in the circuit and counting only
a fraction of their contributing terms (paths). A key as-
sumption here is that the different paths result in orthog-
onal output states, as was studied in Ref. [37] and later
in Ref. [49]. In what follows, we argue that, provided
the generation of paths through decomposing gates, the
Schmidt decomposition is indeed the optimal approach
to achieving the largest speedup, i.e., that the fidelity
kept by considering only a fraction of paths is largest
when keeping the paths with the largest Schmidt coef-
ficient. This is different from proving the optimality of
the Schmidt decomposition of a single gate, since here
we refer to the fidelity of the entire output state, and de-
composed gates are embedded in a much larger circuit.
In addition, we show that, for the two-qubit gates used
in this work, the speedup is very close to linear in FXEB

(and not much larger), since their Schmidt spectrum is
close to flat. We close this section by relating the present
discussion to Section VIIG 2, where the formation of sim-
plifiable gate patterns in some two-qubit gate tilings of
the circuit is introduced.

In summary, this section provides a method to simu-
late approximate sampling with a classical computational
cost proportional to FXEB. Sec. XI argues, based on com-
plexity theory, that this scaling is optimal. We note that
Refs [76–78] propose an alternative method to approx-
imately sample the output distribution at low fidelity.
In essence, this method relies on the observation that,
for some noise models, the high weight Fourier compo-
nents of the noisy output distribution decay exponen-
tially to 0. Then this method proposes to estimate low
weight Fourier components with an additive error which
is polynomial in the computational cost. Nevertheless,
Ref. [79] shows that all Fourier components of the output
distribution of random circuits are exponentially small,
and therefore they can not be estimated in polynomial
time with this method. The conclusion is then that the
noisy output distribution can be approximated by sam-
pling bitstrings uniformly at random, the distribution for
which all Fourier components are 0. This is consistent
with Ref. [26] and Secs. IV and VIII E, but it will pro-
duce a sample with FXEB = 0, while the output of the
experimental samples at 53 qubits and m = 20 still has
FXEB ≥ 0.1%

1. Optimality of the Schmidt decomposition for gates
embedded in a random circuit

Consider a two-qubit gate Vab acting on qubits a and b.
We would like to replace it by a tensor product operator
Ma ⊗ Nb. The final state of the ideal circuit is

|ψ〉 := U2VabU1|0n〉 (92)

where U1(U2) is a unitary composed by all the gates ap-
plied before (after) Vab. The final normalized state of the
circuit with the replacement by Ma ⊗ Nb is

|φM,N 〉 := U2(Ma ⊗ Nb)U1|0n〉/‖U2(Ma ⊗ Nb)U1|0n〉‖.
(93)

We would like to find M, N which maximize the fidelity
of the two states, given by

〈ψ|φM,N 〉 = 〈0n|U†
1V †

ab|β〉/
√

〈β|β〉, (94)

where

|β〉 ≡ (Ma ⊗ Nb)U1|0n〉 (95)

As the overlap is invariant if we multiply (Ma⊗Nb) by
a constant, we fix the normalization tr[(Ma⊗Nb)

†(Ma⊗
Nb)] = 1.
We now make the assumption that the circuit is ran-

dom (or sufficiently scrambling) and that the Vab is a gate
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TABLE VIII. Simulation results for various α’s as defined by Eqs. (84)–(87), obtained by JUQCS-E and JUQCS-A. The results
for the α̂’s defined by Eqs. (88)–(91) are given in parenthesis. The set of bitstrings M has been obtained from experiments.
In the first column, the number in parenthesis is the circuit identification number. Horizontal lines indicate that data is not
available (and would require additional simulation runs to obtain it).

qubits αU,U αA,A αU,U αA,U (α̂A,U ) αM,U (α̂M,U ) αC,U (α̂C,U )

30 1.0000 1.0000 0.9997 0.8824 (0.8826) 0.0708 (0.0711) +0.0026 (+0.0017)
39(0) 1.0000 1.0000 0.9992 0.4746 (0.4762) 0.0281 (0.0261) −0.0003 (−0.0011)
39(1) 1.0000 1.0000 1.0002 —–; (—–) 0.0350 (0.0362) —–; (—–)
39(2) 1.0000 1.0000 0.9996 —–; (—–) 0.0351 (0.0332) —–; (—–)
39(3) 1.0000 1.0000 0.9999 —–; (—–) 0.0375 (0.0355) —–; (—–)
42(0) 1.0000 1.0001 0.9998 0.4264 (0.4268) 0.0287 (0.0258) −0.0024 (−0.0001)
42(1) 1.0000 1.0000 1.0027 —–; (—–) 0.0254 (0.0273) —–; (—–)
43(0) 1.0000 1.0001 1.0013 0.3807 (0.3784) 0.0182 (0.0177) −0.0010 (−0.0003)
43(1) 1.0000 1.0000 —– —–; (—–) 0.0217 (0.0204) —–; (—–)

TABLE IX. Specification of the computer systems at the Jülich Supercomputing Centre used to perform all simulations
reported in this appendix. The row “maximum # qubits” gives the maximum number of qubits n that JUQCS-E (JUQCS-A)
can simulate on a specific computer.

Supercomputer JURECA-CLUSTER [74] JURECA-BOOSTER [74] JUWELS [75]

CPU Intel Xeon Intel Xeon Phi 7250-F Dual Intel Xeon
E5-2680 v3 Haswell Knights Landing Platinum 8168

Peak performance 1.8 PFlop/s 5 PFlop/s 10.4 PFlops/s
Clock frequency 2.5 GHz 1.4 GHz 2.7 GHz
Memory/node 128 GB 96 GB + 16 GB (MCDRAM) 96 GB
# cores/node 2× 12 64 2× 24

# threads/core used 1 1 3
maximum # nodes used 256 512 2048

maximum # MPI processes used 4096 32768 32768
maximum # qubits 40 (43) 41 (44) 43 (46)

placed sufficiently in the middle of the computation that
the reduced density matrix of qubits a and b of U1|0n〉
shows maximal mixing between the two. In more detail,
let

ε :=

∥∥∥∥tr\(a,b)(U1|0n〉〈0n|U†
1 )−

I

4

∥∥∥∥
2

, (96)

with ‖X‖2 := tr(X†X)1/2 the Hilbert-Schmidt norm and
tr\(a,b) the partial trace of all qubits except a and b.
Using Eq. (96) and Eq. (94), we find

〈ψ|φM,N 〉 = tr(tr\(a,b)(U1|0n〉〈0n|U†
1 )V

†
ab(Ma ⊗ Nb)) (97)

=
1

4
tr[V †

ab(Ma ⊗ Nb)]± ‖(Ma ⊗ Nb)‖2‖Vab‖2ε.

As ‖(Ma ⊗ Nb)‖2 = 1 and ‖Vab‖2 = 2, we find

〈ψ|φM,N 〉 = 1

4
tr[V †

ab(Ma ⊗ Nb)]± 2ε. (98)

Refs. [80, 81] proved that for a random circuit U1 of
depth D in one dimension, ε ≤ (4/5)D. In two dimen-
sions we expect ε to go to zero even faster with depth, so

we can ignore the second term of Eq. (98) for sufficiently
large depth.

We now want to find Ma, Nb which are optimal for

max
Ma,Nb:‖Ma‖2=‖Nb‖2

tr[V †
ab(Ma ⊗ Nb)]. (99)

At this point, we have reduced the problem to finding
the optimal decomposition of the gate as a standalone
operator.

Consider the operator Schmidt decomposition of Vab:

Vab =
∑
i

λiRa,i ⊗ Sb,i, (100)

where Ra,i (Sb,i) are orthonormal set of operators in

the Hilbert-Schmidt inner product, i.e. tr(R†
a,iRa,j) =

tr(S†
a,iSb,j) = δij . The Schmidt singular values λ1 ≥

λ2 ≥ . . . are in decreasing order. Then it follows that
the solution of Eq. (99) is λ1, with optimal solution
Ma = Ra,1 and Nb = Sb,1. Indeed we can write Eq. (99)
as

max
|x〉,|y〉

〈x|V |y〉 (101)
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TABLE X. Representative elapsed times and number of MPI processes used to perform simulations with JUQCS-E and
JUQCS-A on the supercomputer indicated. Note that the elapsed times may fluctuate significantly depending on the load of
the machine/network.

JUQCS-E JUQCS-A
qubits gates Supercomputer MPI processes Elapsed time Supercomputer MPI processes Elapsed time

30 614 BOOSTER 128 0:02:28 CLUSTER 128 0:05:23
39 802 CLUSTER 4096 0:42:51 CLUSTER 4096 1:38:42
42 864 JUWELS 16384 0:51:16 JUWELS 8192 2:15:48
43 886 JUWELS 32768 1:01:53 JUWELS 32768 1:32:19

FIG. S45. Probability distribution of the deviations
|δθ| from θ ≈ π/2 for fSim gates. The magnitude of δθ is
directly related to the runtime speedup low fidelity classical
sampling can take from exploiting the existence of paths with
large Schmidt coefficients. In practice, |δθ| ≈ 0.05 radians
on average, which imposes a bound of less than an order of
magnitude on this potential speedup for the circuits, gates,
and simulation techniques considered in this work.

where the maximum is over all unit vectors |x〉, |y〉 in
(C2)⊗2 and V is the matrix

V :=
∑
i

λi(Ra,i ⊗ I)|Φ〉〈Φ|(S†
b,i ⊗ I) (102)

with |Φ〉 =
∑

i |i〉 ⊗ |i〉. This can be verified using the
fact that any unit vector |x〉 in (Cd)⊗2 can be written
as |x〉 = (L ⊗ I)|Φ〉 for a matrix L acting on (Cd) s.t.
‖L‖2 = 1. The result follows by noting that λi are the
singular values of V .

The argument above easily generalizes to the problem
of finding the optimal operator of Schmidt rank k for
replacing the unitary gate. In that case the optimal

choice is
∑k

i=1 λiRa,i ⊗ Sb,i.

FIG. S46. Classical speedup given by the imbalance
in the Schmidt coefficients of the gates decomposed.
The speedup is computed by comparison with the case where
θ = π/2 exactly. The classical simulation has a target fi-
delity F , and g fSim gates are decomposed. For simplic-
ity, we assume θ = π/2 + δθ is the same for all gates, as
well as φ = π/6. Left: speedup at different target fidelities
for fixed g = 35. Note that the speedup decreases with F ;
this is due to the fact that at very low fidelity, considering a
few paths with very high weight might be enough to achieve
the target fidelity, while for larger values of F , paths with a
smaller weight have to be considered, and so a larger num-
ber of them is needed per fractional fidelity increase. Right:
speedup for fixed fidelity F = 0.001 for different values of g.
As expected, the speedup is greater as g increases, since the
weight of the highest contributing paths increases exponen-
tially with g. The largest speedup is achieved at large g and
small F . For g = 35 and F � 0.001, we find speedups well
below an order of magnitude, given that |δθ| ≈ 0.05 radians in
practice (shaded area); this case is representative of our sim-
ulation of Sycamore with m = 20 (see Section XA) targeting
the fidelity measured experimentally.

2. Classical speedup for imbalanced gates

We now want to analyze the Schmidt spectrum of the
two-qubit gates used in this work. The fSim(θ, φ) gate is
introduced in Section VII E. This gate, which is presented
in matrix form in Eq. (53), has the following Schmidt
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singular values:

λ1 =
√

1 + 2 · | cos(φ/2) cos θ|+ cos2 θ (103)

λ2 = λ3 = sin θ (104)

λ4 =
√

1− 2 · | cos(φ/2) cos θ|+ cos2 θ , (105)

where normalization is chosen so that
∑4

i λ2
i = 4. In

practice, we have θ ≈ π/2 and φ ≈ π/6, and so we obtain
λi ≈ 1, ∀i ∈ {1, 2, 3, 4}, which gives a flat spectrum.
In the case that θ = π/2 ± δθ, the spectrum becomes

imbalanced, as expected. When considering the decom-
position of a number g of fSim(π/2± δθ, φ ≈ π/6) gates,
the set of weights of all paths is equal to the outer prod-
uct of all sets of Schmidt coefficients (one per gate).
Achieving a fidelity FXEB > 0 implies (in the optimal
case) including the largest contributing paths, and so
the advantage one can get from this is upper bounded
by the magnitude of the largest weight, which is equal
to

∏g
α=1 λ2

α,max, where α labels the gates decomposed
and λα,max is the largest Schmidt coefficient for gate α.
In practice, |δθ| has values of around 0.05 radians (see
Fig. S45). The geometric mean of λmax is about 1.047,
which gives an upper bound of 1.0472g to the speedup
discussed here. For the largest value of g considered in
this work, i.e., the decomposition of g = 35 gates using
the SFA simulator (Section XA) on a circuit of m = 20
cycles, we obtain a value of 1.0472×35 = 25.4. Note that
the speedup obtained in practice (as compared to run-
times over circuits with perfectly flat gate Schmidt de-
compositions) for fidelities of the order of 0.1% and larger
is expected to be far smaller than this value, given that
one has to consider a large number of paths, from which
only an exponentially small number will have a weight
close to 25.4.

We can get a better estimate for the speedup achieved
in practice, beyond the upper bound of about a factor of
25 that decomposing g = 35 gates with typical parame-
ters would give. For simplicity, let us assume that all g
gates have the same values of θ and φ. Then the weight
of each path arising from this decomposition can be writ-
ten as Wi = W(a,b,c) = λ2a

1 λ2b
2 λ2c

3 , where a + b + c = g,
and that the number of paths for each choice of (a, b, c)

is equal to #(a, b, c) =
∑b

k=0 multinomial(a, b−k, k, c) =
2b×multinomial(a, b, c). After sorting all 4g weights (and
paths) by decreasing value, given a target fidelity, F , one
now has to consider the first S paths (i.e., those with the
largest weight), up to the point where the sum of their

weights
∑S

i=1
Wi

4g matches the target fidelity. The nor-
malization factor 4g guarantees that if one were to con-
sider all paths, the fidelity would be unity, as expected.
Compared to the case where we consider a number F×4g

of paths, as for a flat Schmidt spectrum, this provides a
speedup equal to S

F×4g . We show the speedup achieved
this way in Fig. S46. For the case where we would achieve
the largest speedup in the simulations considered in this
work, namely the simulation of Sycamore at m = 20
cycles and a fidelity F ≈ 0.2% with g = 35 gates decom-
posed (see Section XF), we estimate that the speedup

obtained this way would be well below an order of mag-
nitude, since |δθ| typically takes values of about 0.05 ra-
dians.

3. Verifiable and supremacy circuits

So far we have considered the decomposition of gates
one by one, i.e., where the total number of paths is equal
to the product of the Schmidt rank of all gates decom-
posed. However, by fusing gates together in a larger
unitary, one can provide some speedup to the classical
simulation of the sampling task.

The rationale here comes from the realization that
a unitary that involves a number of qubits q cannot
have a rank larger than 4min(ql,qr) when Schmidt decom-
posed over two subsets of qubits of size ql and qr, with
ql+qr = q. Therefore one might reduce exponentially the
number of paths by fusing gates such that the resulting
unitary reaches on either side (l or r) a number of qubits
that is smaller than the product of the ranks of the fused
gates to be decomposed. This is at the heart of the forma-
tion of wedges of Section VIIG 2. These wedges denote
particular sequences of consecutive two-qubit gates that
only act upon three qubits. Fusing these two-qubit gates
together generates 4 paths, as opposed to a naive count
of 42 paths if one decomposes each gate separately. Each
wedge identified across a circuit cut provides a speedup
by a factor of 4.

In this work, we define two classes of circuits: verifiable
and supremacy circuits. Verifiable circuits present a large
number of wedges across the partition used with the SFA
simulator (Section XA) and are therefore classically sim-
ulatable in a reasonable amount of time. These circuits
were used to perform full XEB over the entire device up
to depth m = 14 (see Fig. 4a of the main article and
Sections VII and VIII), which involves perfect fidelity
computations. On the other hand, supremacy circuits
are designed so that the presence of wedges and similar
sequences is mitigated, therefore avoiding the possibility
of exploiting this classical speedup.

It is natural to apply the ideas presented here beyond
wedges. It is also easy to look for similar structures in
the circuits algorithmically. This way, we find that for
the supremacy circuits there is a small number of such
sequences. On the sequence of cycles DCD (see Fig. S25),
three two-qubit gates are applied on qubits 16, 47, and
51 (see Fig. S27 for numbering). These three gates can
be fused in one. Then, if the two gates between qubits 47
and 51 are decomposed (as is done with the SFA simula-
tions of Section XA used in Fig. 4 of the main article),
this technique provides a speedup of a factor of 4. The
sequence of layouts DCD appears twice for circuits of
m = 20, which provides a total speedup of 42 = 16 in
the simulation of the supremacy circuits. This particu-
lar decomposition is currently not implemented, and the
estimated timings of Section XA and Fig. 4 of the main
article do not take it into account.
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TABLE X. Representative elapsed times and number of MPI processes used to perform simulations with JUQCS-E and
JUQCS-A on the supercomputer indicated. Note that the elapsed times may fluctuate significantly depending on the load of
the machine/network.

JUQCS-E JUQCS-A
qubits gates Supercomputer MPI processes Elapsed time Supercomputer MPI processes Elapsed time

30 614 BOOSTER 128 0:02:28 CLUSTER 128 0:05:23
39 802 CLUSTER 4096 0:42:51 CLUSTER 4096 1:38:42
42 864 JUWELS 16384 0:51:16 JUWELS 8192 2:15:48
43 886 JUWELS 32768 1:01:53 JUWELS 32768 1:32:19

FIG. S45. Probability distribution of the deviations
|δθ| from θ ≈ π/2 for fSim gates. The magnitude of δθ is
directly related to the runtime speedup low fidelity classical
sampling can take from exploiting the existence of paths with
large Schmidt coefficients. In practice, |δθ| ≈ 0.05 radians
on average, which imposes a bound of less than an order of
magnitude on this potential speedup for the circuits, gates,
and simulation techniques considered in this work.

where the maximum is over all unit vectors |x〉, |y〉 in
(C2)⊗2 and V is the matrix

V :=
∑
i

λi(Ra,i ⊗ I)|Φ〉〈Φ|(S†
b,i ⊗ I) (102)

with |Φ〉 =
∑

i |i〉 ⊗ |i〉. This can be verified using the
fact that any unit vector |x〉 in (Cd)⊗2 can be written
as |x〉 = (L ⊗ I)|Φ〉 for a matrix L acting on (Cd) s.t.
‖L‖2 = 1. The result follows by noting that λi are the
singular values of V .

The argument above easily generalizes to the problem
of finding the optimal operator of Schmidt rank k for
replacing the unitary gate. In that case the optimal

choice is
∑k

i=1 λiRa,i ⊗ Sb,i.

FIG. S46. Classical speedup given by the imbalance
in the Schmidt coefficients of the gates decomposed.
The speedup is computed by comparison with the case where
θ = π/2 exactly. The classical simulation has a target fi-
delity F , and g fSim gates are decomposed. For simplic-
ity, we assume θ = π/2 + δθ is the same for all gates, as
well as φ = π/6. Left: speedup at different target fidelities
for fixed g = 35. Note that the speedup decreases with F ;
this is due to the fact that at very low fidelity, considering a
few paths with very high weight might be enough to achieve
the target fidelity, while for larger values of F , paths with a
smaller weight have to be considered, and so a larger num-
ber of them is needed per fractional fidelity increase. Right:
speedup for fixed fidelity F = 0.001 for different values of g.
As expected, the speedup is greater as g increases, since the
weight of the highest contributing paths increases exponen-
tially with g. The largest speedup is achieved at large g and
small F . For g = 35 and F � 0.001, we find speedups well
below an order of magnitude, given that |δθ| ≈ 0.05 radians in
practice (shaded area); this case is representative of our sim-
ulation of Sycamore with m = 20 (see Section XA) targeting
the fidelity measured experimentally.

2. Classical speedup for imbalanced gates

We now want to analyze the Schmidt spectrum of the
two-qubit gates used in this work. The fSim(θ, φ) gate is
introduced in Section VII E. This gate, which is presented
in matrix form in Eq. (53), has the following Schmidt
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singular values:

λ1 =
√
1 + 2 · | cos(φ/2) cos θ|+ cos2 θ (103)

λ2 = λ3 = sin θ (104)

λ4 =
√
1− 2 · | cos(φ/2) cos θ|+ cos2 θ , (105)

where normalization is chosen so that
∑4

i λ2
i = 4. In

practice, we have θ ≈ π/2 and φ ≈ π/6, and so we obtain
λi ≈ 1, ∀i ∈ {1, 2, 3, 4}, which gives a flat spectrum.
In the case that θ = π/2 ± δθ, the spectrum becomes

imbalanced, as expected. When considering the decom-
position of a number g of fSim(π/2± δθ, φ ≈ π/6) gates,
the set of weights of all paths is equal to the outer prod-
uct of all sets of Schmidt coefficients (one per gate).
Achieving a fidelity FXEB > 0 implies (in the optimal
case) including the largest contributing paths, and so
the advantage one can get from this is upper bounded
by the magnitude of the largest weight, which is equal
to

∏g
α=1 λ2

α,max, where α labels the gates decomposed
and λα,max is the largest Schmidt coefficient for gate α.
In practice, |δθ| has values of around 0.05 radians (see
Fig. S45). The geometric mean of λmax is about 1.047,
which gives an upper bound of 1.0472g to the speedup
discussed here. For the largest value of g considered in
this work, i.e., the decomposition of g = 35 gates using
the SFA simulator (Section XA) on a circuit of m = 20
cycles, we obtain a value of 1.0472×35 = 25.4. Note that
the speedup obtained in practice (as compared to run-
times over circuits with perfectly flat gate Schmidt de-
compositions) for fidelities of the order of 0.1% and larger
is expected to be far smaller than this value, given that
one has to consider a large number of paths, from which
only an exponentially small number will have a weight
close to 25.4.

We can get a better estimate for the speedup achieved
in practice, beyond the upper bound of about a factor of
25 that decomposing g = 35 gates with typical parame-
ters would give. For simplicity, let us assume that all g
gates have the same values of θ and φ. Then the weight
of each path arising from this decomposition can be writ-
ten as Wi = W(a,b,c) = λ2a

1 λ2b
2 λ2c

3 , where a + b + c = g,
and that the number of paths for each choice of (a, b, c)

is equal to #(a, b, c) =
∑b

k=0 multinomial(a, b−k, k, c) =
2b×multinomial(a, b, c). After sorting all 4g weights (and
paths) by decreasing value, given a target fidelity, F , one
now has to consider the first S paths (i.e., those with the
largest weight), up to the point where the sum of their

weights
∑S

i=1
Wi

4g matches the target fidelity. The nor-
malization factor 4g guarantees that if one were to con-
sider all paths, the fidelity would be unity, as expected.
Compared to the case where we consider a number F×4g

of paths, as for a flat Schmidt spectrum, this provides a
speedup equal to S

F×4g . We show the speedup achieved
this way in Fig. S46. For the case where we would achieve
the largest speedup in the simulations considered in this
work, namely the simulation of Sycamore at m = 20
cycles and a fidelity F ≈ 0.2% with g = 35 gates decom-
posed (see Section XF), we estimate that the speedup

obtained this way would be well below an order of mag-
nitude, since |δθ| typically takes values of about 0.05 ra-
dians.

3. Verifiable and supremacy circuits

So far we have considered the decomposition of gates
one by one, i.e., where the total number of paths is equal
to the product of the Schmidt rank of all gates decom-
posed. However, by fusing gates together in a larger
unitary, one can provide some speedup to the classical
simulation of the sampling task.

The rationale here comes from the realization that
a unitary that involves a number of qubits q cannot
have a rank larger than 4min(ql,qr) when Schmidt decom-
posed over two subsets of qubits of size ql and qr, with
ql+qr = q. Therefore one might reduce exponentially the
number of paths by fusing gates such that the resulting
unitary reaches on either side (l or r) a number of qubits
that is smaller than the product of the ranks of the fused
gates to be decomposed. This is at the heart of the forma-
tion of wedges of Section VIIG 2. These wedges denote
particular sequences of consecutive two-qubit gates that
only act upon three qubits. Fusing these two-qubit gates
together generates 4 paths, as opposed to a naive count
of 42 paths if one decomposes each gate separately. Each
wedge identified across a circuit cut provides a speedup
by a factor of 4.

In this work, we define two classes of circuits: verifiable
and supremacy circuits. Verifiable circuits present a large
number of wedges across the partition used with the SFA
simulator (Section XA) and are therefore classically sim-
ulatable in a reasonable amount of time. These circuits
were used to perform full XEB over the entire device up
to depth m = 14 (see Fig. 4a of the main article and
Sections VII and VIII), which involves perfect fidelity
computations. On the other hand, supremacy circuits
are designed so that the presence of wedges and similar
sequences is mitigated, therefore avoiding the possibility
of exploiting this classical speedup.

It is natural to apply the ideas presented here beyond
wedges. It is also easy to look for similar structures in
the circuits algorithmically. This way, we find that for
the supremacy circuits there is a small number of such
sequences. On the sequence of cycles DCD (see Fig. S25),
three two-qubit gates are applied on qubits 16, 47, and
51 (see Fig. S27 for numbering). These three gates can
be fused in one. Then, if the two gates between qubits 47
and 51 are decomposed (as is done with the SFA simula-
tions of Section XA used in Fig. 4 of the main article),
this technique provides a speedup of a factor of 4. The
sequence of layouts DCD appears twice for circuits of
m = 20, which provides a total speedup of 42 = 16 in
the simulation of the supremacy circuits. This particu-
lar decomposition is currently not implemented, and the
estimated timings of Section XA and Fig. 4 of the main
article do not take it into account.
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Beyond this, one has to go to groups of several cycles
of the circuit (more than two) in order to identify regions
where the fusion of several gates provides any advantage
of this kind. In our circuits, the resulting unitaries act
upon a large number of qubits, which makes explicitly
building the unitary impractical.

E. Treewidth upper bounds and variable
elimination algorithms

We explained in Section XB that the Feynman
method to compute individual amplitudes of the out-
put of a quantum circuit can be implemented as a
tensor network when quantum gates are interpreted
as tensors. All indexes of the tensor network have
dimension two because indexes correspond to qubits.
Similarly, Ref. [68] showed that a quantum circuit can
be mapped directly to an undirected graphical model.
In the undirected graphical model, vertices or variables
correspond to tensor indexes, and cliques correspond
to tensors. Individual amplitudes can be computed
using a variable elimination algorithm on the undirected
graphical model, which is similar to a tensor contraction
on a tensor network. The variable elimination algo-
rithm depends on the ordering in which variables are
eliminated or contracted. If we define the contraction
width of an ordering to be the rank of the largest
tensor formed along the contraction, the treewidth of the
undirected graph is equal to the minimum contraction
width over all orderings. Therefore, the complexity of
a tensor network contraction grows in the optimal case
exponentially with the treewidth, and the treewdith can
be used to study the complexity of Feynman methods
for simulating quantum circuits [67]. Ref. [68] showed
that for diagonal gates the undirected graphical model
is simpler, potentially lowering its treewidth, and hence
improving the complexity. This simplification is not
achievable in the tensor network view without including
hyperedges, i.e., edges attached to more than two
tensors. Ref. [68] also introduced the use of QuickBB to
find a heuristic contraction ordering [82]. If allowed to
run for long enough, QuickBB finds the optimal ordering,
together with the treewidth of the graph. However, note
that obtaining the treewidth of a graph is an NP-hard
problem, and so in practice a suboptimal solution is
considered for the simulations described here.

Once the width of a contraction is large enough,
the largest tensor it generates is beyond the memory
resources available. This constraint was overcome in
Ref. [70] by projecting a subset of p variables or ver-
tices in the undirected graphical model into each possi-
ble bistring of 0 and 1 values. This generates 2p similar
subgraphs, each of which can be contracted with lower
complexity and independently from each other, making
the computation embarrassingly parallelizable. Choos-
ing the subset of variables that, after projection, opti-

mally decreases the treewidth of the resulting subgraph
is also NP-hard. However, Ref. [70] developed a heuris-
tic approach that works well in practice. The algorithm
proceeds as follows:

1. Run QuickBB for S seconds on the initial graph.
This gives a heuristic contraction ordering, as well
as an upper bound for the treewidth.

2. For each variable, estimate the cost of contracting
the subgraph after projection. The estimate is done
with the ordering inherited from the previous step.

3. Choose to project the variable which results in the
minimum contraction cost.

4. Repeat steps 2 and 3 until the cost is within rea-
sonable resources.

5. Once all variables have been chosen and projected,
run QuickBB for S seconds on the resulting sub-
graph to try to improve the contraction ordering in-
herited from step 1 and lower the contraction cost.

In the top panel of Fig. S47 we show the contrac-
tion width as a function of the number of variables
that are projected for the supremacy circuits used in
this paper. In order to decrease the contraction width
to 28 or below (a tensor with 28 binary indexes con-
sumes 2 GB of memory using single precision complex
numbers), we need to project between 8 and 63 vari-
ables, depending on the depth of the circuits. In ad-
dition, we report the result of the projection procedure
on the Bristlecone circuits considered in Refs. [49, 83]
and available at https://github.com/sboixo/GRCS for
depths (1+32+1) and (1+40+1), since these cases were
benchmarked in Ref. [83]. We obtain a contraction width
equal to 28 after 10 projections for Bristlecone at depth
(1+32+1), and width 26 after 22 projections for Bristle-
cone at depth (1+40+1), consistent with the results in
Ref. [83]. Even though Ref. [70] uses S = 60, we run
QuickBB for 1800 seconds (30 minutes) every time, in or-
der to decrease the contraction width of the Bristlecone
simulations to values that match the memory require-
ments reported in Ref. [83]. Note that Ref. [83] neither
reports the value of S used nor the contraction widths
found; however, with S = 1800 we are able to match
the scaling of time complexity reported, as is explained
below.

To estimate the runtime of the computation of a single
amplitude using this algorithm on the circuits presented
in this work, we use the following scaling formula:

TVE = C−1
VE · 2p · (cost after p projections)/ncores,

(106)

where VE refers to the variable elimination algorithm
with projections described in this section, CVE is a con-
stant factor, p is the number of variables projected, and
ncores is the number of cores used in the computation.
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FIG. S47. Contraction widths and estimated runtimes
for classical sampling using the variable elimination
algorithm with projected variables of Ref. [70] for
Sycamore supremacy circuits. Top: contraction width
as a function of the number of variables projected using the
algorithm of Ref. [70]. We project enough variables in order to
decrease the width to 28 or lower. Note that often the second
QuickBB run does not decrease the treewidth (and might even
increase it), in which case the resulting contraction ordering
it is ignored. Bottom: estimated runtimes for the classical
sampling of 1M bitstrings from the supremacy circuits with
fidelity 0.5% using the contraction ordering found by QuickBB

at the end of the projection procedure shown in the top panel.
The red data point shows the estimated runtime for a verifi-
able circuit; note that the heuristic algorithm analyzed here
provides some speedup in this case. Our time estimates as-
sume the use of fast sampling, although it is so far unclear
whether this technique can be adapted to the algorithm de-
scribed here. Failure to do so would result in a slowdown of
about an order of magnitude.

The cost of the full contraction of each subgraph is es-
timated as the sum of 2rank, where the rank refers to
the number of variables involved in each individual con-
traction along the full contraction of the subgraph. We
obtain the value of CVE from the runtimes reported in
Ref. [70], which shows that a single amplitude of Bristle-
cone at depth (1+32+1) takes 0.43 seconds to compute
on 127,512 CPU cores with 10 projected variables, and
at depth (1+40+1) it takes 580.7 seconds with 22 pro-
jected variables using the same number of cores. We use
the benchmark at depth (1+32+1) because it provides
the largest value for CVE (lowest time estimates), which
is equal to 52.7 MHz; the benchmark at depth (1+40+1)
gives CVE = 51.6 MHz. In order to sample 1M bitstrings

from a random circuit with fidelity 0.5%, we need to com-
pute 5000 amplitudes.
We present our estimates for Sycamore supremacy

circuits in the bottom panel of Fig. S47. Note that depth
(1+40+1) in Refs. [70, 83] is equivalent to m=20 cycles
here because of the denser layout of two-qubit gates.
Furthermore, computation times reported previously are
for circuit variations less complex than for Sycamore,
arising from changes in complexity such as CZ vs. fSim
gates and differing patterns; with this change of gates,
depth (1+40+1) in Refs. [70, 83] is actually equivalent
to m=10 cycles here. Finally, note that we present
optimistic estimates, since we are assuming that the fast
sampling technique discussed in Section XB is applicable
here. To the best of our knowledge, it is not known
how to apply this technique for the heuristic variable
elimination algorithm discussed here; in the absence of
an implementation of this technique, in order to success-
fully apply rejection sampling we would instead need
to compute a few independent amplitudes per sampled
bitstring, which would increase the estimated times
by about an order of magnitude (see Section XB and
Refs. [37, 84] for more details). According to our esti-
mates, sampling from supremacy circuits at m = 16 and
beyond is out of reach for this algorithm. Interestingly,
we find some speedup for the simulation of verifiable cir-
cuits, as is shown in Fig. S47 for m = 16 (red data point).

Finally, note that the undirected graphical model
derived from the supremacy circuits can take advan-
tage of the structure of the Sycamore gates (fSim
plus single-qubit Rz rotations). Due to the fact
that fSim(θ ≈ π/2, φ) ≈ −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP, the Sycamore gate corresponds
to a subgraph of only two variables, which explicitly rep-
resents the diagonal cphase and the logical SWAP. This
simplification, used in our estimates, results in an undi-
rected graphical model that is simpler than that one gen-
erated by arbitrary two-qubit gates. See Fig. S48 for an
example.

F. Computational cost estimation for the sampling
task

We find that the most efficient simulator for our hard-
est circuits is the SFA simulator (see Sec. XA). In order
to estimate the computational cost associated with sim-
ulating a 53 qubit circuit with 20 cycles, where no gates
are elided on the cut, we use a Google cloud cluster com-
posed of 1000 machines with 2 vCPUs and 7.5 GB of
RAM each (n1-standard-2). We use n1-standard-2 be-
cause this is the smallest non-custom machine with suf-
ficient RAM for simulating the two halves of the circuit.
In 20 cycles, the circuit contains 35 gates across the cut.
All cross gates have a Schmidt rank of 4 except for the
last four gates which can be simplified to cphase with a
Schmidt rank of 2. To obtain a perfect fidelity simulation
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Beyond this, one has to go to groups of several cycles
of the circuit (more than two) in order to identify regions
where the fusion of several gates provides any advantage
of this kind. In our circuits, the resulting unitaries act
upon a large number of qubits, which makes explicitly
building the unitary impractical.

E. Treewidth upper bounds and variable
elimination algorithms

We explained in Section XB that the Feynman
method to compute individual amplitudes of the out-
put of a quantum circuit can be implemented as a
tensor network when quantum gates are interpreted
as tensors. All indexes of the tensor network have
dimension two because indexes correspond to qubits.
Similarly, Ref. [68] showed that a quantum circuit can
be mapped directly to an undirected graphical model.
In the undirected graphical model, vertices or variables
correspond to tensor indexes, and cliques correspond
to tensors. Individual amplitudes can be computed
using a variable elimination algorithm on the undirected
graphical model, which is similar to a tensor contraction
on a tensor network. The variable elimination algo-
rithm depends on the ordering in which variables are
eliminated or contracted. If we define the contraction
width of an ordering to be the rank of the largest
tensor formed along the contraction, the treewidth of the
undirected graph is equal to the minimum contraction
width over all orderings. Therefore, the complexity of
a tensor network contraction grows in the optimal case
exponentially with the treewidth, and the treewdith can
be used to study the complexity of Feynman methods
for simulating quantum circuits [67]. Ref. [68] showed
that for diagonal gates the undirected graphical model
is simpler, potentially lowering its treewidth, and hence
improving the complexity. This simplification is not
achievable in the tensor network view without including
hyperedges, i.e., edges attached to more than two
tensors. Ref. [68] also introduced the use of QuickBB to
find a heuristic contraction ordering [82]. If allowed to
run for long enough, QuickBB finds the optimal ordering,
together with the treewidth of the graph. However, note
that obtaining the treewidth of a graph is an NP-hard
problem, and so in practice a suboptimal solution is
considered for the simulations described here.

Once the width of a contraction is large enough,
the largest tensor it generates is beyond the memory
resources available. This constraint was overcome in
Ref. [70] by projecting a subset of p variables or ver-
tices in the undirected graphical model into each possi-
ble bistring of 0 and 1 values. This generates 2p similar
subgraphs, each of which can be contracted with lower
complexity and independently from each other, making
the computation embarrassingly parallelizable. Choos-
ing the subset of variables that, after projection, opti-

mally decreases the treewidth of the resulting subgraph
is also NP-hard. However, Ref. [70] developed a heuris-
tic approach that works well in practice. The algorithm
proceeds as follows:

1. Run QuickBB for S seconds on the initial graph.
This gives a heuristic contraction ordering, as well
as an upper bound for the treewidth.

2. For each variable, estimate the cost of contracting
the subgraph after projection. The estimate is done
with the ordering inherited from the previous step.

3. Choose to project the variable which results in the
minimum contraction cost.

4. Repeat steps 2 and 3 until the cost is within rea-
sonable resources.

5. Once all variables have been chosen and projected,
run QuickBB for S seconds on the resulting sub-
graph to try to improve the contraction ordering in-
herited from step 1 and lower the contraction cost.

In the top panel of Fig. S47 we show the contrac-
tion width as a function of the number of variables
that are projected for the supremacy circuits used in
this paper. In order to decrease the contraction width
to 28 or below (a tensor with 28 binary indexes con-
sumes 2 GB of memory using single precision complex
numbers), we need to project between 8 and 63 vari-
ables, depending on the depth of the circuits. In ad-
dition, we report the result of the projection procedure
on the Bristlecone circuits considered in Refs. [49, 83]
and available at https://github.com/sboixo/GRCS for
depths (1+32+1) and (1+40+1), since these cases were
benchmarked in Ref. [83]. We obtain a contraction width
equal to 28 after 10 projections for Bristlecone at depth
(1+32+1), and width 26 after 22 projections for Bristle-
cone at depth (1+40+1), consistent with the results in
Ref. [83]. Even though Ref. [70] uses S = 60, we run
QuickBB for 1800 seconds (30 minutes) every time, in or-
der to decrease the contraction width of the Bristlecone
simulations to values that match the memory require-
ments reported in Ref. [83]. Note that Ref. [83] neither
reports the value of S used nor the contraction widths
found; however, with S = 1800 we are able to match
the scaling of time complexity reported, as is explained
below.

To estimate the runtime of the computation of a single
amplitude using this algorithm on the circuits presented
in this work, we use the following scaling formula:

TVE = C−1
VE · 2p · (cost after p projections)/ncores,

(106)

where VE refers to the variable elimination algorithm
with projections described in this section, CVE is a con-
stant factor, p is the number of variables projected, and
ncores is the number of cores used in the computation.
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FIG. S47. Contraction widths and estimated runtimes
for classical sampling using the variable elimination
algorithm with projected variables of Ref. [70] for
Sycamore supremacy circuits. Top: contraction width
as a function of the number of variables projected using the
algorithm of Ref. [70]. We project enough variables in order to
decrease the width to 28 or lower. Note that often the second
QuickBB run does not decrease the treewidth (and might even
increase it), in which case the resulting contraction ordering
it is ignored. Bottom: estimated runtimes for the classical
sampling of 1M bitstrings from the supremacy circuits with
fidelity 0.5% using the contraction ordering found by QuickBB

at the end of the projection procedure shown in the top panel.
The red data point shows the estimated runtime for a verifi-
able circuit; note that the heuristic algorithm analyzed here
provides some speedup in this case. Our time estimates as-
sume the use of fast sampling, although it is so far unclear
whether this technique can be adapted to the algorithm de-
scribed here. Failure to do so would result in a slowdown of
about an order of magnitude.

The cost of the full contraction of each subgraph is es-
timated as the sum of 2rank, where the rank refers to
the number of variables involved in each individual con-
traction along the full contraction of the subgraph. We
obtain the value of CVE from the runtimes reported in
Ref. [70], which shows that a single amplitude of Bristle-
cone at depth (1+32+1) takes 0.43 seconds to compute
on 127,512 CPU cores with 10 projected variables, and
at depth (1+40+1) it takes 580.7 seconds with 22 pro-
jected variables using the same number of cores. We use
the benchmark at depth (1+32+1) because it provides
the largest value for CVE (lowest time estimates), which
is equal to 52.7 MHz; the benchmark at depth (1+40+1)
gives CVE = 51.6 MHz. In order to sample 1M bitstrings

from a random circuit with fidelity 0.5%, we need to com-
pute 5000 amplitudes.
We present our estimates for Sycamore supremacy

circuits in the bottom panel of Fig. S47. Note that depth
(1+40+1) in Refs. [70, 83] is equivalent to m=20 cycles
here because of the denser layout of two-qubit gates.
Furthermore, computation times reported previously are
for circuit variations less complex than for Sycamore,
arising from changes in complexity such as CZ vs. fSim
gates and differing patterns; with this change of gates,
depth (1+40+1) in Refs. [70, 83] is actually equivalent
to m=10 cycles here. Finally, note that we present
optimistic estimates, since we are assuming that the fast
sampling technique discussed in Section XB is applicable
here. To the best of our knowledge, it is not known
how to apply this technique for the heuristic variable
elimination algorithm discussed here; in the absence of
an implementation of this technique, in order to success-
fully apply rejection sampling we would instead need
to compute a few independent amplitudes per sampled
bitstring, which would increase the estimated times
by about an order of magnitude (see Section XB and
Refs. [37, 84] for more details). According to our esti-
mates, sampling from supremacy circuits at m = 16 and
beyond is out of reach for this algorithm. Interestingly,
we find some speedup for the simulation of verifiable cir-
cuits, as is shown in Fig. S47 for m = 16 (red data point).

Finally, note that the undirected graphical model
derived from the supremacy circuits can take advan-
tage of the structure of the Sycamore gates (fSim
plus single-qubit Rz rotations). Due to the fact
that fSim(θ ≈ π/2, φ) ≈ −i · [Rz(−π/2)⊗ Rz(−π/2)] ·
cphase(π + φ) · SWAP, the Sycamore gate corresponds
to a subgraph of only two variables, which explicitly rep-
resents the diagonal cphase and the logical SWAP. This
simplification, used in our estimates, results in an undi-
rected graphical model that is simpler than that one gen-
erated by arbitrary two-qubit gates. See Fig. S48 for an
example.

F. Computational cost estimation for the sampling
task

We find that the most efficient simulator for our hard-
est circuits is the SFA simulator (see Sec. XA). In order
to estimate the computational cost associated with sim-
ulating a 53 qubit circuit with 20 cycles, where no gates
are elided on the cut, we use a Google cloud cluster com-
posed of 1000 machines with 2 vCPUs and 7.5 GB of
RAM each (n1-standard-2). We use n1-standard-2 be-
cause this is the smallest non-custom machine with suf-
ficient RAM for simulating the two halves of the circuit.
In 20 cycles, the circuit contains 35 gates across the cut.
All cross gates have a Schmidt rank of 4 except for the
last four gates which can be simplified to cphase with a
Schmidt rank of 2. To obtain a perfect fidelity simulation
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FIG. S48. Circuit with Sycamore gates (top) and its
corresponding undirected graphical model (bottom).
Each non-diagonal single-qubit gate introduces a new vertex
or variable. Note that, even though two-qubit gates are gen-
erally represented by a clique with four vertices or variables,
Sycamore gates can be simplified as a cphase followed by a
SWAP. The cphase is represented as an edge between two
existing variables. The SWAP, however, provides more com-
plexity to the graph as it swaps the corresponding variables.
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FIG. S49. Qsimh execution time for a 53 qubit circuit with
20 cycles for the first 1000 prefix values. The average job time
〈tprefix〉 is calculated to be 246 seconds.

we would need to simulate all 431 × 24 paths. We con-
figure qsimh according to Ref. [37] to have a prefix of 30
cross gates, thus requiring 430 separate qsimh runs. The
first 1000 paths of the required 430 were used for timing
purposes. In Figure S49 we plot the distribution of sim-
ulation times with qsimh consuming two hyperthreads.
The average job time is 246 seconds resulting in a calcu-
lated 1.6× 1014 core hours for a simulation of the circuit

qubits, n cycles, m total #paths fidelity run time
53 12 41724 1.4% 2 hours
53 14 42124 0.9% 2 weeks
53 16 42523 0.6% 4 years
53 18 42823 0.4% 175 years
53 20 43124 0.2% 10000 years

TABLE XI. Approximate qsimh run times using one million
CPU cores extrapolated from the average simulation run time
for 1000 simulation paths on one CPU core.

with 0.002 fidelity [85]. Extrapolated run times for other
circuits with 53 qubits are shown in Table XI. To calcu-
late a total cost for the largest circuit we multiply the
Google Cloud preemptible n1-standard-2 price in zone
us-central-1 of $0.02 per hour, 246 seconds average run
time, 0.002 target fidelity, and 430 qsimh runs. This re-
sults in an estimated cost of 3.1 trillion USD. For perfect
fidelity simulations (necessary for XEB), an extrapola-
tion to a fidelity value of 100% gives a good estimate
of the run time. We believe these estimates are a lower
bound on costs and simulation time due to the fact that
these calculations are likely to compete with each other
if they are run on the same nodes.

As a final remark, note that a hypothetical implemen-
tation of the decomposition discussed at the end of Sec-
tion XD3 could decrease the computation time presented
here by a factor of 16.

G. Understanding the scaling with width and
depth of the computational cost of verification

1. Runtime scaling formulas

Here we study the scaling of the runtime of the
classical computation of exact amplitudes from the
output wave function of a circuit with m cycles and n
qubits on Sycamore, assuming a supercomputer with 1M
cores. This computation is needed in order to perform
XEB on the circuits run. We consider two algorithms:
a distributed Schrödinger algorithm (SA) [72, 73] (see
Section XC) and a hybrid Schrödinger-Feynman algo-
rithm (SFA) [37] that splits the circuit in two patches
and time evolves each of them for all Feynman paths
connecting both patches (see Section XA). The latter
is embarrassingly parallelizable. Note that these scaling
formulas provide rough estimates presented with the
intent of building intuition on the scaling of runtimes
with the width and depth of the circuits, and that the
finite size effects of the circuits can give discrepancies
of an order of magnitude or more for the circuit sizes
considered in this work.

For SA, the runtime is directly proportional to the size
of the wave function on n qubits. This is equal to 2n. In
addition, the runtime is proportional to the number of
gates applied, which scales linearly with n and m. For
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this reason, we propose the scaling:

TSA = C−1
SA · mn · 2n, (107)

where the constant CSA is fit to runtimes observed
experimentally when running on a supercomputer, and
scaled to 1M cores.

For SFA the runtime is proportional to the number of
paths connecting both patches, as well as to the time
taken to simulate each pair of patches. When using
the supremacy two-qubit gate layouts (ABCDCDAB. . . ),
each fSim gate bridging between the two patches (cross-
gates) generates a factor of 4 in the number of paths.
The number of cross-gates scales with

√
n (we assume a

two-dimensional grid) and with m. The time taken to
simulate each patch is proportional to 2n/2, where n/2
estimates the number of qubits per patch, and the expo-
nential dependence comes from a linear scaling of the run-
time with the size of the wave function over that patch.
The runtime therefore scales as:

TSFA, supremacy = C−1
SFA · 2 · 2n

2 · 4B·m√
n, (108)

where the extra factor of two accounts for the fact that,
for every path, two patches have to be simulated. The
constant CSFA, with units of frequency, is the effective
frequency with which 1M cores simulate paths and is fit
from experimentally observed runtime. The constant B
accounts for the average number of cross-gates observed
per cycle, which depends on the two-dimensional grid
considered and on the two-qubit gate layouts used. For
Sycamore, with the supremacy layouts, we find 35 cross-
gates for n = 53 and m = 20, which gives B = 0.24 ≈
1/4.

For SFA, using the verifiable two-qubit gate lay-
outs (EFGHEFGH. . . ), the main difference with the
supremacy circuits case is the fact that most of the cross-
gates can be fused in pairs, forming three-qubit gates we
refer to as wedges (see Sec. VIIG 2 and XD3). Each
cross-wedge generates only 4 paths, as opposed to the 42

paths the two independent fSim gates would have gen-
erated. Since every 4 cycles provide 7 cross-gates, and
from those 7 gates, 6 are converted into 3 wedges, we
count only 44 paths, as opposed to a naive count of 47

for those 4 cycles. In turn, the exponent in the last factor
of Eq. 108 is corrected by the fraction 4

7 . This results in:

TSFA, verifiable = C−1
SFA · 2 · 2n

2 · 4 4
7B·m√

n. (109)

2. Assumptions and corrections

There are several assumptions considered in Sec-
tion XG1 and other details that can either (1)
contribute to a somewhat large discrepancy between
the runtimes predicted by the scaling formulas and the
actual runtimes potentially measured experimentally,
or (2) be ignored with no significant impact on the

accuracy of the predictions. Here we discuss the ones we
consider most relevant.

Concerning SA, the algorithm is benchmarked in prac-
tice on up to 100K cores. Since this is a distributed
algorithm, the scaling with number of cores is not ideal
and therefore the constant CSA can only be estimated
roughly. We assume perfect scaling in our estimates for
runtime on 1M cores, i.e., the runtime on 1M cores is
the one on 100K cores divided by 10; this is of course an
optimistic estimate, and runtimes should be expected to
be larger.

For memory requirement estimates, we assume a
2 byte encoding of complex numbers. Beyond about
49 qubits there is not enough RAM on any existing
supercomputer to store the wave function. In those
cases, runtimes are given for the unrealistic, hypothetical
case that one can store the wave function.

SFA is embarrassingly parallelizable, and so it does not
suffer from non-ideal scaling. However, there are other
factors to take into account. First, we have written no
explicit dependence of the time to simulate patches of
the circuit with m; the number of cycles m only plays a
role when counting the number of paths to be considered.
SFA stores several copies of the state of a patch after its
evolution at different depths, iterating over paths over
several nested loops. For this reason, most of the time is
spent iterating over the inner-most loop, which accounts
for the last few gates of the circuit and is similar in cost
for all depths. This implies that the amortized time per
path is considered approximately equal for all depths and
the direct m dependence was correctly ignored.

A factor contributing to the discrepancy between
the predicted runtimes of the scaling formulas of Sec-
tion XG1 and those expected in practice is due to finite
size effects. While these scaling formulas consider the
average number of cross-gates encountered per cycle, dif-
ferent cycles have layouts that contribute a few more (or
less) gates than others. Since the runtime dependency
is exponential in the number of gates, this might cause
discrepancies of around an order of magnitude. Further-
more, for verifiable circuits, wedges form over groups of
two cycles; this coarse graining exacerbates finite size ef-
fects. For the sake of simplicity in the scaling formulas,
we do not perform any corrections to include these fac-
tors. However, in order to mitigate the propagation of
finite size effect errors, we consider different constants
CSFA, supremacy and CSFA, verifiable, that we fit indepen-
dently.

Finally, we refer to runtimes of our simulations on a
hypothetical supercomputer with 1M cores. While this
is a realistic size for a Top-5 supercomputer currently, a
core-hour can vary significantly between different CPU
types. Again, we only intend to provide rough estimates
in order to build intuition on the dependence of runtimes
with circuit width and depth.
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FIG. S48. Circuit with Sycamore gates (top) and its
corresponding undirected graphical model (bottom).
Each non-diagonal single-qubit gate introduces a new vertex
or variable. Note that, even though two-qubit gates are gen-
erally represented by a clique with four vertices or variables,
Sycamore gates can be simplified as a cphase followed by a
SWAP. The cphase is represented as an edge between two
existing variables. The SWAP, however, provides more com-
plexity to the graph as it swaps the corresponding variables.
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FIG. S49. Qsimh execution time for a 53 qubit circuit with
20 cycles for the first 1000 prefix values. The average job time
〈tprefix〉 is calculated to be 246 seconds.

we would need to simulate all 431 × 24 paths. We con-
figure qsimh according to Ref. [37] to have a prefix of 30
cross gates, thus requiring 430 separate qsimh runs. The
first 1000 paths of the required 430 were used for timing
purposes. In Figure S49 we plot the distribution of sim-
ulation times with qsimh consuming two hyperthreads.
The average job time is 246 seconds resulting in a calcu-
lated 1.6× 1014 core hours for a simulation of the circuit

qubits, n cycles, m total #paths fidelity run time
53 12 41724 1.4% 2 hours
53 14 42124 0.9% 2 weeks
53 16 42523 0.6% 4 years
53 18 42823 0.4% 175 years
53 20 43124 0.2% 10000 years

TABLE XI. Approximate qsimh run times using one million
CPU cores extrapolated from the average simulation run time
for 1000 simulation paths on one CPU core.

with 0.002 fidelity [85]. Extrapolated run times for other
circuits with 53 qubits are shown in Table XI. To calcu-
late a total cost for the largest circuit we multiply the
Google Cloud preemptible n1-standard-2 price in zone
us-central-1 of $0.02 per hour, 246 seconds average run
time, 0.002 target fidelity, and 430 qsimh runs. This re-
sults in an estimated cost of 3.1 trillion USD. For perfect
fidelity simulations (necessary for XEB), an extrapola-
tion to a fidelity value of 100% gives a good estimate
of the run time. We believe these estimates are a lower
bound on costs and simulation time due to the fact that
these calculations are likely to compete with each other
if they are run on the same nodes.

As a final remark, note that a hypothetical implemen-
tation of the decomposition discussed at the end of Sec-
tion XD3 could decrease the computation time presented
here by a factor of 16.

G. Understanding the scaling with width and
depth of the computational cost of verification

1. Runtime scaling formulas

Here we study the scaling of the runtime of the
classical computation of exact amplitudes from the
output wave function of a circuit with m cycles and n
qubits on Sycamore, assuming a supercomputer with 1M
cores. This computation is needed in order to perform
XEB on the circuits run. We consider two algorithms:
a distributed Schrödinger algorithm (SA) [72, 73] (see
Section XC) and a hybrid Schrödinger-Feynman algo-
rithm (SFA) [37] that splits the circuit in two patches
and time evolves each of them for all Feynman paths
connecting both patches (see Section XA). The latter
is embarrassingly parallelizable. Note that these scaling
formulas provide rough estimates presented with the
intent of building intuition on the scaling of runtimes
with the width and depth of the circuits, and that the
finite size effects of the circuits can give discrepancies
of an order of magnitude or more for the circuit sizes
considered in this work.

For SA, the runtime is directly proportional to the size
of the wave function on n qubits. This is equal to 2n. In
addition, the runtime is proportional to the number of
gates applied, which scales linearly with n and m. For
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this reason, we propose the scaling:

TSA = C−1
SA · mn · 2n, (107)

where the constant CSA is fit to runtimes observed
experimentally when running on a supercomputer, and
scaled to 1M cores.

For SFA the runtime is proportional to the number of
paths connecting both patches, as well as to the time
taken to simulate each pair of patches. When using
the supremacy two-qubit gate layouts (ABCDCDAB. . . ),
each fSim gate bridging between the two patches (cross-
gates) generates a factor of 4 in the number of paths.
The number of cross-gates scales with

√
n (we assume a

two-dimensional grid) and with m. The time taken to
simulate each patch is proportional to 2n/2, where n/2
estimates the number of qubits per patch, and the expo-
nential dependence comes from a linear scaling of the run-
time with the size of the wave function over that patch.
The runtime therefore scales as:

TSFA, supremacy = C−1
SFA · 2 · 2n

2 · 4B·m√
n, (108)

where the extra factor of two accounts for the fact that,
for every path, two patches have to be simulated. The
constant CSFA, with units of frequency, is the effective
frequency with which 1M cores simulate paths and is fit
from experimentally observed runtime. The constant B
accounts for the average number of cross-gates observed
per cycle, which depends on the two-dimensional grid
considered and on the two-qubit gate layouts used. For
Sycamore, with the supremacy layouts, we find 35 cross-
gates for n = 53 and m = 20, which gives B = 0.24 ≈
1/4.

For SFA, using the verifiable two-qubit gate lay-
outs (EFGHEFGH. . . ), the main difference with the
supremacy circuits case is the fact that most of the cross-
gates can be fused in pairs, forming three-qubit gates we
refer to as wedges (see Sec. VIIG 2 and XD3). Each
cross-wedge generates only 4 paths, as opposed to the 42

paths the two independent fSim gates would have gen-
erated. Since every 4 cycles provide 7 cross-gates, and
from those 7 gates, 6 are converted into 3 wedges, we
count only 44 paths, as opposed to a naive count of 47

for those 4 cycles. In turn, the exponent in the last factor
of Eq. 108 is corrected by the fraction 4

7 . This results in:

TSFA, verifiable = C−1
SFA · 2 · 2n

2 · 4 4
7B·m√

n. (109)

2. Assumptions and corrections

There are several assumptions considered in Sec-
tion XG1 and other details that can either (1)
contribute to a somewhat large discrepancy between
the runtimes predicted by the scaling formulas and the
actual runtimes potentially measured experimentally,
or (2) be ignored with no significant impact on the

accuracy of the predictions. Here we discuss the ones we
consider most relevant.

Concerning SA, the algorithm is benchmarked in prac-
tice on up to 100K cores. Since this is a distributed
algorithm, the scaling with number of cores is not ideal
and therefore the constant CSA can only be estimated
roughly. We assume perfect scaling in our estimates for
runtime on 1M cores, i.e., the runtime on 1M cores is
the one on 100K cores divided by 10; this is of course an
optimistic estimate, and runtimes should be expected to
be larger.

For memory requirement estimates, we assume a
2 byte encoding of complex numbers. Beyond about
49 qubits there is not enough RAM on any existing
supercomputer to store the wave function. In those
cases, runtimes are given for the unrealistic, hypothetical
case that one can store the wave function.

SFA is embarrassingly parallelizable, and so it does not
suffer from non-ideal scaling. However, there are other
factors to take into account. First, we have written no
explicit dependence of the time to simulate patches of
the circuit with m; the number of cycles m only plays a
role when counting the number of paths to be considered.
SFA stores several copies of the state of a patch after its
evolution at different depths, iterating over paths over
several nested loops. For this reason, most of the time is
spent iterating over the inner-most loop, which accounts
for the last few gates of the circuit and is similar in cost
for all depths. This implies that the amortized time per
path is considered approximately equal for all depths and
the direct m dependence was correctly ignored.

A factor contributing to the discrepancy between
the predicted runtimes of the scaling formulas of Sec-
tion XG1 and those expected in practice is due to finite
size effects. While these scaling formulas consider the
average number of cross-gates encountered per cycle, dif-
ferent cycles have layouts that contribute a few more (or
less) gates than others. Since the runtime dependency
is exponential in the number of gates, this might cause
discrepancies of around an order of magnitude. Further-
more, for verifiable circuits, wedges form over groups of
two cycles; this coarse graining exacerbates finite size ef-
fects. For the sake of simplicity in the scaling formulas,
we do not perform any corrections to include these fac-
tors. However, in order to mitigate the propagation of
finite size effect errors, we consider different constants
CSFA, supremacy and CSFA, verifiable, that we fit indepen-
dently.

Finally, we refer to runtimes of our simulations on a
hypothetical supercomputer with 1M cores. While this
is a realistic size for a Top-5 supercomputer currently, a
core-hour can vary significantly between different CPU
types. Again, we only intend to provide rough estimates
in order to build intuition on the dependence of runtimes
with circuit width and depth.
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FIG. S50. Scaling of the computational cost of XEB using SA and SFA. a, For a Schrödinger algorithm, the limitation
is RAM size, shown as vertical dashed line for the Summit supercomputer. Circles indicate full circuits with n = 12 to 43
qubits that are benchmarked in Fig. 4a of the main paper. 53 qubits would exceed the RAM of any current supercomputer,
and is shown as a star. b, For the hybrid Schrödinger-Feynman algorithm, which is more memory efficient, the computation
time scales exponentially in depth. XEB on full verifiable circuits was done at depth m = 14 (circle). c, XEB on full supremacy
circuits is out of reach within reasonable time resources for m = 12, 14, 16 (stars), and beyond. XEB on patch and elided
supremacy circuits was done at m = 14, 16, 18, and 20.

3. Fitting constants

In the case of SA, we fit the constant CSA with a run-
time of 0.1 hours for the simulation with n = 43 and
m = 14. This runtime is obtained by assuming ideal
scaling when extrapolating a runtime of 1 hour on nearly
100K nodes (215 MPI processes, 3 cores per process), as
reported in Sec. XC. This gives a value of

CSA = 0.015× 106 GHz. (110)

For SFA, we consider B = 1/4 for simplicity. In order
to fit CSFA, we consider a runtime of 5 hours and 4 years
for the case with n = 53 and m = 14 for verifiable and
supremacy circuits, respectively (see Fig. 4 of the main
text). This gives:

CSFA, verifiable = 0.0062× 106 GHz

CSFA, supremacy = 3.3× 106 GHz. (111)

As discussed above, these fits provide times estimated for
a supercomputer with 1M cores. Contour plots showing
the dependency of runtime with n and m are presented
in Fig. S50.

4. Memory usage scaling

Let us conclude with a discussion of the memory foot-
print of both algorithms. For these estimates, we assume
a 2-byte encoding of complex numbers, as opposed to 8
bytes (single precision) or 16 bytes (double precision).
This results in a lower bound for the memory usage of
these two algorithms. These estimates need an extra fac-
tor of 4 (8) when using single (double) precision. SA
stores the wave function of the state on all qubits. For
this reason, it needs 2n × 2 = 2n+1 bytes. SFA simu-
lates the wave function of both halves of the system (n/2
qubits) per path, one at a time. This requires 2

n
2 ·2 bytes

per path. In practice, the use of checkpoints implies the
need to store more than one wave function per path; for
simplicity, and in the same optimistic spirit of other as-
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sumptions, we ignore this fact. If 1M cores are used
and each path is simulated using a single core, the total
memory footprint is estimated to be 106 × 2

n
2 +1 bytes.

State-of-the-art supercomputers have less than 3 PB of
memory.

H. Energy advantage for quantum computing

With the end of Dennard scaling for CMOS circuits,
gains in computing energy efficiency have slowed signifi-
cantly [86]. As a result, today’s high performance com-
puting centers are usually constrained by available en-
ergy supplies rather than hardware costs. For example,
the Summit supercomputer at Oak Ridge National Lab-
oratory has a total power capacity of 14 MW available
to achieve a design specification of 200 Pflop/s double-
precision performance. We took detailed energy mea-
surements with qFlex running on Summit. The energy
consumption grows exponentially with the circuit depth,
as illustrated in Table VII.

For a superconducting quantum computer, the two pri-
mary sources of energy consumption are:

1. A dilution refrigerator: our refrigerator has a
direct power consumption of ∼10 kW, dominated
by the mechanical compressor driving the 3 K cool-
ing stage. The power required to provide chilled
water cooling for the compressor and pumps asso-
ciated with the refrigerator can be an additional
10 kW or more.

2. Supporting electronics: these include mi-
crowave electronics, ADCs, DACs, clocks, classical
computers, and oscilloscopes that are directly asso-
ciated with a quantum processor in the refrigerator.
The average power consumption of supporting elec-
tronics was nearly 3 kW for the experiments in this
paper.

We estimate the total average power consumption of
our apparatus under worst-case conditions for chilled wa-
ter production to be 26 kW. This power does not change
appreciably between idle and running states of the quan-
tum processor, and it is also independent of the circuit
depth. This means that the energy consumed during the
200 s required to acquire 1M samples in our experiment
is ∼ 5×106 J (∼ 1 kWh). As compared to the qFlex clas-
sical simulation on Summit, we require roughly 7 orders
of magnitude less energy to perform the same computa-
tion (see Table VII). Furthermore, the data acquisition
time is currently dominated by control hardware commu-
nications, leading to a quantum processor duty cycle as
low as 2%. This means there is significant potential to
increase our energy efficiency further.

XI. COMPLEXITY-THEORETIC FOUNDATION
OF THE EXPERIMENT

The notion of quantum supremacy was originally
introduced by John Preskill [87]. He conceived of it
as “the day when well controlled quantum systems
can perform tasks surpassing what can be done in the
classical world”. For the purpose of an experimental
demonstration we would like to refine the definition.

Demonstrating quantum supremacy requires:

1. A well defined computational task, i.e. a mathemat-
ical specification of a computational problem with
a well defined solution.

Comment: This requirement, standard in computer
science, excludes tasks such as “simulate a glass
of water”. However, it would include finding the
ground state energy of an H2O molecule to a given
precision governed by a specific Hamiltonian. Note
that a mathematical specification of a computa-
tional problem calls for highly accurate control re-
sulting in measurable system fidelity.

2. Programmable computational device

Comment: Many physics experiments estimate the
values of observables to a precision which can not
be obtained numerically. But those do not involve
a freely programmable computational device and
the computational task is often not well defined
as required above. Ideally, we would even restrict
ourselves to devices that are computationally uni-
versal. However, this would exclude proposals to
demonstrate quantum supremacy with BosonSam-
pling [88] or IQP circuits [89].

3. A scaling runtime difference between the quantum
and classical computational processes that can be
made large enough as a function of problem size so
that it becomes impractical for a supercomputer to
solve the task using any known classical algorithm.

Comment: What is impractical for classical com-
puters today may become tractable in ten years.
So the quantum supremacy frontier will be mov-
ing towards larger and larger problems. But if a
task is chosen such that the scaling for the quan-
tum processors is polynomial while for the classi-
cal computer it is exponential then this shift will
be small. Establishing an exponential separation
requires substantial efforts designing and bench-
marking classical algorithms [26, 49, 65–68, 70, 72,
73, 83], and support from complexity theory argu-
ments [26, 29, 90]. Sampling the output of random
quantum circuits is likely to exhibit this scaling sep-
aration as a function of the number of qubits for
large enough depth. In this context, we note that
quantum analog simulations that estimate an ob-
servable in the thermodynamic limit typically do
not define a problem size parameter.
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FIG. S50. Scaling of the computational cost of XEB using SA and SFA. a, For a Schrödinger algorithm, the limitation
is RAM size, shown as vertical dashed line for the Summit supercomputer. Circles indicate full circuits with n = 12 to 43
qubits that are benchmarked in Fig. 4a of the main paper. 53 qubits would exceed the RAM of any current supercomputer,
and is shown as a star. b, For the hybrid Schrödinger-Feynman algorithm, which is more memory efficient, the computation
time scales exponentially in depth. XEB on full verifiable circuits was done at depth m = 14 (circle). c, XEB on full supremacy
circuits is out of reach within reasonable time resources for m = 12, 14, 16 (stars), and beyond. XEB on patch and elided
supremacy circuits was done at m = 14, 16, 18, and 20.

3. Fitting constants

In the case of SA, we fit the constant CSA with a run-
time of 0.1 hours for the simulation with n = 43 and
m = 14. This runtime is obtained by assuming ideal
scaling when extrapolating a runtime of 1 hour on nearly
100K nodes (215 MPI processes, 3 cores per process), as
reported in Sec. XC. This gives a value of

CSA = 0.015× 106 GHz. (110)

For SFA, we consider B = 1/4 for simplicity. In order
to fit CSFA, we consider a runtime of 5 hours and 4 years
for the case with n = 53 and m = 14 for verifiable and
supremacy circuits, respectively (see Fig. 4 of the main
text). This gives:

CSFA, verifiable = 0.0062× 106 GHz

CSFA, supremacy = 3.3× 106 GHz. (111)

As discussed above, these fits provide times estimated for
a supercomputer with 1M cores. Contour plots showing
the dependency of runtime with n and m are presented
in Fig. S50.

4. Memory usage scaling

Let us conclude with a discussion of the memory foot-
print of both algorithms. For these estimates, we assume
a 2-byte encoding of complex numbers, as opposed to 8
bytes (single precision) or 16 bytes (double precision).
This results in a lower bound for the memory usage of
these two algorithms. These estimates need an extra fac-
tor of 4 (8) when using single (double) precision. SA
stores the wave function of the state on all qubits. For
this reason, it needs 2n × 2 = 2n+1 bytes. SFA simu-
lates the wave function of both halves of the system (n/2
qubits) per path, one at a time. This requires 2

n
2 ·2 bytes

per path. In practice, the use of checkpoints implies the
need to store more than one wave function per path; for
simplicity, and in the same optimistic spirit of other as-
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sumptions, we ignore this fact. If 1M cores are used
and each path is simulated using a single core, the total
memory footprint is estimated to be 106 × 2

n
2 +1 bytes.

State-of-the-art supercomputers have less than 3 PB of
memory.

H. Energy advantage for quantum computing

With the end of Dennard scaling for CMOS circuits,
gains in computing energy efficiency have slowed signifi-
cantly [86]. As a result, today’s high performance com-
puting centers are usually constrained by available en-
ergy supplies rather than hardware costs. For example,
the Summit supercomputer at Oak Ridge National Lab-
oratory has a total power capacity of 14 MW available
to achieve a design specification of 200 Pflop/s double-
precision performance. We took detailed energy mea-
surements with qFlex running on Summit. The energy
consumption grows exponentially with the circuit depth,
as illustrated in Table VII.

For a superconducting quantum computer, the two pri-
mary sources of energy consumption are:

1. A dilution refrigerator: our refrigerator has a
direct power consumption of ∼10 kW, dominated
by the mechanical compressor driving the 3 K cool-
ing stage. The power required to provide chilled
water cooling for the compressor and pumps asso-
ciated with the refrigerator can be an additional
10 kW or more.

2. Supporting electronics: these include mi-
crowave electronics, ADCs, DACs, clocks, classical
computers, and oscilloscopes that are directly asso-
ciated with a quantum processor in the refrigerator.
The average power consumption of supporting elec-
tronics was nearly 3 kW for the experiments in this
paper.

We estimate the total average power consumption of
our apparatus under worst-case conditions for chilled wa-
ter production to be 26 kW. This power does not change
appreciably between idle and running states of the quan-
tum processor, and it is also independent of the circuit
depth. This means that the energy consumed during the
200 s required to acquire 1M samples in our experiment
is ∼ 5×106 J (∼ 1 kWh). As compared to the qFlex clas-
sical simulation on Summit, we require roughly 7 orders
of magnitude less energy to perform the same computa-
tion (see Table VII). Furthermore, the data acquisition
time is currently dominated by control hardware commu-
nications, leading to a quantum processor duty cycle as
low as 2%. This means there is significant potential to
increase our energy efficiency further.

XI. COMPLEXITY-THEORETIC FOUNDATION
OF THE EXPERIMENT

The notion of quantum supremacy was originally
introduced by John Preskill [87]. He conceived of it
as “the day when well controlled quantum systems
can perform tasks surpassing what can be done in the
classical world”. For the purpose of an experimental
demonstration we would like to refine the definition.

Demonstrating quantum supremacy requires:

1. A well defined computational task, i.e. a mathemat-
ical specification of a computational problem with
a well defined solution.

Comment: This requirement, standard in computer
science, excludes tasks such as “simulate a glass
of water”. However, it would include finding the
ground state energy of an H2O molecule to a given
precision governed by a specific Hamiltonian. Note
that a mathematical specification of a computa-
tional problem calls for highly accurate control re-
sulting in measurable system fidelity.

2. Programmable computational device

Comment: Many physics experiments estimate the
values of observables to a precision which can not
be obtained numerically. But those do not involve
a freely programmable computational device and
the computational task is often not well defined
as required above. Ideally, we would even restrict
ourselves to devices that are computationally uni-
versal. However, this would exclude proposals to
demonstrate quantum supremacy with BosonSam-
pling [88] or IQP circuits [89].

3. A scaling runtime difference between the quantum
and classical computational processes that can be
made large enough as a function of problem size so
that it becomes impractical for a supercomputer to
solve the task using any known classical algorithm.

Comment: What is impractical for classical com-
puters today may become tractable in ten years.
So the quantum supremacy frontier will be mov-
ing towards larger and larger problems. But if a
task is chosen such that the scaling for the quan-
tum processors is polynomial while for the classi-
cal computer it is exponential then this shift will
be small. Establishing an exponential separation
requires substantial efforts designing and bench-
marking classical algorithms [26, 49, 65–68, 70, 72,
73, 83], and support from complexity theory argu-
ments [26, 29, 90]. Sampling the output of random
quantum circuits is likely to exhibit this scaling sep-
aration as a function of the number of qubits for
large enough depth. In this context, we note that
quantum analog simulations that estimate an ob-
servable in the thermodynamic limit typically do
not define a problem size parameter.
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The requirements above are satisfied by proposals of
quantum supremacy emerging from computer science,
such as BosonSampling [88], IQP circuits [89], and ran-
dom circuit sampling [5, 26, 29, 90, 91]. They are also
implicit in the “Extended Church-Turing Thesis”: any
“reasonable” model of computation can be efficiently sim-
ulated, as a function of problem size, by a Turing ma-
chine.

We note that formal complexity proofs are asymp-
totic, and therefore assume an arbitrarily large number of
qubits. This is only possible with a fault tolerant quan-
tum computer and therefore near term practical demon-
strations of quantum supremacy must rely on a careful
comparison with highly optimized classical algorithms on
state-of-the-art supercomputers.

So far we have argued for quantum supremacy by com-
paring the running time of the quantum experiment with
the time required for the same task using the best known
classical algorithms, running on the most powerful su-
percomputers currently available. The fastest known al-
gorithm for exact sampling (or for computing transition
probabilities) runs in time exponential in the treewidth
of the quantum circuit [67, 68]; for a depth D circuit on
a rectangular lattice of sizes lx and ly, the treewidth is
given by min(min(lx, ly)D, lxly). For approximate simu-
lation in which one only requires a given global fidelity
F , the classical cost is reduced linearly in F [37]. As
classical algorithms and compute power can be improved
in the future, the classical cost benchmark is a moving
target.

A complementary approach to back up supremacy
claims consists of giving complexity-theoretic arguments
for the classical hardness of the problem solved (in our
case sampling from the output distribution of a random
circuit of a given number of qubits, depth and output fi-
delity). Previous work gave hardness results for sampling
exactly from the output distribution of different classes
of circuits [26, 88, 92–94]. Most relevant to us are Refs.
[90, 91, 95], which proved that it is classically intractable
(unless the polynomial hierarchy collapses to its third
level, which is considered extremely unlikely [96]) to sam-
ple from the exact probability distribution of outcomes
of measurements in random circuits. We note the dis-
tribution of circuits considered in [90, 91, 95] is different
from ours.

An important clarification is that such results are
asymptotic, i.e. they show that, unless the polynomial
hierarchy collapses, there are no polynomial-time classi-
cal algorithms for sampling from output measurements
of certain quantum circuits. But they cannot be used
directly to give concrete lower bounds for quantum com-
putations of a fixed number of qubits and depth. Refs.
[97–99] tackled this question using tools from fine-grained
complexity, giving several finite size bounds.

There are also results arguing for the hardness of ap-
proximate sampling (see e.g. [26, 88, 89, 93]), where the
task is only to sample from a distribution which is close
to the ideal one. As the quantum experiment will never

be perfect, this is an important consideration. However
those results are weaker than the ones for exact sampling,
as the hardness assumptions required have been much
less studied (and in fact were introduced with the exact
purpose of arguing for quantum supremacy). Another
drawback is that the results only apply to the situation
where the samples come from a distribution very close to
the ideal one (i.e. with high fidelity with the ideal one).
This is not the regime in which our experiment operates.

With these challenges in mind, we consider an alterna-
tive hardness argument in this section, which will allow
us to lower bound the classical simulation cost of noisy
quantum circuits by the cost of the ideal one. On one
hand, our argument will be more restrictive than pre-
vious results in that we will assume a particular noise
model for the quantum computer (one, however, which
models well the experiment). On the other hand, it will
be stronger in two ways: (1) it will apply even to the
setting in which the output fidelity of the experimental
state with the ideal one can be very small, but still the
product of total fidelity with exact computational cost
is large; and (2) it will be based on more mainstream
complexity assumptions in contrast to the tailor-made
conjectures required in e.g. [88, 89, 93] to handle the
case of small adversarial noise.

A. Error model

Our error model is the following. We assume that the
quantum computer samples from the following output
distribution:

rU,F (x) := F | 〈x|U |0〉 |2 + (1− F )/2n, (112)

with U the circuit implemented. In words, we assume
global depolarizing noise. Ref. [26] argues that Eq. (112)
is a good approximation for the output state of random
circuits (see Sec. IV and Section III of [26]); this form has
also been verified experimentally on a small number of
qubits. In the experiment, F is in the range 10−2−10−3.
We note that while we assume a global white noise

model in this section, we do not assume it in the rest
of the paper, neither for validating the cross entropy test
nor in the comparison with state-of-the-art classical algo-
rithms (and indeed the algorithm considered in Section X
samples from an approximate distribution different from
the one in Eq. (112)).

B. Definition of computational problem

Before stating our result, let us define precisely the
computational problem we consider. We start with the
ideal version of the problem with no noise:

Circuit Sampling: The input is a description of a n
qubit quantum circuit U , described by a sequence of one-
and two-qubit gates. The task of the problem is to sample
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from the probability distribution of outcomes pU (x) :=
|〈x|U |0〉|2.

Circuit sampling is an example of a sampling problem
[100]. A classical algorithm for circuit sampling can be
thought of, without loss of generality, as a function A
mapping m ∈ poly(n) bits r = (r1, . . . rm) to n bits such
that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}| = p̃U (x),

(113)
with p̃(x) an approximation of pU (x) to l ∈ poly(n) bits
of precision. So when r is chosen uniformly at random,
the output of A are samples from p (up to rounding errors
which can be made super-exponentially small).

Assuming the polynomial hierarchy does not collapse,
it is known that Circuit Sampling cannot be solved classi-
cally efficiently in n, meaning any algorithm A satisfying
Eq. (113) must have superpolynomial circuit complexity,
for several classes of circuits (such as short depth circuits
[94], IQP [92] and Boson Sampling [88]). We might also
be interested in the average case of circuit sampling (for
a restricted class of circuits).

Random Circuit Sampling: The input is a set of
quantum circuits U on n qubits. The task is to sample
from pU (x) := |〈x|U |0〉|2 for most circuits U ∈ U .

Ref. [90] proved that an efficient (in terms of n) clas-
sical algorithm for this task for random circuits would
also collapse the polynomial hierarchy. As every realistic
quantum experiment will be somewhat noisy, it is rele-
vant to consider a variant of this task allowing for small
deviations from ideal. One possible formulation is the
following:

ε-Approximate Random Circuit Sampling: The in-
put is a set of quantum circuits U on n qubits. The task
is to sample for most circuits U ∈ U , from any distri-
bution qU s.t. dVD(qU , pU (x)) ≤ ε, where dVD is the
variational-distance between the distributions p, q [101]
and pU (x) := |〈x|U |0〉|2.

Refs. [26, 88, 89] put forward new complexity-theoretic
assumptions about the #P-hardness of certain problems
and proved they imply that several restricted classes of
circuits are hard to approximately sample for ε suffi-
ciently close to zero. However, we cannot use these re-
sults here as the ε we achieve is far from zero. We will
resort to the following different variant of approximate
circuit sampling.

Unbiased-Noise F -Approximate Random Circuit
Sampling: The input is a set of quantum circuits U on
n qubits. The task is to sample from the distribution
rU,F given by Eq. (112), for most circuits U ∈ U .

We note that there are alternatives for defining the
computational problem for which supremacy is achieved
without having to use sampling problems. These have the
advantage that it is possible to verify, for each problem

instance, that the task was achieved (whereas while it is
in principle possible to verify that one is sampling from
the correct distribution by estimating the frequencies of
outcomes, this is unfeasible in practice for high entropy
distributions with > 250 outcomes as the one we consider
here).

One such problem (considered on Refs. [26, 29]) is the
following:

b-Heavy Output Generation: Given as input a num-
ber b > 1 and a random circuit U on n qubits (drawn at
random from a set of circuits U), generate output strings
x1, . . . , xk s.t.

1

k

k∑
j=1

|〈xj |U |0〉|2 ≥ b

2n
(114)

Ref. [29] argues for the hardness of this task for ev-
ery b > 1, although here again one has to resort to
rather bold complexity-theoretic conjectures. Cross en-
tropy benchmarking allows us to estimate b for a rea-
sonable value of k (though the classical time needed to
compute |〈xj |U |0〉|2 still grows very fast), see Sec. IV.
In terms of known algorithms, the complexity of solv-
ing Heavy Output Generation is equivalent to the com-
plexity of sampling k samples from a noisy distribution
corresponding to the same b value.
The experiment we report in this paper can be inter-

preted as showing quantum supremacy in solving the b-
Heavy Output Generation with b = 1 + F and F the
fidelity of the output quantum state.

C. Computational hardness of unbiased-noise
sampling

To state our result, we use the complexity class Arthur-
Merlin, which is a variant of the class NP and is denoted
by AM[T ]. It is defined as the class of problems for which
there is an Arthur-Merlin one-round protocol of the fol-
lowing form: given an instance of a problem in AM [T ]
(which Arthur would like to decide if it is a YES or NO in-
stance), Arthur first sends random bits to Merlin. Merlin
(which is computationally unbounded) then sends back
a proof to Arthur. Finally Arthur uses the proof and de-
cides in time T if he accepts. In the YES case, Arthur
accepts with probability larger than 2/3. In the NO case,
he accepts with probability no larger than 1/3.

Theorem 1 Assume there is a classical algorithm run-
ning in time T and using m bits of randomness that sam-
ples from the distribution rU,F (x) given by Eq. (112), for
a given quantum circuit U on n qubits and F ≥ 0. Then
for every integer L, there is an AM [LT + 2Lm] protocol
for deciding, given λ > 0, whether

| 〈0|U |0〉 |2 ≥ λ

(
1 +

2

L

)
+

2(1− F )

FL2n
(115)
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The requirements above are satisfied by proposals of
quantum supremacy emerging from computer science,
such as BosonSampling [88], IQP circuits [89], and ran-
dom circuit sampling [5, 26, 29, 90, 91]. They are also
implicit in the “Extended Church-Turing Thesis”: any
“reasonable” model of computation can be efficiently sim-
ulated, as a function of problem size, by a Turing ma-
chine.

We note that formal complexity proofs are asymp-
totic, and therefore assume an arbitrarily large number of
qubits. This is only possible with a fault tolerant quan-
tum computer and therefore near term practical demon-
strations of quantum supremacy must rely on a careful
comparison with highly optimized classical algorithms on
state-of-the-art supercomputers.

So far we have argued for quantum supremacy by com-
paring the running time of the quantum experiment with
the time required for the same task using the best known
classical algorithms, running on the most powerful su-
percomputers currently available. The fastest known al-
gorithm for exact sampling (or for computing transition
probabilities) runs in time exponential in the treewidth
of the quantum circuit [67, 68]; for a depth D circuit on
a rectangular lattice of sizes lx and ly, the treewidth is
given by min(min(lx, ly)D, lxly). For approximate simu-
lation in which one only requires a given global fidelity
F , the classical cost is reduced linearly in F [37]. As
classical algorithms and compute power can be improved
in the future, the classical cost benchmark is a moving
target.

A complementary approach to back up supremacy
claims consists of giving complexity-theoretic arguments
for the classical hardness of the problem solved (in our
case sampling from the output distribution of a random
circuit of a given number of qubits, depth and output fi-
delity). Previous work gave hardness results for sampling
exactly from the output distribution of different classes
of circuits [26, 88, 92–94]. Most relevant to us are Refs.
[90, 91, 95], which proved that it is classically intractable
(unless the polynomial hierarchy collapses to its third
level, which is considered extremely unlikely [96]) to sam-
ple from the exact probability distribution of outcomes
of measurements in random circuits. We note the dis-
tribution of circuits considered in [90, 91, 95] is different
from ours.

An important clarification is that such results are
asymptotic, i.e. they show that, unless the polynomial
hierarchy collapses, there are no polynomial-time classi-
cal algorithms for sampling from output measurements
of certain quantum circuits. But they cannot be used
directly to give concrete lower bounds for quantum com-
putations of a fixed number of qubits and depth. Refs.
[97–99] tackled this question using tools from fine-grained
complexity, giving several finite size bounds.

There are also results arguing for the hardness of ap-
proximate sampling (see e.g. [26, 88, 89, 93]), where the
task is only to sample from a distribution which is close
to the ideal one. As the quantum experiment will never

be perfect, this is an important consideration. However
those results are weaker than the ones for exact sampling,
as the hardness assumptions required have been much
less studied (and in fact were introduced with the exact
purpose of arguing for quantum supremacy). Another
drawback is that the results only apply to the situation
where the samples come from a distribution very close to
the ideal one (i.e. with high fidelity with the ideal one).
This is not the regime in which our experiment operates.

With these challenges in mind, we consider an alterna-
tive hardness argument in this section, which will allow
us to lower bound the classical simulation cost of noisy
quantum circuits by the cost of the ideal one. On one
hand, our argument will be more restrictive than pre-
vious results in that we will assume a particular noise
model for the quantum computer (one, however, which
models well the experiment). On the other hand, it will
be stronger in two ways: (1) it will apply even to the
setting in which the output fidelity of the experimental
state with the ideal one can be very small, but still the
product of total fidelity with exact computational cost
is large; and (2) it will be based on more mainstream
complexity assumptions in contrast to the tailor-made
conjectures required in e.g. [88, 89, 93] to handle the
case of small adversarial noise.

A. Error model

Our error model is the following. We assume that the
quantum computer samples from the following output
distribution:

rU,F (x) := F | 〈x|U |0〉 |2 + (1− F )/2n, (112)

with U the circuit implemented. In words, we assume
global depolarizing noise. Ref. [26] argues that Eq. (112)
is a good approximation for the output state of random
circuits (see Sec. IV and Section III of [26]); this form has
also been verified experimentally on a small number of
qubits. In the experiment, F is in the range 10−2−10−3.
We note that while we assume a global white noise

model in this section, we do not assume it in the rest
of the paper, neither for validating the cross entropy test
nor in the comparison with state-of-the-art classical algo-
rithms (and indeed the algorithm considered in Section X
samples from an approximate distribution different from
the one in Eq. (112)).

B. Definition of computational problem

Before stating our result, let us define precisely the
computational problem we consider. We start with the
ideal version of the problem with no noise:

Circuit Sampling: The input is a description of a n
qubit quantum circuit U , described by a sequence of one-
and two-qubit gates. The task of the problem is to sample
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from the probability distribution of outcomes pU (x) :=
|〈x|U |0〉|2.

Circuit sampling is an example of a sampling problem
[100]. A classical algorithm for circuit sampling can be
thought of, without loss of generality, as a function A
mapping m ∈ poly(n) bits r = (r1, . . . rm) to n bits such
that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}| = p̃U (x),

(113)
with p̃(x) an approximation of pU (x) to l ∈ poly(n) bits
of precision. So when r is chosen uniformly at random,
the output of A are samples from p (up to rounding errors
which can be made super-exponentially small).

Assuming the polynomial hierarchy does not collapse,
it is known that Circuit Sampling cannot be solved classi-
cally efficiently in n, meaning any algorithm A satisfying
Eq. (113) must have superpolynomial circuit complexity,
for several classes of circuits (such as short depth circuits
[94], IQP [92] and Boson Sampling [88]). We might also
be interested in the average case of circuit sampling (for
a restricted class of circuits).

Random Circuit Sampling: The input is a set of
quantum circuits U on n qubits. The task is to sample
from pU (x) := |〈x|U |0〉|2 for most circuits U ∈ U .

Ref. [90] proved that an efficient (in terms of n) clas-
sical algorithm for this task for random circuits would
also collapse the polynomial hierarchy. As every realistic
quantum experiment will be somewhat noisy, it is rele-
vant to consider a variant of this task allowing for small
deviations from ideal. One possible formulation is the
following:

ε-Approximate Random Circuit Sampling: The in-
put is a set of quantum circuits U on n qubits. The task
is to sample for most circuits U ∈ U , from any distri-
bution qU s.t. dVD(qU , pU (x)) ≤ ε, where dVD is the
variational-distance between the distributions p, q [101]
and pU (x) := |〈x|U |0〉|2.

Refs. [26, 88, 89] put forward new complexity-theoretic
assumptions about the #P-hardness of certain problems
and proved they imply that several restricted classes of
circuits are hard to approximately sample for ε suffi-
ciently close to zero. However, we cannot use these re-
sults here as the ε we achieve is far from zero. We will
resort to the following different variant of approximate
circuit sampling.

Unbiased-Noise F -Approximate Random Circuit
Sampling: The input is a set of quantum circuits U on
n qubits. The task is to sample from the distribution
rU,F given by Eq. (112), for most circuits U ∈ U .

We note that there are alternatives for defining the
computational problem for which supremacy is achieved
without having to use sampling problems. These have the
advantage that it is possible to verify, for each problem

instance, that the task was achieved (whereas while it is
in principle possible to verify that one is sampling from
the correct distribution by estimating the frequencies of
outcomes, this is unfeasible in practice for high entropy
distributions with > 250 outcomes as the one we consider
here).

One such problem (considered on Refs. [26, 29]) is the
following:

b-Heavy Output Generation: Given as input a num-
ber b > 1 and a random circuit U on n qubits (drawn at
random from a set of circuits U), generate output strings
x1, . . . , xk s.t.

1

k

k∑
j=1

|〈xj |U |0〉|2 ≥ b

2n
(114)

Ref. [29] argues for the hardness of this task for ev-
ery b > 1, although here again one has to resort to
rather bold complexity-theoretic conjectures. Cross en-
tropy benchmarking allows us to estimate b for a rea-
sonable value of k (though the classical time needed to
compute |〈xj |U |0〉|2 still grows very fast), see Sec. IV.
In terms of known algorithms, the complexity of solv-
ing Heavy Output Generation is equivalent to the com-
plexity of sampling k samples from a noisy distribution
corresponding to the same b value.
The experiment we report in this paper can be inter-

preted as showing quantum supremacy in solving the b-
Heavy Output Generation with b = 1 + F and F the
fidelity of the output quantum state.

C. Computational hardness of unbiased-noise
sampling

To state our result, we use the complexity class Arthur-
Merlin, which is a variant of the class NP and is denoted
by AM[T ]. It is defined as the class of problems for which
there is an Arthur-Merlin one-round protocol of the fol-
lowing form: given an instance of a problem in AM [T ]
(which Arthur would like to decide if it is a YES or NO in-
stance), Arthur first sends random bits to Merlin. Merlin
(which is computationally unbounded) then sends back
a proof to Arthur. Finally Arthur uses the proof and de-
cides in time T if he accepts. In the YES case, Arthur
accepts with probability larger than 2/3. In the NO case,
he accepts with probability no larger than 1/3.

Theorem 1 Assume there is a classical algorithm run-
ning in time T and using m bits of randomness that sam-
ples from the distribution rU,F (x) given by Eq. (112), for
a given quantum circuit U on n qubits and F ≥ 0. Then
for every integer L, there is an AM [LT + 2Lm] protocol
for deciding, given λ > 0, whether

| 〈0|U |0〉 |2 ≥ λ

(
1 +

2

L

)
+

2(1− F )

FL2n
(115)
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or

| 〈0|U |0〉 |2 ≤ λ

(
1− 2

L

)
− 2(1− F )

FL2n
(116)

Before giving the proof, let us discuss the significance
of the result. We are interested in the theorem mostly
when L = c/F with c a small constant (say 10). Not-
ing that for a random circuit, with high probability,
| 〈0|U |0〉 |2 ≥ 2−n/5 [95], the theorem states that if we
can sample classically in time T from the distribution
given in Eq. (112), then we can calculate a good esti-
mate for | 〈0|U |0〉 |2 in time 10T/F (with the help from
an all-powerful but untrustworthy Merlin). It is unlikely
that Merlin can be of any help for this task for random
circuits, as estimating | 〈0|U |0〉 |2 for random circuits is
a #P-hard problem [90], and it is believed #P is vastly
more complex than AM (which is contained on the third
level of the polynomial hierarchy [96]). Therefore we
conclude that global white noise leads to no more than
a linear decrease in fidelity in classical simulation time
(which is in fact optimal as it is achieved by the method
presented in Ref. [37]).

Ref. [102] proposed a similar, but more demanding,
conjecture about the non-existence of certain AM pro-
tocols for estimating transition probabilities of random
circuits. This conjecture was applied to show that the
output bits of our supremacy experiment can be used to
produce certifiable random bits.

We note Theorem 1 does not establish a lower bound
on the classical computation cost of calculating a tran-
sition amplitude with additive error δ/2n, for small con-
stant δ > 0. What it does is to show that the sampling
problem with unbiased noise is as hard as this task, up
to a linear reduction in F in complexity.

Concerning the hardness of computing |〈0|U |0〉|2 it is
known that this problem is #P hard for random circuits
to additive error 2−poly(n) [90]. This implies that there
is no subexponential-time algorithms for this task (un-
less #P collapses to P). For finite size bounds, which are
more relevant to our experiment, the result of Ref. [97] is
the most relevant. It shows that under the Strong Expo-
nential Time Hypothesis (SETH) [103], there are quan-
tum circuits on n qubits which require 2(1−o(1))n time for
estimating |〈0|U |0〉|2 to additive error 2−(n+1) [104]. To-
gether with Theorem 1, we find there is a quantum circuit
U on n qubits for which the distribution rU,F (given by

Eq. (112)) cannot be sampled in time F2(1−o(1)n), unless
SETH is false.

It is an open question to show a similar lower bound to
the one proved in Ref. [97] for estimating the transition
probability of random circuits. Even more relevant for
this work, it would be interesting to study if one can
show a lower bound of the form 2(1−o(1))treewidth for a
random quantum circuit, under a suitable complexity-
theoretic assumption, as the depth of the construction in
[97] is relatively high.

D. Proof of Theorem 1

The proof will follow along similar lines to previous
work [88, 89, 93]. We will use approximate counting
(which can be done in AM) to show that a sampling
algorithm for rU,F running in time T implies an AM pro-
tocol to compute rU,F (0)(1 ± 1/L), with classical veri-
fication of order LT . Since the noise is unbiased, i.e.
rU,F (0) = F 〈0|U |0〉|2+(1−F )/2n, we can subtract it and
find an AM protocol for estimating |〈0|U |0〉|2 as stated
in the theorem.

In more detail, suppose there is a classical algorithm
for sampling from rU,F given by a function A mapping
m ∈ poly(n) bits r = (r1, . . . rm) to n bits such that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}|

= rU,F (x). (117)

Let a(r1, . . . , rm) be a function which is 1 if
A(r1, . . . , rm) = 0n and zero otherwise.

We start with the following lemma, showing the exis-
tence of A implies an AM [LT + 2Lm] protocol for esti-
mating rU,F (0):

Lemma 1 Assume there is an algorithm A given by
Eq. (117). Then for every θ and L there is an AM [LT +
2Lm] protocol which determines if (i) rU,F (0) ≥ θ(1 +
2/L) (YES instance) or (ii) rU,F (0) ≤ θ(1 − 2/L) (NO
instance).

Proof: The protocol is the following:

1. For every t ∈ [Lm], Arthur chooses a function at
random ht ∈ HLm,t from a family HLm,t of 2-
universal linear hash functions from {0, 1}Lm to
{0, 1}t [96]. Then he communicates his choice of
(h1, . . . , hLm) to Merlin.

2. Merlin sends an Lm-bitstring w to Arthur and an
integer s ∈ [Lm] .

3. Arthur verifies that hs(w) = 0 and

a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) = 0.

He rejects if any of the three equations is not sat-
isfied. Then he checks if θ ≤ 2−m201/L2s/L(1 +
2/L)−1, accepting if it is the case and rejecting oth-
erwise.

The cost to compute a(w1,1, . . . w1,m) is T , and the
cost to compute is hs(w) is less than 2Lm, so the total
verification time of the AM protocol is LT + 2Lm.

Let us analyze the completeness and soundness of the
protocol.

Completeness : Suppose we have a YES instance,
rU,F (0) ≥ θ(1+2/L). Let us show that Merlin can send w
and s which makes Arthur accept with high probability.
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Let M be the number of solutions of a(r1, . . . , rm) =
0 (i.e. M = 2mrU,F (0)). Then a(r1,1, . . . r1,m) ∧ . . . ∧
a(rL,1, . . . rL,m) has ML solutions, M for each copy of the
function a. As part of the proof Merlin sends s satisfying
20 ≥ ML/2s ≥ 10 (such a value always exists as s can
be an arbitrary integer less than or equal to Lm).

Let us apply Lemma 2 (stated below) with q = Lm,
t = s, δ = 1/2, and S the set of solutions, so |S| = ML.
Then indeed |S|/2s > 10 > 1/δ3. Therefore, with high
probability, the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (118)

is in the interval [(1/2)ML/2s, 2ML/2s]. Since
(1/2)ML/2s ≥ 1, there is a string w s.t.
a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) ∧ hs(w) = 0,
which Merlin also sends to Arthur as part of the proof.

Since M = 2mrU,F (0) ≥ 2mθ(1 + 2/L) and ML/2s ≤
20,

20 ≥ ML

2s
≥ 2Lm

2s
θL

(
1 +

2

L

)L

, (119)

so indeed θ ≤ 2−m201/L2s/L(1+ 2/L)−1 and Arthur will
accept with high probability.

Soundness : Suppose we have a NO instance, rU,F (0) ≤
θ(1− 2/L). Let us show that no matter which witnesses
w, s Merlin sends, Arthur will only accept with a small
probability. Merlin must send s such that

θL ≤ (20)2−Lm2s(1 + 2/L)−L, (120)

otherwise Arthur rejects. By Lemma 2 (stated below),
the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (121)

will be in the interval [(1/2)ML/2s, 2ML/2s], with M =
2mrU,F (0) ≤ 2mθ(1− 2/L). Since

2ML/2s ≤ 2(2−s)2LmθL(1− 2/L)L

≤ 40(1− 2/L)L(1 + 2/L)−L ≤ 40e−4 < 1, (122)

there is no solution to Eq. (121) and thus there is no w
which will make Arthur accept. This finishes the proof
of Lemma 1.

Reduction to AM protocol for |〈0|U |0〉|2: Finally let us
show how to use Lemma 1 to build the AM protocol
stated in Theorem 1. Since rU,F (0) = F | 〈0|U |0〉 |2 +
(1− F )/2n, on one hand:

|〈0|U |0〉|2 ≥ λ

(
1 +

2

L

)
+

2(1− F )

FL2n
(123)

implies that

rU,F (0) ≥ (Fλ + (1− F )/2n)

(
1 +

2

L

)
. (124)

On the other hand:

|〈0|U |0〉|2 ≤ λ

(
1− 2

L

)
− 2(1− F )

FL2n
(125)

implies that

rU,F (0) ≤ (Fλ + (1− F )/2n)

(
1− 2

L

)
. (126)

Setting θ = Fλ+(1−F )/2n we see that the AM proto-
col from before can also be used to decide if Eq. (123) or
Eq. (125) hold true. This ends the proof of the theorem.

Lemma 2 [96] For t ≤ q, let Hq,t be a family
of pairwise-independent linear hash functions mapping
{0, 1}q to {0, 1}t, and let δ > 0. Let S ⊆ {0, 1}n be
arbitrary with |S| ≥ δ−32t. Then with probability larger
than 9/10 over the choice of h ∈ Hn,t,

(1− δ)
|S|
2t

≤ |{x ∈ S|h(x) = 0t}| ≤ (1 + δ)
|S|
2t

(127)

Moreover h(x) can be evaluated in time 2n, for every
h ∈ Hn,t.
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or

| 〈0|U |0〉 |2 ≤ λ

(
1− 2

L

)
− 2(1− F )

FL2n
(116)

Before giving the proof, let us discuss the significance
of the result. We are interested in the theorem mostly
when L = c/F with c a small constant (say 10). Not-
ing that for a random circuit, with high probability,
| 〈0|U |0〉 |2 ≥ 2−n/5 [95], the theorem states that if we
can sample classically in time T from the distribution
given in Eq. (112), then we can calculate a good esti-
mate for | 〈0|U |0〉 |2 in time 10T/F (with the help from
an all-powerful but untrustworthy Merlin). It is unlikely
that Merlin can be of any help for this task for random
circuits, as estimating | 〈0|U |0〉 |2 for random circuits is
a #P-hard problem [90], and it is believed #P is vastly
more complex than AM (which is contained on the third
level of the polynomial hierarchy [96]). Therefore we
conclude that global white noise leads to no more than
a linear decrease in fidelity in classical simulation time
(which is in fact optimal as it is achieved by the method
presented in Ref. [37]).

Ref. [102] proposed a similar, but more demanding,
conjecture about the non-existence of certain AM pro-
tocols for estimating transition probabilities of random
circuits. This conjecture was applied to show that the
output bits of our supremacy experiment can be used to
produce certifiable random bits.

We note Theorem 1 does not establish a lower bound
on the classical computation cost of calculating a tran-
sition amplitude with additive error δ/2n, for small con-
stant δ > 0. What it does is to show that the sampling
problem with unbiased noise is as hard as this task, up
to a linear reduction in F in complexity.

Concerning the hardness of computing |〈0|U |0〉|2 it is
known that this problem is #P hard for random circuits
to additive error 2−poly(n) [90]. This implies that there
is no subexponential-time algorithms for this task (un-
less #P collapses to P). For finite size bounds, which are
more relevant to our experiment, the result of Ref. [97] is
the most relevant. It shows that under the Strong Expo-
nential Time Hypothesis (SETH) [103], there are quan-
tum circuits on n qubits which require 2(1−o(1))n time for
estimating |〈0|U |0〉|2 to additive error 2−(n+1) [104]. To-
gether with Theorem 1, we find there is a quantum circuit
U on n qubits for which the distribution rU,F (given by

Eq. (112)) cannot be sampled in time F2(1−o(1)n), unless
SETH is false.

It is an open question to show a similar lower bound to
the one proved in Ref. [97] for estimating the transition
probability of random circuits. Even more relevant for
this work, it would be interesting to study if one can
show a lower bound of the form 2(1−o(1))treewidth for a
random quantum circuit, under a suitable complexity-
theoretic assumption, as the depth of the construction in
[97] is relatively high.

D. Proof of Theorem 1

The proof will follow along similar lines to previous
work [88, 89, 93]. We will use approximate counting
(which can be done in AM) to show that a sampling
algorithm for rU,F running in time T implies an AM pro-
tocol to compute rU,F (0)(1 ± 1/L), with classical veri-
fication of order LT . Since the noise is unbiased, i.e.
rU,F (0) = F 〈0|U |0〉|2+(1−F )/2n, we can subtract it and
find an AM protocol for estimating |〈0|U |0〉|2 as stated
in the theorem.

In more detail, suppose there is a classical algorithm
for sampling from rU,F given by a function A mapping
m ∈ poly(n) bits r = (r1, . . . rm) to n bits such that

1

2m
|{(r1, . . . , rm) s.t. A(r1, . . . , rm) = x}|

= rU,F (x). (117)

Let a(r1, . . . , rm) be a function which is 1 if
A(r1, . . . , rm) = 0n and zero otherwise.

We start with the following lemma, showing the exis-
tence of A implies an AM [LT + 2Lm] protocol for esti-
mating rU,F (0):

Lemma 1 Assume there is an algorithm A given by
Eq. (117). Then for every θ and L there is an AM [LT +
2Lm] protocol which determines if (i) rU,F (0) ≥ θ(1 +
2/L) (YES instance) or (ii) rU,F (0) ≤ θ(1 − 2/L) (NO
instance).

Proof: The protocol is the following:

1. For every t ∈ [Lm], Arthur chooses a function at
random ht ∈ HLm,t from a family HLm,t of 2-
universal linear hash functions from {0, 1}Lm to
{0, 1}t [96]. Then he communicates his choice of
(h1, . . . , hLm) to Merlin.

2. Merlin sends an Lm-bitstring w to Arthur and an
integer s ∈ [Lm] .

3. Arthur verifies that hs(w) = 0 and

a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) = 0.

He rejects if any of the three equations is not sat-
isfied. Then he checks if θ ≤ 2−m201/L2s/L(1 +
2/L)−1, accepting if it is the case and rejecting oth-
erwise.

The cost to compute a(w1,1, . . . w1,m) is T , and the
cost to compute is hs(w) is less than 2Lm, so the total
verification time of the AM protocol is LT + 2Lm.

Let us analyze the completeness and soundness of the
protocol.

Completeness: Suppose we have a YES instance,
rU,F (0) ≥ θ(1+2/L). Let us show that Merlin can send w
and s which makes Arthur accept with high probability.
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Let M be the number of solutions of a(r1, . . . , rm) =
0 (i.e. M = 2mrU,F (0)). Then a(r1,1, . . . r1,m) ∧ . . . ∧
a(rL,1, . . . rL,m) has ML solutions, M for each copy of the
function a. As part of the proof Merlin sends s satisfying
20 ≥ ML/2s ≥ 10 (such a value always exists as s can
be an arbitrary integer less than or equal to Lm).

Let us apply Lemma 2 (stated below) with q = Lm,
t = s, δ = 1/2, and S the set of solutions, so |S| = ML.
Then indeed |S|/2s > 10 > 1/δ3. Therefore, with high
probability, the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (118)

is in the interval [(1/2)ML/2s, 2ML/2s]. Since
(1/2)ML/2s ≥ 1, there is a string w s.t.
a(w1,1, . . . w1,m) ∧ . . . ∧ a(wL,1, . . . wL,m) ∧ hs(w) = 0,
which Merlin also sends to Arthur as part of the proof.

Since M = 2mrU,F (0) ≥ 2mθ(1 + 2/L) and ML/2s ≤
20,

20 ≥ ML

2s
≥ 2Lm

2s
θL

(
1 +

2

L

)L

, (119)

so indeed θ ≤ 2−m201/L2s/L(1+ 2/L)−1 and Arthur will
accept with high probability.

Soundness : Suppose we have a NO instance, rU,F (0) ≤
θ(1− 2/L). Let us show that no matter which witnesses
w, s Merlin sends, Arthur will only accept with a small
probability. Merlin must send s such that

θL ≤ (20)2−Lm2s(1 + 2/L)−L, (120)

otherwise Arthur rejects. By Lemma 2 (stated below),
the number of solutions of

a(x1,1, . . . x1,m) ∧ . . . ∧ a(xL,1, . . . xL,m) ∧ hs(x) (121)

will be in the interval [(1/2)ML/2s, 2ML/2s], with M =
2mrU,F (0) ≤ 2mθ(1− 2/L). Since

2ML/2s ≤ 2(2−s)2LmθL(1− 2/L)L

≤ 40(1− 2/L)L(1 + 2/L)−L ≤ 40e−4 < 1, (122)

there is no solution to Eq. (121) and thus there is no w
which will make Arthur accept. This finishes the proof
of Lemma 1.

Reduction to AM protocol for |〈0|U |0〉|2: Finally let us
show how to use Lemma 1 to build the AM protocol
stated in Theorem 1. Since rU,F (0) = F | 〈0|U |0〉 |2 +
(1− F )/2n, on one hand:

|〈0|U |0〉|2 ≥ λ

(
1 +

2

L

)
+

2(1− F )

FL2n
(123)

implies that

rU,F (0) ≥ (Fλ + (1− F )/2n)

(
1 +

2

L

)
. (124)

On the other hand:

|〈0|U |0〉|2 ≤ λ

(
1− 2

L

)
− 2(1− F )

FL2n
(125)

implies that

rU,F (0) ≤ (Fλ + (1− F )/2n)

(
1− 2

L

)
. (126)

Setting θ = Fλ+(1−F )/2n we see that the AM proto-
col from before can also be used to decide if Eq. (123) or
Eq. (125) hold true. This ends the proof of the theorem.

Lemma 2 [96] For t ≤ q, let Hq,t be a family
of pairwise-independent linear hash functions mapping
{0, 1}q to {0, 1}t, and let δ > 0. Let S ⊆ {0, 1}n be
arbitrary with |S| ≥ δ−32t. Then with probability larger
than 9/10 over the choice of h ∈ Hn,t,

(1− δ)
|S|
2t

≤ |{x ∈ S|h(x) = 0t}| ≤ (1 + δ)
|S|
2t

(127)

Moreover h(x) can be evaluated in time 2n, for every
h ∈ Hn,t.
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Lecture 1: Introduction to Quantum Physics and Quantum Information

Part 1: Quantum Foundations 



Wu Cheng-En (1501-1582) and his “Journey to the West” 

Many interesting imaginations: 
“  

One day in heaven, one year in earth 

Two famous immortals:  
 

Wind-following Ear Thousand-miles Eye 

Old Chinese Legends 

Old Chinese Legends 

The most famous hero Monkey King, 
he has the abilities of: 

•  Cloud-somersault •  Body-split 



Wind-following ear, Thousand-miles eye  Electrodynamics! 

Hertz  

Maxwell  Bell invented telephone (1876) 

Baird invented television (1926)  

Maxwell Equations (1864) 

The first radio experiment (1888) 

Legend to Modern Physics & 
Technology 

Legend to Modern Physics & 
Technology 

One day in heaven, one year in earth Relativity
! 

Einstein 

Twin paradox 

“On the Electrodynamics of Moving Bodies” (1905) 



Would it be possible to manifest the Monkey  body-split 
and cloud-somersault? 

Max Planck Niels Bohr Erwin Schrödinger  
 

Werner Heisenberg Albert Einstein Paul Dirac 

Quantum mechanics! 

Classical world:   
or   

Quantum world:   
+   

Body-split in quantum world! 

Quantum Superposition 



Quantum Superposition 
A “quantum flight”: from Stockholm to Beijing, two possible routes  

Frankfurt 
Moscow (cold) 

Singapore (warm) 

Shanghai 

When arrived 
If I fell asleep during flight (do not know which route I take) 

I will feel  “both cold and warm”   It seems like I took both routes in one flight? 

If I was awake during flight and checked which route I take 
I will feel either cold or warm  It confirms I can only take one of the routes! 

In quantum world, the state of a quantum object can be affected by measurement! 

• A manifest of the beauty and power of physics! 
• However, does it imply determinism?  
• Does it mean everything (e.g. lectures today) is already determined from Big-

bang? 
• Efforts meaningless? 
• Fortunately, quantum mechanics tells that your act (measurement) can affect 

the world! 

 law precisely predicts every single 
movement for all objects in our daily life 

When Classical Physics Meets Life Philosophy 



Quantum Mechanics and Information Technology 

Nuclear weapon 

ENICA 

CERN 

World Wide Web GPS 

Atomic clock 

History: every advance in classical cryptography has been defeated by advances in 
cracking! cracking!

RSA 512: cracked in 1999 
RSA 768: cracked in 2009 
RSA 1024: ? 
SHA-1: cracked in 2017 by Google 
…… 

Ancient Greek scytale, 700 BC  Caesar cipher, 50 BC Cracked via variations in the frequency of 
the occurrence of letters, by Al-Kindi 
(800-873) 

Enigma machine broken by Alan Turing  

Challenges in Information 
Security 



All the classical encryption methods that depend on computational  
complexity, can be cracked in principle! 

“……human ingenuity cannot concoct a cipher which human ingenuity 
cannot resolve” 

—A few words on secret writing, Edgar Alan Poe (1841)  

Challenges in Information 
Security 

In 1943: “I think there is a world market for maybe 
five computers” 

--Thomas Watson, Chairman of IBM 

In 2010 : Almost everyone 
owns computing power larger 
than the total computing 
power  used in Apollo Program! 

Colossus, weight: 1 ton, power: 8.5kw, 5 kOPS (operations per second) 

Apple A12, power: <5W, 5 trillion OPS 

Challenges in Computational Capacity 

The  data volume 
roughly grow 40% per year 



Classical computational bottleneck 
280-90  database within 

a year 

A technological limit 
 

Tunneling induced leakage   
The “0/1” logic in the transistors will fail 

2017, 14 nm  2022, 4 nm  
0.2 nm (atomic scale)  ??? 

Challenges in the Computational Capacity 

Quantum physics, after one  development, comes to the rescue 
for the problems confronted in the classical information technologies 



Quantum Superposition and Quantum Bits 

Classical Physics: “bit” Quantum Physics: “qubit” 

or 

    

0 or 1

A qubit encoded in the 
polarization of a photon 

||

Non-cloning theorem: 
An unknown quantum state 
can not be copied precisely!  

Measurement Uncertainty and Non-cloning  

Wootters & Zurek,  Nature 299, 802 (1982)   

Cloning 
Machine Input 

0, 1

0

?

?

Require: 
00 00
10 11

Output 
Linear superposition principle: 

(0+1)0 00+11 



Single-Qubit Operations 

Column vector represent of 
two-dimensional quantum states 

Pauli matrix  

Two eigenstates:  

Unitary rotation: 

Pauli matrix  

Two eigenstates:  

Unitary rotation: 

Pauli matrix  

Two eigenstates:  

Unitary rotation: 

Single-Qubit Operations 



Origin of Zeno effect 

Can the rabbit overtake the turtle? 

Zeno Paradox 

v 

L 

v/2 

L/2 

L/4 

Quantum Zeno Effect 

)1)1(0)1((
2
10 ii eeHH



Quantum Zeno Effect 

Interaction-free measurement ! 

Considering neutron spin evolving in magnetic field, the probability 
to find it still in spin up state after time T is 

where  is the Larmor frequency 

up 

Quantum Zeno Effect 

down 



 

 

If we cut the bad part of the cake at time 2 
, then at  we have G=1/4 G0 

Quantum Zeno Effect 

 G (cake is good)=G0  

Experiment 

Kwiat et al., PRL 74, 4763 (1995) 

In the limit of large N:  



Quantum Entanglement 

 

Quantum entanglement: 

Spooky action at a distance 
——Albert Einstein 

Bell states – maximally entangled states:  

|| ||

Quantum Entanglement 

GHZ states: three-photon maximally entangled states  



Manipulation of Entanglement 

control

target

Flip the target when control=1: 

Manipulation of Entanglement 



A B 
Entangled pair 

Einstein believed that :  
The outcome of a measurement on any physical system is determined prior to 
and independent of the measurement 
the outcome cannot depend on any actions in space-like separated regions 

A seemingly reasonable assumptions of "local realism” 

Quantum mechanics predicts that: 
Initially, the individual states of two particles are not identified 
The measurement outcome on particle A will not only determine its state, but 
also the state of particle B immediately! 

Spooky Action at a Distance? 

Spooky Action at a Distance? 



•  local realism:  
• Quantum mechanics:  

Experimental testable inequality 
Bell, Physics 1, 195 (1964) 
Clauser et al., PRL 23, 880 
(1969) 

 

e. g.,   

 

Singlet state: anti-correlation of 
measurement results of two sides 

Alice Bob 
measurement 

directions 
A b c a b c probability 

pre-
determined 
outcomes 

0 0 0 1 1 1 P1 
0 0 1 1 1 0 P2 
0 1 0 1 0 1 P3 
0 1 1 1 0 0 P4 
1 0 0 0 1 1 P5 
1 0 1 0 1 0 P6 
1 1 0 0 0 1 P7 
1 1 1 0 0 0 P8 

Pick three arbitrary directions a, b, and 
c: 
P (a0, b0) = P3+P4 
P (a0, c0) = P2+P4 
P (c0, b0) = P3+P7 
And 

A simplified case: Sakurai's Bell Inequality 



 

Quantum-mechanical prediction: 

For example ,  the inequality would require 

Local realism requires: 

An unsatisfactory feature 
In the derivation of BI such a local realistic and thus classical picture 
can explain perfect correlations and is only in conflict with statistical 
prediction of quantum mechanics 

Linear polarization basis Circular polarization basis 

Conflict with Local Realism  

Consider a three-photon GHZ state written in  basis 

1: ' ,
2

1' .
2

x H H V

V H V

1: ,
2

1 .
2

y R H i V

L H i V



Conflict with Local Realism  

Therefor state  is the eigenstate of operators 
 with value -1 

' ' ' '
1 2 3 123 1 2 3 1 2 3 1 2 3 1 2 3

' ' ' '
1 2 3 123 1 2 3 1 2 3 1 2 3 1 2 3

' ' ' '
1 2 3 123 1 2 3 1 2 3 1 2 3 1 2 3

1:
2
1:
2
1:
2

y y x

y x y

x y y

R L H L R H R R V L L V

R H L L H R RV R LV L

H R L H L R V R R V L L

• EPR reality criterion: the individual value of any local 
operator is predetermined 

• There exists an element of  local reality Six corresponding to 
operator 

All six of the elements of reality                        
Six and Siy have to be there, each 
with the values +1 and –1! 

Conflict with Local Realism  

1,2,3 .ix i

1 2 3

1 2 3

1 2 3

1,
1,
1.

y y x

y x y

x y y

S S S
S S S
S S S



Consider measurement of 45  linear polarization basis 

Local realism: 

Possible outcomes: 

 What Outcomes Are Possible? 

2 2 2
1 2 3 1 1 2 2 3 3

1 2 3 1 2 3 1 2 3

( ) ( ) ( )
              ( )( )( )
              1

x x x x y x y x y

x y y y x y y y y

S S S S S S S S S
S S S S S S S S S

' ' ' ' ' ' ' ' ' ' ' '
1 2 3 1 2 3 1 2 3 1 2 3, , ,V V V H H V H V H V H H

Quantum physics 

Whenever local realism predicts a specific result definitely 
to occur for a measurement for one of the photons based on 
the results for the other two, quantum physics definitely 
predicts the opposite result 

Possible outcomes: 

 What Outcomes Are Possible? 

' ' ' ' ' ' ' ' ' ' ' '
123 1 2 3 1 2 3 1 2 3 1 2 3

1
2

H H H H V V V H V V V H

1 2 3 !1x x xS S S

' ' ' ' ' ' ' ' ' ' ' '
1 2 3 1 2 3 1 2 3 1 2 3, , ,H H H H V V V H V V V H



Chien-Shiung Wu Phys. Rev. 77, 136 (1950) 

First Observation of Quantum Entanglement 

Two quanta emitted in the annihilation of a positron-
electron pair, with zero relative angular momentum, are 
polarized at right angles to each other 

Ann. New York Acad. Sci. 48, 219 (1946) 

John Wheeler 

First observation of quantum entanglement 

• Freedman & Clauser, PRL 28, 938 (1972) 

Experimental Test of Bell Inequality 

Two measurement sites are not space-like separated 

• Fry & Thompson, PRL 37, 465 (1976) 



Aspect et al., PRL 49, 1804 (1982)    

Drawbacks: 1. locality loophole 
2. detection loophole 

Experimental Test of Bell Inequality 

 violates a generalized inequality  by 5 standard deviations 

Locality Loophole 

Measurement devices may “tell” the EPR source their basis 
choices  the source may “select” according events to violate 
Bell inequality 

Solution: basis choice and emission of EPR source must be also 
space-like separated (i. e., fast and random switch of 
measurement basis ) 



Weihs et al., PRL 81, 5039 (1998) 

 Drawback: detection loophole 

Experimental Test of Bell Inequality 

 violates CHSH inequality  by 30 standard 
deviations 

Detection Loophole 

Detection efficiency of single photon detectors is not unity  
some events cannot contribute to  were not detected? 

Solution: high detection efficiency (>83%) 
Pearle, PRD 2, 1418 (1970) 

Garg & Mermin, PRD 35, 3831 (1987) 

Closed detection loophole: 
•Rowe et al., Nature 409, 791 (2001) 



Quantum mechanics is right! 
But still with loopholes… 

Closed both detection and locality loopholes  

• Hensen et al., Nature 526, 682 (2015) 
• Giustina et al., PRL 115, 250401 (2015) 
• Shalm et al., PRL 115, 250402 (2015) 
• Li et al., PRL 121, 080404 (2018)  

 

Collapse locality loophole: measurement outcome is 
not defined until it is registered by a human 
consciousness   

Realized "events" have never been space-like separated 
Kent, PRA 72, 012107 (2005) 

Leggett, Compendium of Quantum Physics (Springer, 
2009) 

Schrödinger's cat 

Freedom of Choice and Collapse Locality Loophole 

Freedom of choice loophole: random number generators (RNGs) could be prior 
correlated  the choice of measurement bases are not truly random 

Brunner et al., RMP 86, 419 (2014) 



Solution: Bell-test experiment with human-observer! 
Why need human-observer?  

Though in “Westworld” : AI “thinks” she 
has free consciousness 

Her every actions in future have 
been indeed priori determined by the 
remote control station…… 

Bell-test experiment with human-observer 

Measurement outcomes defined by consciousness    
Kent, PRA 72, 012107 (2005)   

 Leggett, Compendium of Quantum Physics (Springer, 2009) 

Basis choice by free will 

Requirement:  
Quantum signal transit time exceeds human reaction (100ms) 
entanglement distribution at a distance on the order of one light-second 
(e. g., between Earth and Moon, 1.28 ls) 

 



Computational capacities  Unconditional security 

Quantum communication Quantum computation 
and simulation 

Quantum  metrology 

Super-resolution 

Quantum Information Processing (QIP) 

Coherent manipulation of quantum systems 
Enabling encode and process information in quantum states, outperform 
classical information systems in terms of 

Test of quantum nonlocality 

Part 2: Quantum Communication



Single-photon-based key distribution: [Bennett & Brassard 1984 protocol] 

Entanglement-based key distribution: [Ekert, PRL 67, 661 (1991)] 

Quantum Key Distribution (QKD) 

1. Alice tosses a coin several times and notes out come each time (i.e. generates a 
random sequence of 0s and 1s) 

2. If it is head she decides to encode using a H/V basis. If it is a tail, she encodes in 
45/135 basis. 

3. Each bit is encoded as 0 or 1 in the chosen basis 
4. Bob receives each bit and does not know the basis used to encode. He also tosses a 

coin and decides to decode using the basis as decided by coin toss 
5. Half the time  basis will be the same as  in which case the qubit received 

will be the same provided Eve is not intercepting.  
6. Alice now uses a classical channel to announce the basis that she used each time. Bob 

discards those where the bases are different. The remained bits are called raw key 
(with an efficiency of 50%). 

7. Bob now announces a part of the qubits. Alice can conclude whether an eve is present 

BB84 Protocol 



No Eve With Eve 

If Eve is present, the probability that Alice and Bob can not tell is (0.25)N 

after they compare N raw  value!  

BB84 Protocol 

• All the error rates are brought by the eavesdropping 
• When the error rate is lower than the lower bound, we can utilize some 

classical cryptography method to let Eve know nothing about the key 
• If the error rate is higher than the upper bound, the key is insecure 

BB84 Security 

one-way  
communication  

two-way 
communication 

Upper bound  14.6% 25% 
Lower bound  11.0% 18.9% 

Gottesman and Lo, IEEE TIT 49, 457 (2003) 



Perfect Cipher in Principle 

One-time pad 

QKD  Secure key 

• First Discovered by Gilbert Vernam 
• Security Proved by Claude Shannon 

[Bell Syst. Tech. J,28,656 (1949) ] 

+ 

Unconditional security! 

Dense Coding 

Transformations between 4 Bell states: 

Bennett & Wiesner, PRL 69, 2881 (1992) 

Transmit two bits of information by sending one photon 



1. Alice and Bob share an entangled photon pair in the state of  
2. Bob chooses one of the four unitary transformation on his photon. 

The information of which choice is 2 bit. 

3. Bob sends his photon to Alice 
4. Alice does a joint Bell-state measurement (BSM) on the photon 

from Bob and her photon. 
5. With the measurement result, she can know  unitary 

transformation and achieve the 2 bit information. 

Dense Coding 

e. g.  

Quantum Teleportation 

Classical  physics 
Scanning and reconstructing 

Quantum physics 
Principle of quantum measurement forbidden extracting all the 
information from an unknown quantum state! 



Quantum Teleportation 

Bennett et al., PRL 73, 3801 (1993) 

Initial state 

The shared entangled pair 

BSM results on 
particles 1, 2

operations on particle 3

23 2 3 2 3
1| | | | |
2

H H V V

123 1 23

12 3 3

12 3 3

12 3 3

12 3 3

| | |
| | |

| | |

| | |

| | |

H V

H V

V H

V H

Quantum Teleportation 

Though nowadays we can only teleport two-particle composite system…… 
Essential ingredient for distributed quantum information processing!  

01101101 

Quantum version of cloud-somersault  



Part 3: Quantum Computation and Quantum Metrology

Quantum Computation 

Quantum Parallelism 

Bits 
0 or 1 

00 01 10 or 11 
000 001 010…… 

Qubits 
0 + 1 

00 + 01 + 10 + 11 
000 + 001 + 010 + …… 

Evaluating function f(x) for many different x simultaneously 

V. S. 

Exponentially speedup! 

This is what makes famous quantum algorithms, such as  
algorithm for factoring, or  algorithm for searching 



RSA Encryption and Factorizing 

RSA public-key cryptosystem 
Produce a large integer N 

m1 m2=N,  (with m1 and m2 primes) 
• N is made public available and is used as a key (x) to encrypt data 
• m1 and m2 are the secret keys (k) enable one to decrypt the data 

C = Ex (P)  
P = Dk (C)= Dk (Ex (P) ) 

X: Public Key; K: Private Key 
P: Plain Text; E: Encryption; C: Ciphertext; D: Decryption  

Riverst, Shamir and Adleman, MIT/LCS/TR-212, Jan. 1979 

RSA Encryption and Factorizing 

• To crack a code, a code breaker needs to factorize N 

• The security of RSA based on the ease with which N can 
be calculated from m1 and m2, and the difficulty of 
calculating m1 and m2 from N 



• Problem: given a number, what are its prime factors ? 
e. g. a 129-digit odd number which is the product of two large primes, 
11438162575788886766923577997614661201021829672124236256256184293570

693524573389783059712363958705058989075147599290026879543541
=3490529510847650949147849619903898133417764638493387843990820577
x 32769132993266709549961988190834461413177642967992942539798288533

• Best factorizing algorithm requires sources that grow exponentially in 
the size of the number: , with n the length of N 

RSA Encryption and Factorizing 

Code-breaking can be done in minutes, not in millennia 
Public key encryption, based on factoring, will be vulnerable!    

 

Peter Shor 

Foundations of Computer Science, 1994 Proceedings. 35th Annual Symposium 

Algorithms for quantum computation: discrete 
logarithms and factorizing 

E.g. factor a 300-digit number with 
• Classical THz computer: 1024 steps   150,000 years 
• Quantum THz computer: 1010 steps  1 second! 



Deutsch–Jozsa Algorithm 

 

Considering input n bits, 
• Constant f: for all 2n inputs, f=0 or f=1 
• Balanced f: for 2n-1 inputs, f=0, for another 2n-1 inputs, f=1 

Question: given a function f, whether is it constant or balanced ? 

Classical deterministic algorithm: at most 2n-1+1 inquiries 
• All outputs are the same  constant 
• At least 1 output is different from others  balanced 

Deutsch–Jozsa Algorithm 

The simplest 
example: 
(x=0 or 1) 

Constant: 
f(0)=1 
f(1)=1 

Balanced: 
f(0)=0 
f(1)=1 

Classical algorithm needs 2 inquiries 
Deutsch–Jozsa quantum algorithm: 

Assume f was mapped into a quantum oracle  satisfing 

e. g.,  



Deutsch–Jozsa Algorithm 

• Prepare two qubits input state  
• Perform Hadamard operation  
• Perform  

Output state:  

• Measure the first qubit on {+/-} basis:   constant f,   balanced f 

Quantum algorithm only needs one inquiry   

Key point: All 
possible inputs are in 
superposition state! 

Deutsch–Jozsa Algorithm 

• Prepare n+1 qubits input state  
• Perform Hadamard operation on all qubits  

Consider a more general case with n-bit inputs x: x=0, 1, 2, …, 2n-1 

• Perform  

The binary representation of x corresponds to values of each 
qubits, e. g.,   



Deutsch and Jozsa, Proc. Royal Society London A 439, 553 
(1992)  

Deutsch–Jozsa Algorithm 

• Measure the first n-qubit on {+/-} basis:  if and only if the 
output is , f is constant 

Only needs one inquiry!   

(1992)
Deutsch problem is not a practically important problem, but 
Deutsch–Jozsa algorithm firstly demonstrated the superiority of 
quantum computation! 

 

Serial 0 1 2 3 4 5 
Value 1 1 -1 1 1 1 

…… 

Classically search 
Sequentially try all N possibilities  
Average search takes N/2 steps 

How quickly can you find a needle in a haystack  
The simplest example: 
Which one is equal to -1 in a database? 

Lov Grover 

Quantum search 
Simultaneously try all possibilities 
Refining process reveals answer 
Average search takes N1/2 steps 



 

A databased is encoded with a N N diagonal matrix R (rotate phase) 

The task is to find x 

Take a m-qubit register (2m=N), and prepare the 
registers in an equal superposition state of all the states 

Perform rotate phase 
matrix R on the register 

0 1 2 3 4 5 …… 

Then perform diffusion operator D 

 

0 1 2 3 4 5 …… 

increase the probability amplitude of 
the desired state  

Iterations of operators R and D 

0 1 2 3 4 5 …… 

Measure the register to get the specific state  with nearly unity probability  



 

Formulas 

• Phase rotation R: 

• Diffusion operator D: 

• Initial state: 

• After n iteration: 

• The probability to collapse into the x 

Formulas 

 

• Choose iteration steps 

• The probability of failure: 

  

Grover, PRL 79, 325 (1997) 



Quantum Metrology 

Super-resolution with multi-particle entanglement 

Single particle:  

V. S. 

N-particle N00N state 

N N 

Phase uncertainty with 
N sampling:  

Phase uncertainty with 
same cost of resource N :  

Part 4: Quantum Repeaters



Noise Environment  

Unavoidable interaction with environment and decoherence will happen  

       
• represents the qubit state and represents the environment initial state,  

is the joint unitary time evolution operator 
• For arbitrary qubit state: 

The off-diagonal element of the qubit density matrix will drop down with 
the rate   
The maximally entangled state will be in some mixed state with a certain 
entanglement fidelity due to the process 
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Channel Loss 

Photon loss increases exponentially with channel length:  
(e. g., in commercial fiber ) 

For 1000 km commercial fiber, even with a perfect 10 
GHz single-photon source and ideal detectors, only 0.3 
photon can be transmitted on average per century! 



Solution: quantum repeater 

Solution to photon loss
Entanglement swapping 

Solution to decoherence
Entanglement purification 

Briegel et al., PRL 81, 5932 (1998) 

Entanglement Swapping 

Zukowski et al., PRL 71, 4287 (1993) 

Entangling the remote particles which never interacted! 



Entanglement Purification 

Initially pure singlet state 
Noise 

Channel 

Mixed state: 

Fidelity  

Goal: to extract from a large ensemble of low-fidelity M a small sub-
ensemble with sufficiently high fidelity 

Random bilateral Pauli rotation on each photon in the states   change 
arbitrary mixed state into Werner state: 

Scheme for Entanglement Purification 

For two same pairs of Werner 
states, we consider them as source 
pair and target pair respectively 

A unilateral  is performed on each 
of the two pairs:  

i. e., states with a large component (F > 1/2) of , and equal components 
of the other three Bell states 



Scheme for Entanglement Purification 

Perform CNOT operation on source and target pairs: 

Probability Before After

Source Target Source Target

Measure target pair in 
{H/V} basis, keep the 
unmeasured source pair 
when measuring results are 
same 

Scheme for Entanglement Purification 

After that, the component of  of the target pair will be 

Equivalently, the fidelity  is equal to   

Via several this kind processes, we 
can purify a general mixed state 
into a highly entangled state 

Bennett et al., PRL 76, 722 
(1996) 



Lecture 2: 
Scalable Quantum Information Processing with

Photons and Atoms

Part 1: 
Elemental Optical Manipulations and

Demonstrations of Quantum Communication  

Optical Quantum Information Processing

Why do we like photons? 

Flying qubit (fastest quantum information transmitter)

Robust qubit (with weak interaction with environment) 

High-precision manipulation with off-the-shell devices  



Single Photons: Generation & Detection

Generation of single photons
• Practical singe-photon source is far out of reach 

within current technologies
• Probabilistic quasi single photon: weak coherence pulse

Single photon detector
• InGaAs Avalanche photo diode
• Si detector 
• Superconducting nanowire detector……

Single-qubit SU(2) Rotations

Arbitrary SU(2) rotation can be achieved by 3 elemental rotations:

Rotation around x axis 
with an angle of 

Rotation around z axis 
with an angle of 

It can be easily realized with polarization 
states of a photon undergoing two types 
of wave plates

QWP: quarter-wave plate
HWP: half-wave plate 



Manipulation of Entanglement

For photons, CNOT gate requires strong non-linear coupling
But the coupling between photons is negligibly weak!

Kwiat et al., PRL 75, 4337 (1995)

Spontaneous Parametric Down-conversion (SPDC)

Probabilistic Generation of Photonic Entanglement



Pan and Zeilinger, PRA 57, 2208 (1998)

D1 D2

D3

D4

Bell-state Measurement (BSM) with Linear Optics

Required non-linearity of CNOT gate can be effectively induced 
with the help of post-selection measurements

1| | | | |
2

1| | | | |
2

H H V V

H H V V

1| | | | |
2

1| | | | |
2

Different voltages Randomly choosing 
0 or 1 Different NOISE 

The experiment is unconditionally secure, unless you are a deaf
--Gilles Brassard

Security loopholes due to imperfection of realistic devices

I can 
“hear” your 
key!

Proof of Concept Demostrations of QKD

First concept demonstration (32 cm)
Bennett et al., J. Cryptol. 5, 3 (1992)



Eavesdrop the keys with two photon events
(Photon number splitting attack)
Brassard et al., PRL 85, 1330 (2000) 
Lütkenhaus, PRA 61, 052304 (2000)

Probabilistic quasi single 
photon: weak coherence pulse

Security Loophole of QKD with Realistic Devices 

~10km

Due to imperfect single-photon source: 

Not secure when distance is longer than ~10km in fiber
Very low key rate 

If so, why we need QKD?

 Security loophole 1: imperfect single-photon source

Quasi single photon source:
Two identical photons per pulse with 
probability P2/2

Photon number splitting attack (PNS): 
Eavesdrop the keys with two photon events
Brassard et al., PRL 85, 1330 (2000)

Not secure when distance 
is longer than ~10km
Very low key rate 

Security of QKD with Realistic Devices



 Solution: Decoy-state QKD scheme: sending pulses randomly with intensity P1 or P2

• Wang, PRL 94, 230503 (2005)

Without
eavesdropping:

With eavesdropping:

• Lo et al., PRL 94, 230504 (2005)

Channel loss: P1

Eavesdropper
Loss free channel

Security of QKD with Realistic Devices

Experiments
100km:
Rosenberg et al., PRL 98, 010503 (2007)
Peng et al., PRL 98, 010505 (2007)

200km:
Liu et al., Optics Express 18, 8587 (2010)

Security of QKD with Realistic Devices



 Security loophole 2: imperfect single-photon detectors

Blinding attack: can fully control detectors by specially tailored 
strong light [Lydersen et al., Nature Photonics 4, 686 (2010)]

Security of QKD with Realistic Devices

 Solution: Measurement Device Independent QKD: Immune to any attack on detection
• Scheme: Lo et al., PRL 108, 130503 (2012)

Key point: two-photon interference (HOM effect)
consider simultaneously input two photons with the same polarization  to a BS

Beam splitter

Path 

Path 

Effect of BS: 

Input: Identical
photons

• Two photons will output from the same side of BS 
• And coincidence detection will occur only if the 

polarizations of two photons are different

Hong, Ou & Mandel, PRL 59, 2044  (1987) 

Security of QKD with Realistic Devices



Measurement station

Alice and Bob send one of four polarization states randomly to measurement station
Alice’s basis Alice’s state Bob’s basis Bob’s state

or

or

or

or

Compare their basis in public channel, keep the cases that basis choices are the same
Share key according to anti-correlation of polarizations
Even measurement station is fully controlled by Eve, she can only reveal the 
correlation information, but gains no information of the key

Coincident events  

Security of QKD with Realistic Devices

High-precision interference between 
two remote independent lasers: 
relative timing jitter after hundreds 
km fiber < 10ps

First experiment (50km):
• Liu et al., PRL 111, 130502 (2013)

Extended distance:
• 200km: Tang et al., PRL 113, 190501 

(2014) 
• 404km: Yin et al., PRL 117, 190501 (2016)

Security of QKD with Realistic Devices



Information-theoretically secure QKD with realistic devices 
can be approached properly!

In MDI-QKD……They need only trust themselves not to have inadvertently 
created a side channel to Eve through incompetent design of their do-it-
yourself light sources 

-- Charles Bennett

MDI-QKD
+

DIY light source (Do It Yourself)

Security of QKD with Realistic Devices

Experimental Dense Coding

a

b d

c

At the BS

 Coincidence between DH and DV, or D  and D    
Similarly,
•   Coincidence between DH and D , or D  and DV (only  will cause coincidence between 

the different outputs of the BS)
•   2 photons in one of detectors



Experimental Dense Coding

To distinguish  by coincidence, insert an additional 
BS before two photons arrive detectors

So the experiment can distinguish 3 Bell states  
transmit  by sending one photon

Mattle et al., PRL 76, 4656 (1996)

Single photon, the 
unknown state to 
be teleported Trigger

Entangled state

Bouwmeester et al., Nature 390, 575 (1997)

Experimental Quantum Teleportation

Project to by coincidence after 
BS



Two photons must be indistinguishable on the BS  be spatially and temporally 
overlapped on the BS perfectly

But it was not so straightforward……

Experimental Quantum Teleportation

However, if the pulse duration T of pump is too 
long (e. g., a CW laser)

A large uncertainty of generation time of 
two EPR pairs (~T) 

Energy conservation condition , allows some 
uncertainty of frequency  of EPR pair 

The coherent time of EPR pair  (, at the order of 
100fs) will be much shorter than T

Pump

 A solution is to use short pulse laser (pump pulses duration: 200 fs)

The pulse will bring some time jitter to the SPDC photon
Insert a narrow band filter can extend the coherent time (4nm 
results in a coherence time of 520 fs)

Experimental Quantum Teleportation



The coherent time of EPR photons is definitely shorter than the time resolution 
of state-of-the-art single photon detectors in 1997  we cannot confirm that 
photons were well-overlapped at the BS by detecting the arriving time
Scan the interference fringes

Experimental Quantum Teleportation

Pol

Adjusting delay between 
photon 1 and 2

• Insert two polarizers to make the polarizations of 
photon 1 and 2 the same

• Due to HOM effect, there will be no coincidence in 
theory when two photons 

are well-overlapped
• Adjust delay to find 

the optimal position
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Experimental Quantum Teleportation

The experimental results



Part 2: Multi-photon Interferometry

Quantum Computaiton Quantum Circuit Model

Single-qubit SU(2) gates 
+

Two-qubit controlled-NOT gates

With linear optics, nonlinearity required by CNOT gate can only be 
induced by post-selection.

Is it sufficient for efficient quantum computation? 

Universal quantum computation
Lloyd, PRL 75, 346 (1995)



Probabilistic photonic CNOT gate 
Scheme:
• Pittman et al., PRL 88, 257902 (2002)

Experiments:
•  et al., Nature 426, 264 (2003)
• Gasparoni et al., PRL 93,020504 (2004)
• Zhao et al., PRL 94, 030501 (2005)

Efficient quantum computation is possible with linear optics
Knill, Laflamme and Milburn (KLM), Nature 409, 46 (2001)

Non-deterministic quantum logic operations can be performed using linear 
optical elements
The success rate of the quantum logic can be arbitrarily close to one 

Quantum Computaiton Quantum Circuit Model

One-way Quantum Computation Model

Universal QC resource: multi-particle entanglement

Quantum gate is implemented by measuring particles in a certain order and 
in a certain basis:

Raussendorf and Briegel, PRL 86, 5188 (2001)

cluster state :



Resource Reduction for Optical Quantum Computation

• KLM scheme: ~105 photons, and efficiency (source, detection) threshold of 
more than 99%

To implement a CNOT gate with near-unity probability, one needs:

• Yoran and Reznik, PRL 91, 037903 (2003)
• Nielsen, PRL 93, 040503 (2004) (cluster state)

• Browne and  Rudolph, PRL 95, 010501 (2005) (cluster state)
• Ralph et al., PRL 95, 100501 (2005)

~103 photons

~102 photons

• Varnava et al., PRL 100, 060502 (2008) : 
If the product of the detector efficiency with the source efficiency is greater 
than 2/3, then efficient linear optical quantum computation is possible

Essential task: generation and manipulation of multi-photon entanglement!

P P P P

Two-photon entanglement source: P Four-photon entanglement: P2/2
 Six-photon entanglement: P3/4  Eight-photon entanglement: P4/8…

One must need high-brightness entanglement source!

Multi-photon Interferometry



Multi-photon Interferometry

Pan et al., PRL 86, 4435 (2001)

(HH+VV)(HH+VV)

= HHHH+HHVV+VVHH+VVVV

HHHH+VVVV

In 2001: Brightness of entanglement source: 2500pair/s@76MHZ 

Six-photon Cluster States

H gate

Lu et al., Nature Physics 3, 91 (2007)

In 2007: A brighter, stable laser pump source, Verdi 10W  16W, IR ~ 2.5W
Brightness of entanglement source: 93000pair/s@76MHZ 



Hyper-entangled Schrödinger Cat States 

Gao et al., Nature Physics 6, 331 (2010)

Hyper-entangled state: Polarization and spatial modes

5-photon 10-qubit cat state

The Request for Both High Brightness & Fidelity

With higher pump 
Increase probability
More double pair emissions  
degrades fidelity

Can we have very bright source of entangled photons, meanwhile with high fidelity?

Error



The o and e light differs in their spectral (and temporal) widths  
decrease the indistinguishability thus the fidelity
Previous experiments: narrow-band filters (~3nm)  unnecessary 
waste of photons

6nm        12nm

Frequency-uncorrelated Entangled Photons

Frequency-uncorrelated Entangled Photons

Interferometric Bell-state synthesizer:
disentangles the timing from the polarization

~1 million coincidence counts per second 
without filter, with ~90% fidelity

Eight-Photon Entanglement
Fidelity 0.708
Brightness 9 counts per hour

Yao et al., Nature Photonics 6, 225 (2012)



Ten-Photon Entanglement

Wang et al., PRL 117, 210502 (2016)

Previous SPDC method:

Only collect photons from 
overlaps of up and down circles

Collect all photons from two 
separate circular beams
entangled-photon source 4 
times brighter than the 
previous result in eight-photon 
entanglement

To increase count rate:

18-qubit Hyper-entanglement 

Wang et al., PRL 120, 260502 (2018)

6-photon 18 qubits hyper-entanglement state (largest entanglement) 

Polarization
 degrees of freedom

Path degrees 
of freedom

Orbital angular momentum 
degrees of freedom



Test of Quantum Nonlocality in 3-photon GHZ entanglement

Pan et al., Nature 403, 515 (2000)

Prediction for 
quantum mechanics

Prediction for 
local realism

Experimental result

Quantum Teleportation with Multi-photon Entanglement

• Teleportation of multiple degrees of freedom
Wang et al., Nature 516, 518 (2015)

• Open-destination teleportation
Zhao et al., Nature 430, 54 (2004)

• Teleportation of a composite system
Zhang et al., Nature Physics 2, 678 (2006)

Alice Bob

Alice Bob

Alice

Bob1
Bob2
Bob3

……

B

• Teleportation in high dimensions [Luo et al., PRL 123, 070505 (2019)]

Forming an essential element in quantum computation!



Demonstrations of quantum algorithms

Topological quantum error correction:
Relax the qubit error threshold from 
10-5 to 10-2

Yao et al., Nature 482, 489 (2012)

 factoring algorithm (15 = ? X ?)
Lu et al., PRL 99, 250504 (2007)

 searching algorithm
Chen et al., PRL 99, 120503 (2007)

Demonstrations of quantum algorithms

• Classical: O(N) steps
• Quantum: O(log(N)) steps

Solving linear systems of equations
   
Key point: find out eigenvalues of N N matrix A

Theory: Harrow et al., PRL 103, 150502 (2009)
Experiment: Cai et al., PRL 110, 230501 (2013)

Solving linear equations with 1024 variables with
• Taihu Light (~100PFlops, supercomputer No. 1 ): 100 years
• Quantum THz computer: 0.01 second!



Theory: Lloyd et al., arXiv:1307.0411
Experiment: Cai et al., PRL 114, 110504 (2015)

• Classical: O(N) steps
• Quantum: O(log(N)) steps

Quantum machine learning: recognizing the object from a landscape background
Key point: calculate the distance of two N-dimensional vectors

Classifying 2D vectors, rate of correctness 98%

Reference vectors

Demonstrations of quantum algorithms

New data vector

Milestone 1: Coherent manipulation of ~50 qubits 
 beating classical supercomputer in specific 

tasks (e. g. Boson sampling and portfolio 
optimization, etc.)

Milestone 2: Quantum simulation using hundreds of qubits  revealing the microscopic 
mechanism of condensed matter physics (e. g., high temperature superconductivity, etc.)

Milestone 3: Universal and programmable quantum computers

Roadmap of Quantum Computing



Achieving quantum supremacy: Boson sampling

Input identical Bosons 
(photons) to a multi-
channel quantum circuit

Output distribution?

Boson sampling: a specific task in which near-term quantum computers can 
beat classical supercomputer!

Achieving quantum supremacy: Boson sampling

Aaronson and Arkhipov, Theory of Computing. 9, 143 (2013) 

Classical Galton Board Single Boson
Two-Boson

 interference



Classical: n22n+1 steps
sharp P-complete problem!

Quantum: directly measure the V.S.

Achieving quantum supremacy: Boson sampling

Summit (supercomputer No. 1)

Quantum supremacy!

Prototype of quantum computer for Boson sampling

High-efficiency multiphoton boson sampling machine
Wang et al., Nature Photonics 11, 365 (2017)
Provably faster than ENIAC and TRADIC for the first time

Summit (supercomputer No. 1)



Prototype of quantum computer for Boson sampling

Wang et al., PRL 123, 250503 (2019)

• Walther et al., Nature 429, 158 (2004), N=4
• Nagata et al., Science 316, 726 (2007), N=4
• Resch  et al., PRL 98, 223601 (2007), N=6
• Gao et al., Nature Physics 6, 331 (2010), N=8

NN
N=8

Super-resolution with Multi-photon Entanglement

• Wang et al., PRL 120, 260502 (2018), N=18



Part 3: Demonstrations of Quantum Repeaters

Longest distance of MDI-QKD in fiber: ~400km
• Yin et al., PRL 117, 190501 (2016)
Longest distance of quantum teleportation: ~100km
• Yin et al., Nature 488, 185 (2012), by Chinese group
• Ma et al., Nature 489, 269 (2012), by Austrian group

Challenge towards long distance quantum communication



Challenge towards Scalable Quamtum Information Processing

Probabilistic entangled photons 
and single photon source

As mentioned in Lecture 1, we need quantum repeater to overcome
Absorption  Photon loss
Decoherence  Degrading entanglement quality

Exponential resource cost
And

Require
Entanglement swapping with high precision
Entanglement purification with high precision
Quantum memory with high performance 

High Precision Entanglement Swapping

First demonstration with beam splitter
Pan et al., PRL 80, 3891 (1998)
High precision fault-tolerable entanglement swapping 
Pan et al., Nature 421, 721 (2003)



Practical Scheme for Entanglement Purification 

Original entanglement purification scheme requires CNOT operation 
between independent photons 
Practical scheme: non-linearity effectively induced by post-selection

Pan et al., Nature 410, 1067 (2001)

Consider a simpler case: to purify 

Keep 4-fold coincidence at a3, b3, a4, b4

4-fold coincidence after PBS 

Probability

Case

These two cases will not result 
in 4-fold coincidence 

Practical Scheme for Entanglement Purification 



Practical Scheme for Entanglement Purification 

For 

Four-fold events No four-fold events

Probability of 50%

• After local measurements in {+/-} base at a4 and b4:
Probability of F2/2

Practical Scheme for Entanglement Purification 

For

Four-fold events No four-fold events

Probability of 50%

• After local measurements in {+/-} base at a4 and b4:
Probability of (1-F)2/2

• Final state:  



High Precision Entanglement Purification

Before purification, F=3/4

After purification, F=13/14

Pan et al., Nature 423, 417 (2003) 
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Quantum Memory

EPR EPRStage 1 EPR EPRStage 2 …Stage N

PBS PBSPBS

Probabilistic EPR source, Channel loss, Probabilistic entanglement purification

Without quantum memory, the cost of resource in multi-stage experiments ~ 
11//PP22NN, thus not scalable 
If we know when photon pair is created and can store them on demand, then 
implement entanglement purification and swapping, the total cost ~ 11//PP22



Maximally entangled in
the number basis

DLCZ scheme
Duan et al., Nature 414, 413 (2001)

Triggered and Storable Entanglement Generation

Apply a reverse laser pulse to transfer atomic excitation back to 
optical excitation

Succeeds if D1 or D2 registers a single photon

Fails otherwise, and repeat every step from entanglement generation

Entanglement Connection



Phase stabilization
    

Short Lifetime
Achieved lifetime ~ 30 μs
Preparation time ~ 100 μs   lifetime needed  ~ 1 ms!

Error rate grows rapidly with 
distance    
Vacuum term becomes dominant 
after a few connections 

Drawbacks in DLCZ Scheme

L

Zhao et al., PRL 98, 240502 (2007)

Solution:
Phase stability:

Sub-wavelength 100nm
Sub-coherence length ~ 1m 

Lower error rate
Vacuum term is NO more dominant

Higher efficiency 

R

L

R

L

R

LL

Deterministic Entanglement Generation 



Quantum Repeater Nodes

Experiment: Yuan et al., Nature 454, 1098 (2008)

Atom-Photon entanglement Atom-Photon entanglement

Long lifetime: storage time must be long enough to ensure every node creates 
an entangled pair
High retrieve efficiency: the stored quantum state must be converted into 
photon with sufficient high efficiency to establish remote entanglement

Efficient and Long-lived Quantum Memory

In 2008 experiment,

• Life time: 1

• Retrieve efficiency: 35%

Require lifetime to be extended 

about 8 orders of magnitude!

Scalable quantum communication 
with quantum repeater



Efficient and Long-lived Quantum Memory

Increasing retrieval efficiency:
Ring cavity enhancement: 
increase interaction strength

To Increase life time, need to overcome:
Inhomogeneity of magnetic field
Loss of atoms duo to gravity and atomic random motion
Spin-wave dephasing

Efficient and Long-lived Quantum Memory

Collective excitation state (spin-wave) of atomic ensemble:
Raman process:
• Absorbing a photon with momentum 
• Emitting a photon with momentum 

-
 is the position of atom j

Solution: ”clock states”  is not sensitive to magnetic field)

Inhomogeneity of magnetic field: 
The evolution phase given by each atom 
Inhomogeous magnetic field may cause different   
uncertain additional phase 



Loss of atoms due to gravity and atomic random motion: atoms will diffuse or fall

Solution: 
• Cooling atoms with optical molasses
• Write/Read in the gravitational 

direction
MOT

Efficient and Long-lived Quantum Memory

Image of trapped 
Rb87 atoms

Spin-wave 
dephasing

Different  due to atomic random motion

Solution: collinear recoil, smallest   evolution phase  is almost fixed to 0

Efficient and Long-lived Quantum Memory



Efficient and Long-lived Quantum Memory

Ring cavity (finesse=48)
Clock state

Optical molasses

Write/Read in the gravitational direction

Collinear configuration 

Life time 3ms, retrieve efficiency 73% 
Bao et al., Nature Physics 8, 517 (2012)

Require lifetime to be extended about 2 orders of magnitude 

Efficient and Long-lived Quantum Memory



Efficient and Long-lived Quantum Memory

• Light field: 
• Induced atomic dipole moment:  

polarizability of atom , 
(: line width, : detune)

• Interaction between  and  results in 
energy shift of atomic levels:

(: light intensity)

Optical trap

• Gradient of light intensity will provide a 
dipole force 

dipole force

Red and blue detuned trap

• Red detuning : a trap is formed at the position of maximal intensity
• Blue detuning : a trap is formed at the position of minimal intensity

Grimm et al., Adv. At. Mol. Opt. Phys. 42, 95 (2000)

TEM00 mode of 
Gaussian beam

TEM01 mode of 
Gaussian beam

Efficient and Long-lived Quantum Memory



Optical lattices1D optical lattice
2D optical lattice

3D optical lattice

Light standing wave

Interference of counter-propagating laser beams 
 a spatially periodic pattern

“Lattice”: periodic optical dipole potential  
 atoms are cooled and collected in the locations 

of potential minima

laserlaser

Efficient and Long-lived Quantum Memory

Optical lattices

Efficient and Long-lived Quantum Memory

We use:
• 3D Lattice (0~180  distance between adjacent wells: dx~2.8  dy~5.9  

dz~0.54 
• Spin-wave excitation 15 

Limits atomic motion in all direction to 
suppresses atomic collision-induced 
decoherence



With ring cavity + optical lattice confinement: 
Life time 220ms, retrieve efficiency 76% 
Yang et al., Nature Photonics 10, 381 (2016)

Finesse: 52

Efficient and Long-lived Quantum Memory

Support quantum repeaters enabling quantum communication at a range of ~500km

Yu et al., to appear in Nature (2020)

22km field-deployed fiber with two-photon scheme50km coiled fiber with single-photon scheme

A practical quantum repeater might still need 10 more years

Frequency conversion technology: 
shift the atomic wavelength to 
telecom wavelength

Long-distance Entanglement of Quantum Memories



Part 4: Towards Long-distance Quantum Communication

Immediate Way: Twin-field MDI-QKD 

Laser LaserLaser Laser

V. S.

• Original MDI-QKD: efficiency of 
two-photon interference: 

(channel loss of each path: )  

• TF-MDI-QKD: efficiency of single-photon 
interference: 
(two remote independent lasers with locked phase

D0 click 0 0

D1 click 0 0

Theory of TF QKD : 
• Lucamarini et al., Nature 557, 400 (2018)
• Wang et al., PRA 98, 062323 (2018)
• Ma et al., PRX 8, 031043 (2018)

QKD in commercial fiber can even reach 700-800km!



Locking the frequency of two remote lasers: instability 10-14/s
Frequency and time dissemination technology [e. g., Predehl et al., Science 336, 441 (2012)]

Overcoming fiber length fluctuation:
Post-selecting small phase difference via phase measurement on time-multiplexing strong 
reference pulses

Major technology challenging: 
Stable phase interference between two independent lasers, separated a few hundreds km

Wavelength difference Fiber length fluctuation

Immediate Way: Twin-field MDI-QKD 

Experiments (in coiled fiber):

First realization: 300km
Liu et al., PRL 123, 100505 
(2019)

Extended distance: 502km
Fang et al., to appear in Nature Photonics (2020)

Frequency difference of two remote lasers is less than 10-15/s
Length perturbation of fiber is less than 100nm

Immediate Way: Twin-field MDI-QKD 



Non-obstruction from terrestrial curve and barrier
Effective thickness of atmosphere is only ~10km
No decoherence in outer space

More Efficient Way: Free-Space Quantum Communication

Attempt to Free-space Quantum Communication

QKD with weak conherent pulse, 23.4km: 
Kurtsiefer et al., Nature 419, 450 (2002)
Security distance ~5km

Distribution of entanglement ~600m: 
Aspelmeyer et al., Science 301, 621 
(2003)

Major question: could the quantum states of single and entangled photons still 
survive after passing through atmosphere?



Phase 
1:

Test the possibility of single photon and entangled photons passing 
through atmosphere 

Free-space quantum entanglement 
distribution ~13km
Peng et al., PRL  94, 150501 (2005)

Free-space quantum teleportation (16km)
Scheme: Boschi et al., PRL 80, 1121(1998)
Experiment: Jin et al., Nature Photonics 
4, 376 (2010)

Well beyond the effective thickness of the aerosphere!

Ground Tests for Satellite Quantum Communication

Ground Tests for Satellite Quantum Communication

Free-Space Quantum Teleportation (97km)

Loss for an uplink of 
ground to satellite: 45dB

Channel loss: 
35-53dB

Phase 2:
Test the feasibility of quantum communication via high-
loss ground-to-satellite channel

V. S. 



Free-space quantum entanglement distribution (over 100km)

Loss for two-downlink 
between satellite and two  
ground stations: 75dB

Channel loss: 
66-85dB

Yin et al., Nature 488, 185 (2012)

Ground Tests for Satellite Quantum Communication

V. S. 

Ground Tests for Satellite Quantum Communication

Direct and full-scale verifications towards ground–satellite 
quantum communication

Mimicking the  angular motion
Mimicking the  attitude change
A huge loss channel (about 50 dB loss, 
97 km)

Wang et al., Nature Photonics 7, 387 
(2013)

Overcoming all the demanding conditions for ground-satellite QKD 

Phase 3:



High precision Acquiring, 
Pointing and Tracking (APT)

High precision synchronization

Less than 3urad

Near-diffraction-limited far-field divergence angle

• Diffraction-limited 

divergence angles: 8 rad

• Divergence angle 

~10 rad@140mm

• Hundreds of kilometers

• Rapid motion

• Random movement

• Vibration

Ground Tests for Satellite Quantum Communication

 Ultra-high energy resolution detecting from the earth a single match fire lighted on the Moon 
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Launched on 16th Aug, 2016 in Jiuquan Satellite Launch Center

Quantum Science Satellite “Micius”

Weight: ~640kg
Power: 560W
Sun-synchronous orbit, altitude 500km



High-rate quantum key distribution (QKD) between satellite and ground
Quantum entanglement distribution from satellite, test of quantum nonlocality 
under strict Einstein's locality condition
Quantum teleportation between ground and satellite

Urumqi Beijing

Lijiang

Delingha

~1200km
Ngari

For telecommunication fiber channel 
(loss ~0.2dB/km) with same distance, 
the attenuation will be 20 orders higher

Channel loss:<40dB
Average final key rate: 
>1kbps@650-1200km
Recent result: ~100kbps

Liao et al., Nature 549, 43 (2017)

QKD between Satellite and Ground



Satellite-based Entanglement Distribution

Entanglement distribution over 1200 km
Violate  inequality at a confidence level 99.9%

Yin et al., Science 356, 1140 (2017)

Satellite Channel
Loss < 70dB
1 pair /s

Fiber Channel
Loss > 190dB
1 pair /30000 years

V. S.

Ground-to-satellite Quantum Teleportation

Ground-to-satellite teleportation over 500km-1400km
Ren et al., Nature 549, 70 (2017)

Satellite Channel
Loss < 50dB
0.08 event/s

Fiber Channel (1200km)
• Loss > 240dB
• 1 event /380 billion years
(20 times the  lifetime) 

V. S.



Beijing
Vienna

Collaborations with Italy, Germany, Russia, Singapore, Sweden etc. are ongoing

Intercontinental Quantum Key Distribution

Urumqi

Satellite as a trusted relay [Liao et al., PRL 120, 030501 (2018)]

Longest distance of point-to-point QKD on physically separated targets on the 
Earth: ~100 km [PRL 98, 010504 (2007), Nature Physics 3, 481 (2007)]
Entanglement-based QKD: extending the distance without compromising security

Scheme: Ekert, PRL 67, 661 (1991) ; 
Bennett et al., PRL 68, 557 (1992)

Entanglement-based QKD

Even the satellite is controlled by your enemy, the 
security of QKD can still be ensured by violation of 

 inequality!



This would thus achieve the Holy Grail that all cryptographers have been 
dreaming of for thousands of years

--Gilles Brassard

Experiment: over 1120 km [submitted (2019)]

• Channel Loss: 56~71dB
• Entanglement pairs received at 
2/s 
• Final key: 0.43 bps 
• QBER: 4.51% 0.37%

 If load GHz entanglement 
source, up to 10kbits per orbit

Entanglement-based QKD

Towards Global Quantum Communication Network

Orbit Type Shadow Probability

Ground 50%

LEO (600km) 29.7%

GEO 0.6%

Long-distance free-space QKD in daylight
Liao et al., Nature Photonics 11, 509 (2017)

LEO orbit, can not cover the whole earth directly
Only working in earth's shadow
Solution: Quantum Constellation!  A prerequisite: working in solar radiation 
background

GEO 0.6%

e QKD in daylight

Using C-band (1550nm) to overcome 
the noise from the sunlight
1550nm can be integrated with 
ground fiber networks naturally    



The experiment excludes the prediction of a strong event formalism model
Xu et al., Science 366, 132 (2019) 

Event Formalism model: gravitationally induced decorrelation of time-energy 
entanglement in exotic spacetime [Scheme: Ralph et al., PRA 79, 022121 (2009)]

Theory

Experiment

Investigation at the interface of quantum physics and gravity

Part 5: Future Prospects



Future Prospect

Quantum Constellation + Fiber quantum communication infrastructure
 

 “Quantum Internet”

Applications for the global quantum communication network 

Enormous spatial resolution: Combining photons from distributed telescopes worldwide 
by quantum teleportation in space [Gibney, Nature 535, 478 (2016)]

Precise atomic clocks: Entangling  atoms in remote atom clocks, short term instability 
is  times better than classical method [Kómár et al., Nature Physics 10, 582 (2014)]

Reading license plates floating 
in Jupiter's orbit on the Earth 

Future Prospects



In GEO orbit, long mooring time, distributing much more keys per day ( > 1 Gbits/year)

V. 
S.

Microwave timing sharing network: long time instability below 10-15

Global precise timing information sharing networks: Optical atomic clocks + Optical 
frequency transfer, long time instability to 10-19

GEO Quantum Satellite

Future Prospects

Long distance (~1000km-10000km) and precise time synchronization with global 
precise timing information sharing networks
Stabilization of phase in long distance  Twin field MDI-QKD between ground 
and satellite, increasing the key rate by 4 orders of magnitude

Phase locking Phase locking

Interference

Future Prospects



• Detecting gravitational wave signal with 
lower frequency to 0.1Hz (LIGO: 
~100Hz)

Negligible magnetic and gravitational noise in GEO orbit  Fractional instability ~10-21 

• Precisely detecting gravitational red 
shift at different altitude of orbits

Future Prospects

Entanglement distribution between Moon and Earth with  
future Moon landing project! 

Lagrange Point (L5)
Tiangong-2

Large-scale Bell Test with Human-observer 



Pretests for Large-scale Bell Test with Human-observer 

Challenging local realism with human choices
Generating random numbers with the 
help of worldwide 100,000  
free will
12 labs run Bell tests with the random 
numbers 
The BIG Bell Test Collaboration, 
Nature 557, 212 (2018)

Channel loss of entanglement distribution between Earth and Moon: 100 dB
Bell test with human supplying random measurement over simulated extremely 
high loss channel (103dB)
Cao et al., PRL 120, 140405 (2018)

Intel 80286

Intel Core 2
Quad Q8200

Summit
(supercomputer No. 1)

Quantum
Supremacy!

In next 1-2 years: optical quantum computer with 40-50 qubits  beating 
classical super computer in specific tasks (e. g. Boson sampling and portfolio 
optimization, etc.)

• More entangled particles with 
the help of quantum memory

• Efficient quantum dot single 
photon emitters

Scalable Optical Quantum Computation
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Statistics for quantum estimation A5.3

1 Introduction

Characterizing and verifying components for quantum computing devices is a non-trivial task,
for a number of reasons: First, by definition, quantum computers operator in a regime that is too
high-dimensional to track classically. Second, quantum physics is an inherently probabilistic
theory, where the underlying parameters are not directly observable, but need to be statistically
estimated from the results of many complementary measurements. Third, in order to sustain a
calculation of indefinite length with practical overhead, the components of a quantum computer
have to be implemented in a highly accurate way. Obtaining precise statistical estimates in
high-dimensional problems is known to be a very challenging task.

As a result, the field of quantum characterization and certification has grown over the past
years from a niche to a subject area supporting a substantial community. Today, there are even
start-up companies offering their QCC expertise on the market.

A confusingly large collection of methods have been drawn up, including randomized bench-
marking, gate set tomography, direct fidelity estimation, cross validation, compressed sensing,
and many more. That’s bad news to newcomers. The good news is that the multitude of methods
means that in many cases, the literature is not “stacked too deeply”, i.e. it is not the case that one
has to work through generations of papers and ideas to understand the state of the art. Maybe
with the exception of randomized benchmarking, it suffices to read the defining paper and a
recent follow-up to understand where we are. A very high-level overview over these methods,
with an extensive list of references, can be found in the very recent review paper [1]. We will
cover the scope and theory behind a selection of these approaches in the oral lecture.

In these written notes, in contrast, I will neither repeat the bird’s-eyes view offered in [1],
nor give an encyclopedic account of the many QCC schemes in existence. Instead, I want
to use the opportunity to close what I feel is a gap in the available literature (and also, I am
afraid, a somewhat common gap among researchers working in the field): An introduction to
the statistics of quantum characterization.

1.1 Statistics and physics education

Physics is an empirical science. The mathematical theory of empirical inference is statistics.
Still, statistics is not part of the standard curriculum of most physics programs. Many fields
that are generally seen as less quantitative in scope – e.g. the social sciences and psychology –
produce graduates that are much better versed in statistical methods than the average physicist!

Partly, physics gets away with this state of affairs, because we rely less on statistics for learning
about the world than other empirical fields. There are two main reasons: more data and better
models.

More data: Fully automated quantum experiments can often be repeated at rates of thousands
to millions of times per second. In this regime, statistical fluctuations are less of a concern; the
central limit theorem ensures that the commonly employed, simplifying assumption that rele-
vant distributions are Gaussian is actually well-justified; and, different approaches to statistical
estimation tend to agree with each other in the asymptotic setting. This justifies the quote “If
your experiment needs statistics, you ought to have done a better experiment”, often attributed
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to Ernest Rutherford.

Better models: A less-appreciated aspect is that the role of statistical hypothesis testing for val-
idating a theory is inverted in physics as compared to other empirical fields. More precisely,
consider the standard method of null-hypothesis significance testing (NHST). In the social sci-
ences or in clinical studies, the null hypothesis posits the absence of the effect – e.g. a treatment
effect of a drug, or discrimination against an underrepresented group – that one actually ex-
pects to find. An experiment is taken to be conclusive if the data presents significant evidence
against this null hypothesis of no effect. This indirect reasoning is necessary, because while
one might be able to predict from general theories that a given compound should treat a medical
condition, or that discrimination exists, these theories are not typically strong enough to predict
the strength of the effect quantitatively. Physics, in contrast, has developed strong models that
allow one to make quantitative predictions about the outcomes of experiments. (Phrased more
modestly, physics restricts attention to phenomena that are sufficiently boring that such models
are available.) Data analysis for the purpose of verifying a physical theory therefore typically
follows a more direct logic: A test of general relativity via the bending of star light during an
eclipse would be felt to be conclusive if the gathered data not only give strong evidence against
a Newtonian explanation, but would also be compatible with the quantitative prediction of GR.

As we will see, this distinction has profound implications on the interpretation of the weight
of statistical evidence. For example, the oft-used p-value statistic quantifies how unlikely the
observed data would be if the null hypothesis were true. But of course, clinical tests are only
conducted when one fully expects the null hypothesis (of no treatment effect) to be false. Thus
the assumption under which the p-value has a direct interpretation is generally not met, making
it a conceptually difficult quantity to work with.

The above remarks explain why a physicist can often be successful without speaking the lan-
guage of mathematical statistics. But “often” does not mean “always”. In astrophysics, where
observations cannot be repeated; in high-energy physics where all the low-hanging fruit have
been picked and the remaining effects are extracted via indirect measurements in the presence
of a large amount of background noise; and indeed in quantum characterization, a solid under-
standing of the foundations of statistical reasoning is necessary. Hence these notes. My goal
is to provide a quick introduction, with an emphasis of problems that are relevant to quantum
applications. This is no substitute for a textbook on mathematical statistics. These exist in
abundance – as a student, I enjoyed [2, 3] (orthodox) and [4] (Bayesian).

2 Orthodox vs Bayesian approach

In math and science, we are accustomed to having “canonical”, universally accepted answers to
important problems. It is therefore unexpected to learn that statistics is split into two big schools
of thought that remain at odds with each other to a surprising degree. Both are, of course, correct
as mathematical theories, but they address subtlety different questions. The unsettled dispute
is thus about which of the two approaches to the task of inference from noisy data gives more
satisfactory results in practice.

To get an idea about the tone of the debate, check out the (otherwise excellent) Bayesian
textbook [4] by the late David MacKay (freely available from www.inference.org.uk).

Statistics for quantum estimation A5.5

Search the book for the term “happily squeak” for the scathing parody the Cambridge professor
uses to describe the thinking of his orthodox colleagues. I can’t point to a printed version of
equally open mockery in the opposite direction, but I have certainly heard respected researchers
engage in it.

Simply speaking, Bayesian statistics provides a formalism for reasoning about beliefs. Beliefs
about reality combine prior knowledge with experimental observations. In the Bayesian ansatz,
beliefs are expressed in terms of probabilities that encode how plausible any given hypothesis is,
given the information available. Bayes’ rule (also Bayes’ Theorem – although mathematicians
would take offense with that nomenclature) tells one how to update these distributions as the re-
sult of observations. The advantage of this approach is that it answers the question practitioners
care about most: How likely is it that any given hypothesis about the system under study is cor-
rect? The disadvantage is that there is no canonical way of how to choose the prior distribution
that encodes the totality of knowledge that goes into the analysis before any observations are
made. Therefore, Bayesian reasoning is often criticized as subjective, an unattractive feature
for a framework used to reason about physical reality.

In contrast, the goal of orthodox statistics is to develop inferential methods that are guaranteed
to give sound results with high probability. For example, the typical “p ≤ 0.05-rule” used in
empirical studies says that the method will give a false positive or type-I error – i.e. reject the
null hypothesis even though it is true – with probability at most 5%. The advantage is that
no subjective prior has to be chosen. A major disadvantage is that orthodox statistics makes
statements only about the method in general, but not about any given inference. For example,
if one conducts an AIDS test with a false positive rate of 5% on a collection of pre-industrial
virgins, then given a positive result, we can still be certain that the test subject is actually
healthy. However, orthodox statistics, de-emphasizing the need to combine different sources of
information, offers no systematic guidance for how to reach this conclusion. What is worse,
users of statistical methods expect those to assign a quantitative value to the degree of certainty
they should have about the tested property. Therefore, they often turn to the only quantity
available, and erroneously interpret (1− p) as the probability that the result found is correct – a
reading that is not justified by the theory at all!

Homework: Read newspaper articles / social science publications / physics papers and search
for the above mistake. You will not have to search long.

A second problem of orthodox statistics is that the guarantees it offers are valid only if the
estimator has been chosen independently of the data. However, a very large number of reason-
able estimators has been developed, and the orthodox framework offers few generally accepted
criteria for choosing among them (as we will see). Thus, in practice, the choice of which set
of frequentist methods to apply to a given problem can implicitly introduce bias. A cautionary
example is offered by the current controversial discussing surrounding the so-called replication
crisis in the social sciences. There, the alleged practice of trying out various orthodox estima-
tors until one confirms the intended result at a “statistically significance level” has been deemed
sufficiently prevalent to have received a name: “p-hacking”.

In a nutshell, Bayesian methods force you to choose a (subjective) prior, but orthodox methods
don’t answer the question practitioners want to have answered, and can easily be misused. No
wonder then that the debate hasn’t been settled. The orthodox method is called orthodox, as it
is the one that has traditionally been used in science. In recent years, as a result of an increased
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awareness of common misuse of orthodox procedures and with increased availability of com-
putational power often required for Bayesian inference, the latter has gained more prominence.

For completeness: I have no horse in this race. Either approach makes sense, if used carefully,
with a sufficient understanding of the common pitfalls. We will primarily look at the orthodox
theory here, but will occasionally mention the Bayesian point of view.

3 Statistical Models

The first step of any statistical analysis is to fix a statistical model. We assume that the unknown
parameters of the system are given in terms an element θ of the set Θ of all possibilities. To
facilitate the mathematical analysis, one typically assumes that Θ ⊂ Rk (and, as we will see,
in practice one also encounters estimators that map into a superset of Θ within Rk). Inferences
about θ are made via observations of random variables X1, . . . , Xn. In the simplest case, the Xi

are independently distributed – this models an independent repetition of a physical experiment,
without any memory effects or drifting parameters. The distributions will, however, depend on
the unknown parameter:

Probθ[X = x] =: p(x|θ). (1)

The function p(x|θ) is called the statistical model and will be used to connect observations to
the unknown parameters. By definition, for any fixed θ, the function x �→ p(x|θ) is a probability
distribution. If, in contrast, one fixes the data parameter, one obtains the likelihood function

L(θ) : θ �→ p(x|θ)

which is defined on the parameter space Θ.

Example—A loaded coin: Consider a coin whose (unknown) probability to come up heads
is given by θ ∈ Θ = [0, 1]:

p(x, θ) =

{
θ x = H,
1− θ x = T.

Typical question: given an observation (X1, . . . , Xn) = (H,H, T, . . . , H), what can we say
about θ?

Example—The German tank problem: (It’s a thing! Look it up!) An allied elite force gets
parachuted into pre-D Day Nazi Germany. Suffering heavy losses, they manage to capture one
tank, pry off the manufacturer’s nameplate, and escape to friendly territory. The plate is flown
to you, the head of the Royal Statistical Society. It says the captured tank had serial number
123. How many tanks θ = N ∈ Θ = N do the Germans have? The statistical model is

p(x,N) =

{
1/N 1 ≤ x ≤ N
0 x > N.

(This makes the simplifying assumption that Germans, strangely literal, label their tanks in
order 1, 2, 3, . . . during wartime. Well, never mind.) The example emphasizes these common
characteristics of estimation problems:
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1. The problem is too pressing to put off a decision;

2. Non-trivial information is available;

3. It is too costly to obtain further samples;

4. It is plain to see that we don’t really know how many tanks there are, and no sophisti-
cated mathematical method will change that fundamental limitation. In other words: Our
inferences will often be subject to a very high degree of uncertainty!

Example—Qubit state: Consider a quantum experiment where measurements are performed
on a qubit in an unknown state θ = ρ. The state space Θ is thus the set of qubit density matrices,
conveniently represented by the Bloch ball, i.e. the unit ball in R3. In every run, a spin axis is
chosen uniformly at random from s ∈ {1, 2, 3}, and the eigenprojections

P
(s)
± :=

1

2

(
I± σs

)

are measured. Thus

p
(
x = (s,±)|ρ

)
=

1

3
tr ρP±

s . (2)

Given the observation (1,+), (1,+), (2,+), (2,+), (3,+), (3,+), what is inferable about ρ?

3.1 Observables and the quantum design problem

The third example underscores that, in order to treat data from quantum experiments in the
framework of classical statistics, we need to choose which observables to measure. In classical
statistics, the study of how to set up an experiment in such a way as to maximize the expected
amount of information gained is called design theory1. In the classical setting, design theory
less prominent, as often, the choice of which data to observe is dictated by practical reasons.
For quantum estimation problems, it is an unavoidable task – and many seemingly contradic-
tory results in quantum estimation theory differ in implicit limitations imposed on the class of
observables that are admitted.

When we wrote down the statistical model, Eq. (2), we assumed that the physical measurement
apparatus was described by Pauli matrices. In reality, there is typically a significant degree
of uncertainty about the proper quantum mechanical representation of the observables. Such
systematic (as opposed to statistic) uncertainties are not directly modeled in the theory. There
are a number of ways to treat this problem:

1 A classical example of design theory are weighing problems, where the weight of a collection of small objects
is to be determined. It turns out that the individual weights can be estimated to better precision if the objects are
weighted in different groups, rather than individually. The problem of how to optimally divide up the weights
led to the study of Hadamard matrices, i.e. matrices with orthogonal columns that have entries from ±1. That’s
where quantum computing’s Hadamard gate got its name from. Also, spherical and unitary designs, as used e.g.
in randomized benchmarking are named so because they generalize combinatorial constructions that originated in
design theory of classical statistics.
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To calibrate the detectors, one can alternate between estimating reference states and observ-
ables, until one reaches a description that is consistent with the experimental data. Indeed, note
that the Born rule trρP which assigns a probability to a quantum state and a positive operator-
valued measure (POVM) [5] element P treats ρ and P symmetrically. Thus, if one knows how
to prepare a number of states ρi, one can set Θ to be the space of POVM elements and reach an
estimate for P . This strategy is implemented e.g. in Ref. [6].

Some authors have proposed to include both the states and the observables into the parameter
set Θ and try to fit them simultaneously from observations [7,8]. Because the Born rule is then a
quadratic function (rather than linear, if either the state of the observable are fixed), this makes
the problem considerably harder from a computational point of view. It also underscores the
fact that there are gauge degrees of freedom in the joint description. Indeed, any change of basis

ρ �→ UρU †, P �→ UPU †

will leave the physical predictions invariant, which implies that there will always be a large
family of pairs that fit the data equally.

In experimental setups, there is often one distinguished basis in which measurements are com-
paratively easy to perform and to which one can, with high confidence, assign a mathematical
model. For example, in quantum optics, photon counters measure in the Fock basis. In ion traps,
electronic eigenstates can be identified if they scatter laser light of a distinguished frequency.
Measurements in other bases are then implemented by first performing a unitary rotation, and
then measuring in the distinguished basis. The uncertainty about the description of general
observables thus stems from uncertainty about which time evolution is actually being imple-
mented in the system, which will typically be noisy and whose interactions are not perfectly
characterized.

The discussion emphasizes an unfortunate, but unavoidable consequence of the Born rule:
States and observables are defined only in relation to each other, so the idea of estimating just
one of the two is potentially ill-defined.

4 Point estimation

A function that takes observational data x1, . . . , xn and maps it to an

θ̂(x1, . . . , xn) ∈ Θ

is called a point estimator or just estimator. Finding and characterizing good estimators is
a major topic in orthodox statistics. Estimators are usually denoted by a “hat”, as in θ̂. This
clashes with the convention in the quantum literature to use the hat symbol to signify an operator
corresponding to classical (un-hatted) quantity. For the purpose of these notes, we adopt the
statistics convention.

There are a number of optimality criteria and heuristic principles that can be used in order to
choose estimators. However, as alluded to in the introduction, one challenge of the orthodox
framework is that in general, no distinguished estimator exists. This ambiguity is particularly
pronounced for high-dimensional problems (like quantum state estimation). As the issue is
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less severe for the estimation of scalars, beginners, confronted with simple, one-dimensional
textbook examples, might easily underestimate the conceptual difficulty!

Before presenting a more general theory, let’s discuss some natural examples.

4.1 Sample means

The most natural estimator for the probability θ of the coin coming up heads is the sample mean
or empirical mean – i.e. the proportion of “head events” seen in the data:

θ̂ =
1

n
|{i | xi = H}| = # of heads seen

trials
.

This is a good estimator.

For the tank example, taking a “mean” over one data point seems unnatural. But we can still
define an estimator in analogy to the previous example. Note that the expected value of the
serial number given a total of N vehicles is

EN [X] =
1

N

N∑
x=1

x =
N + 1

2
. (3)

Thus it is natural to choose N̂ such that the expected value matches the empirical mean (of a
single observation):

N̂ = 2X − 1. (4)

This seems reasonable.

Applying these methods to the qubit state example gives an estimator that is both very important
and somewhat problematic. First, recall that the Pauli matrices for an orthogonal basis for the
space of 2× 2-matrices w.r.t. the trace inner product:

1

2
trσiσj = δij i, j = 0, . . . 3,

where we have set σ0 = I, the identity matrix. It follows that we can expand

ρ =
1

2

3∑
i=0

ci σi, ci = tr ρσi.

In other words, the expansion coefficient ci is just the expected value of spin measurements
along the i-th axis. We can use an empirical means estimator

ĉi :=
# (+1 outcomes for σi) −# (−1 outcomes for σi)

# times σi has been measured

for the ci, and set

ρ̂ =
1

2
+

1

2

3∑
i=1

ĉi σi.
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In quantum estimation, ρ̂ is often called the direct inversion estimator, as it consists of inverting
the linear map from expansion coefficients of ρ with respect to a matrix basis to observable
quantities. While the empirical mean estimator works well for the simple coin example, the
quantum version has a major drawback: Due to statistical fluctuations, the estimates can have
negative eigenvalues (Fig. 1). In this case, they do not represent physical states.

Fig. 1: Left: The direct inversion estimator can give non-physical estimates. Shown is a cut
through the equatorial plane of the Bloch sphere. The red region is a disk of radius one, corre-
sponding to density matrices with non-negative eigenvalues. If one estimates each coordinate
individually, statistical fluctuations can cause the estimate to lie outside of that disk. Right:
The effect is worse for very pure states in high dimensions – precisely the regime of interest to
quantum information. Take a pure density matrix, which, in its eigenbasis, can be written as a
matrix that is zero save for a 1 in the upper-leftmost entry. Any perturbation that is not positive
semi-definite in the red square of the figure will cause negative eigenvalues to appear. For high
dimensions, this happens with probability approaching 1. A detailed analysis can be found in
Ref. [9].

This causes a number of problems. For example, quantities that are defined only for density
matrices – such as the von Neumann entropy

S(ρ) = −
∑
i

λi log λi, {λi} eigenvalues of ρ

can therefore not be estimated as Ŝ = S(ρ̂) (which would be a plug-in or substitution estimator).
How to handle the positivity constraints inherent to quantum formulations is a major issue in
the theory, and we will come back to it in Sec. 7.

4.2 Maximum Likelihood Estimation

A general estimation strategy is to pick the model that maximizes the likelihood function given
the data

θ̂ = argmaxθ L(θ). (5)

This is the widely-used maximum likelihood estimator (MLE). It selects the model under which
the probability of seeing the data would be highest.

In everyday English, likely and probable can be used synonymously. One might thus be tempted
to interpret the MLE estimate as the model choice that is “most probable” to be correct given the
data. While common, this interpretation is unjustified! Indeed, as indicated in the introduction,
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in orthodox statistics, one does not associate a probability distribution with the parameter θ.
It is therefore not just a numerical, but a categorical mistake to interpret the likelihood as a
probability, or to assign any probability at all to a choice of θ. To me, it seems deeply regrettable
that the important function θ �→ p(x|θ) carries a name that strongly suggests a meaning that one
cannot assign to it.2

Still, the MLE estimator is extremely useful for a number of reasons. For one, the rule (5) can
be directly applied to any statistical model. Also, under reasonable assumptions, one can use
the Cramer-Rao bound to show MLE is optimal in the asymptotic setting (at least away from
the boundary of parameter space).

Let us try to get a feeling for it by looking at examples.

Start with the loaded coin. Assume h of n trials gave heads. The likelihood is

L(θ) = θh (1− θ)n−h.

Maximizing it is equivalent to maximizing its logarithm, which tends to be better behaved.
Compute:

∂ logL(θ)
∂θ

=
h

θ
− n− h

1− θ
=

h− nθ

θ(1− θ)
,

which vanishes for θ = h/n. Thus, the MLE estimator coincides with the empirical means
estimator considered before. Nice! (Don’t get used to it).

For the German tanks, the maximum likelihood estimate is trivially found to be

N̂ = x. (6)

So if you find tank number 123, you conclude that there are 123 tanks. Not an answer that is
likely (probable?) to boost stats funding after the war. So the claimed asymptotic optimality of
the MLE estimator does not seem to extend to small sample sizes.

For quantum problems, MLE does well and is commonly used by practitioners. The main reason
is that, by definition, it only returns estimates that are actually elements of Θ – e.g. density
matrices. MLE thus avoids the negative eigenvalue problem of the direct inversion method. A
generalization of the argument used in the coin example (detailed e.g. in Ref. [12]) shows that

2 The nomenclature goes back to a paper by statistics pioneer R. Fisher that appeared 100 years ago. For a discus-
sion of its impact and some of the ensuing debates, see e.g. Ref. [10].

One reason why I am going on and on about this topic is a bizarre encounter I had during an international
conference on quantum estimation several years ago. With most of the then-active community in the audience, a
highly distinguished veteran of the field was imploring the younger researchers in the audience to stop thinking
about new estimators. Fisher had already conclusively settled the argument by the 1930s. He put up slides with
quotes by Fisher and himself, making some of the untenable claims I quote above. The pull of the name was
stronger than any doubt we tried to sow in his mind about his preferred interpretation. A postdoc from his group
later mentioned in private that he, too, had long been trying to convince his boss – to no avail. What a testament to
the effectiveness of scientific branding!

Given the central role of statistical methods for many actually important fields (compared to quantum
information—like pharmaceutical research), and the problems caused by their misuse (as witnessed by the repli-
cation crisis [11]), I wonder how much damage to human understanding and wealth has been caused by seemingly
innocuous naming decisions.
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It is therefore not just a numerical, but a categorical mistake to interpret the likelihood as a
probability, or to assign any probability at all to a choice of θ. To me, it seems deeply regrettable
that the important function θ �→ p(x|θ) carries a name that strongly suggests a meaning that one
cannot assign to it.2

Still, the MLE estimator is extremely useful for a number of reasons. For one, the rule (5) can
be directly applied to any statistical model. Also, under reasonable assumptions, one can use
the Cramer-Rao bound to show MLE is optimal in the asymptotic setting (at least away from
the boundary of parameter space).

Let us try to get a feeling for it by looking at examples.

Start with the loaded coin. Assume h of n trials gave heads. The likelihood is

L(θ) = θh (1− θ)n−h.

Maximizing it is equivalent to maximizing its logarithm, which tends to be better behaved.
Compute:

∂ logL(θ)
∂θ

=
h

θ
− n− h

1− θ
=

h− nθ

θ(1− θ)
,

which vanishes for θ = h/n. Thus, the MLE estimator coincides with the empirical means
estimator considered before. Nice! (Don’t get used to it).

For the German tanks, the maximum likelihood estimate is trivially found to be

N̂ = x. (6)

So if you find tank number 123, you conclude that there are 123 tanks. Not an answer that is
likely (probable?) to boost stats funding after the war. So the claimed asymptotic optimality of
the MLE estimator does not seem to extend to small sample sizes.

For quantum problems, MLE does well and is commonly used by practitioners. The main reason
is that, by definition, it only returns estimates that are actually elements of Θ – e.g. density
matrices. MLE thus avoids the negative eigenvalue problem of the direct inversion method. A
generalization of the argument used in the coin example (detailed e.g. in Ref. [12]) shows that

2 The nomenclature goes back to a paper by statistics pioneer R. Fisher that appeared 100 years ago. For a discus-
sion of its impact and some of the ensuing debates, see e.g. Ref. [10].

One reason why I am going on and on about this topic is a bizarre encounter I had during an international
conference on quantum estimation several years ago. With most of the then-active community in the audience, a
highly distinguished veteran of the field was imploring the younger researchers in the audience to stop thinking
about new estimators. Fisher had already conclusively settled the argument by the 1930s. He put up slides with
quotes by Fisher and himself, making some of the untenable claims I quote above. The pull of the name was
stronger than any doubt we tried to sow in his mind about his preferred interpretation. A postdoc from his group
later mentioned in private that he, too, had long been trying to convince his boss – to no avail. What a testament to
the effectiveness of scientific branding!

Given the central role of statistical methods for many actually important fields (compared to quantum
information—like pharmaceutical research), and the problems caused by their misuse (as witnessed by the repli-
cation crisis [11]), I wonder how much damage to human understanding and wealth has been caused by seemingly
innocuous naming decisions.
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if the direct inversion estimator gives a physical result, then it equals the MLE estimate. If the
direct inversion is outside the physical region, MLE will “project” to a point on the boundary.

It is not obvious how to implement to maximization (5) in a computationally efficient manner.
The log likelihood function for for quantum state estimation from independent measurements
is convex: If Pi denotes the POVM element of the ith measurement outcome, we find

logL(ρ) =
n∑

i=1

log trρPi,

which is convex, as the logarithm of a linear function is convex, as is the sum of convex func-
tions. Convex functions defined on a convex domain (like the set of density matrices) attain
their maximum at the boundary. What is more, finding the maximum of a convex function is
often a computationally hard problem. In the case of quantum estimation, iterative algorithms
for maximizing the log likelihood have been developed, c.f. Ref. [13]. While I am not aware
of a rigorous bound on the number of steps required for convergence, these methods perform
well in practice, even if one uses a highly non-linear parameterization for the state (c.f. e.g.
Ref. [14]).

5 Uncertainty Quantification

As demonstrated forcefully by the tank example, estimation procedures must give information
not only about a “best guess” θ̂ for the unknown parameter, but must also quantify and convey
information about the degree of uncertainty that remains about its true value. Practitioners need
access to an uncertainty measure in order to gauge their trust in the result. Designers of statisti-
cal methods can use uncertainty information to rank estimators: The simple idea (though often
flawed in practice, see below) is to reject an estimator if there is another one that consistently
provides more certain estimates.

5.1 Variance, bias, risk

The most common measure of uncertainty used in physics publication is the mean error. It is
what the methods (like the error propagation formula) taught in undergraduate lab courses are
aimed at estimating. In plots in physics publications, the error bars usually indicate this value.
Here’s the idea, first for the case of a scalar variable Θ ⊂ R: For a given true value θ, the
observations X1, . . . , Xn are random, and thus so is the estimate θ̂(X1, . . . , Xn). We associate
three quantities with the random variable θ̂:

• The expected mean squared error or expected loss

Eθ

[
(θ̂ − θ)2

]
.

• The variance

Varθ[θ̂] = Eθ[(θ̂ − Eθ[θ̂])
2] = Eθ[θ̂

2]− Eθ[θ̂]
2. (7)
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• The bias

Eθ

[
θ̂ − θ

]
. (8)

An estimator is unbiased if the bias vanishes for all true values θ. For unbiased estimators,
Eq. (7) shows that variance and mean squared error are the same.

Fig. 2: The mean squared error or variance Varθ[θ̂] of the MLE estimator for the coin over θ.

Some examples. All estimators from Sec. 4.1 are unbiased. In fact, for the tank problem, we
explicitly constructed the estimator by demanding that EN [N̂ ] = N . To compute the variance
of the coin estimator, we write it as

θ̂(X1, . . . , Xn) =
1

n

n∑
i=1

θ̂(Xi)

and use the standard fact that for independent variables, the variance of the sum is the sum of
the variances to find

Varθ[θ̂(X1, . . . , Xn)] = nVarθ[θ̂(X)] = n
(
Eθ[θ̂

2]− Eθ[θ̂]
2
)
=

p− p2

n
=

p(p− 1)

n
,

i.e. an inverted parabola that vanishes for p = 0, 1 and assumes its maximum of 1/(4n) at
p = 1/2 (Fig. 2). Taking the square root, we recover the familiar 1/

√
n decay for the standard

error in terms of the number of experiments. The sample mean estimator for the tank problem
has variance

VarN [2X − 1] = 4VarN [X] = 4EN [X
2]− (N + 1)2 =

4

N

N∑
x=1

x2 − (N + 1)2 =
N2 − 1

6
,

so that the standard error is roughly N/
√
6.

The main takeaway from these calculations is that we do not know the standard error, unless we
know the true value θ! It seems like we have encountered a cyclical dependency. To estimate the
uncertainty in θ, we need θ, but we can’t be sure how well we know it until we have estimated
its uncertainty. To break out of this cycle, one estimates Var[θ̂] directly from the data.
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The simplest first guess would be the substitution estimate

V̂arθ[θ̂] = Varθ̂[θ̂]. (9)

For large sample size, this is not altogether bad, but it tends to underestimate the error (Why?
Hint: the curve in Fig. 2 is concave). For one-dimensional problems, there are often correction
formulas available which lead to a (nearly) unbiased estimator for the standard error. You may
recall the 1/(n−1) factors in the definition of the sample variance from your lab course, which
achieve unbiasedness.

For higher-dimensional problems – like quantum estimation – the theory is much more involved.
We will consider the relevant generalizations next.

5.1.1 Distance measures and loss functions for quantum estimation

The first step is to decide which distance measure to use when generalizing the loss function
(θ̂ − θ)2. Many distance functions for quantum states and channels are available, which have
different interpretations [5]. For example, if the goal is to estimate a density matrix, the trace
distance

dtr(ρ, σ) =
1

2
‖ρ− σ‖tr =

1

2
tr |ρ− σ| = 1

2

∑
i

λi(ρ− σ), λi(A) := i-th eigenvalue of A

(10)

measures the optimal single-shot statistical distinguishability and is thus often advocated as a
well-motivated distance measure. (It is the quantum version of the total variation distance used
in classical probability theory). In practice, the 2-norm

d2(ρ, σ) = ‖ρ− σ‖2 = tr(ρ− σ)2 (11)

(also Euclidean norm, Frobenius norm, or �2-norm) if often used, mainly for the pragmatic rea-
son that it is much easier to compute. Indeed, Eq. (11) is just a sum of squares, whereas Eq. (10)
requires one to diagonalize a matrix in order to find the singular values. (In the matrix product
state representation employed in Ref. [14] for quantum estimates, the 2-norm is essentially the
only distance measure that can be computed at all).

As an aside, I personally believe that the 2-norm is actually a well-motivated measure to use to
quantify the risk of an estimator, in particular in quantum technology applications (this might
be a non-standard view). Indeed, I would argue that the trace norm as a distance measure is too
pessimistic for diagnostic purposes and puts undue weight on the “tail of the spectrum”. The
reason is simple: the engineering goal will usually be to prepare a fairly pure state. For the
sake of the argument, consider an exactly pure target state ρ = |ψ〉〈ψ|. Assume that the actual
implementation is described by a density operator σ with a dominating eigenvector equal to |ψ〉,
a second large eigenvector equal to |ψ′〉 and then a long tail of small eigenvectors. Clearly, from
an engineering perspective, we would conclude that there is one dominating noise source that
gives rise to |ψ′〉 and that needs to be addressed in order to rectify the deficiency of the device.
The long tail represents miscellaneous small noise sources – but this type of information is
unlikely to be actionable. This lack of interpretability notwithstanding, the trace norm would
count the full sum of the tail eigenvalues toward the error. If there are two estimators which
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both correctly identify the main error source, but one misidentifies the tail, this latter estimator
would be assigned a significantly smaller power in terms of trace norm, even though it would
be equally useful for the application we have in mind.

As a real-world example, consider the photonic experiment in Ref. [15]. There, the design
goal was to create a six photon symmetric Dicke state. The reconstructed density operator has
essentially three eigenvectors: The target state, plus two components that can be attributed to
photon loss in the system. These findings can clearly be interpreted and do not assume any prior
hypotheses about the noise processes. Further small deviations in the tail of the density operator
have never been interpreted or led to improvements to the experimental setup.

5.1.2 Error estimation via resampling

How can we find the variance of the MLE estimator for quantum states? Consider the relevant
case of a true state θ = ρ = |ψ〉〈ψ|. As argued in the caption of Fig. 1, this means that
the direct inversion estimate will lie outside of the physical region with high probability, and
therefore, that the maximum of the likelihood function will be attained on the boundary. In
higher dimensions, the geometry of the boundary of state space close to a low-rank point is
fairly complex (no longer a ball as in the qubit case). It is therefore not to be expected that
analytical formulas can capture the fluctuations of the estimate.

One common solution used in many large-scale quantum estimation experiments is to resort
to numerical Monte Carlo algorithms that aim to simulate the sampling noise. For example, a
pioneering quantum estimation experiment was [16]. Uncertainty quantification was done via
Monte Carlo resampling, which, according to one of the authors, took significantly more time
to be performed than the physical experiment! Two popular methods go by the names of the
jackknife and the bootstrap method, respectively, names that emphasize their general utility and
the fact that few assumptions are required.

We sketch the basic ideas here. For a more thorough introduction, I recommend Chapter 5 of
Ref. [2].

The bootstrap is the analogue of the substitution estimator for the variance described in (9),
combined with a numerical evaluation of Varθ̂[θ̂]. Based on the data, one constructs an estimate
θ0 = θ̂(X1, . . . , Xn). Then, n further samples are produced on a computer, following the
distribution p(x|θ0). Let θ1 be the result of applying the estimator θ̂ to these synthetic data
points. Repeat the re-sampling process t times, to arrive at a collection of simulated results
θ1, . . . , θt. The bootstrap estimate of the uncertainty of θ̂ is then taken to be the empirical
variance of these θj .

The scheme is attractive, as it is completely general, and can be implemented on a computer
mainly by re-using the estimation code that has anyway been written. It comes with certain
asymptotic performance guarantees [2]. However, one can argue that the bootstrap is likely to
underestimate uncertainty, in particular for quantum estimation problems. (This is a heuristic
argument – I am not aware of a rigorous bound in the literature). Indeed, consider a true state
ρ that has a long tail of small eigenvalues, which are of the same order as, or smaller than the
statistical uncertainty. As in Fig. 1, we would then expect that about half the eigenvalues will
be negative for a direct inversion estimate, and therefore, that the maximum likelihood estimate
ρ̂ would have rank of only about half the dimension. The estimate is therefore expected to
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be too pure, and thus, the re-sampling process will produce less variation than a re-run of the
physical experiment. Based on the argument, the use of the bootstrap for quantum uncertainty
quantification therefore has to be carefully justified, to avoid too optimistic error estimates! (For
example, one could run computer simulations with known true state chosen to be close to the
one that is expected experimentally, and compare the actual risk with the bootstrap variance).

The jackknife simulates additional experiments not by using a first estimate, but by restricting
to randomly chosen subsets of the empirical data. Indeed, let θ̂i be the estimate produced
from samples X1, . . . , Xi−1, Xi+1, . . . , Xn, i.e. with the i-th data point omitted. One can then
prove [2] that (n− 1)2/n times the empirical variance of the θ̂i is a good asymptotic estimator
of the true variance. It is plausible to me that jackknife-based uncertainty estimators do not
suffer from the potential bias of the bootstrap described above. But again, I am not aware of a
general analysis and would therefore recommend computer studies to validate the method for
any particular use case.

5.2 Region estimation

Consider for simplicity a scalar quantity Θ ⊂ R, and fix some (unknown) true parameter θ.
Assume that under θ, the estimate θ̂ follows a Gaussian distribution centered at θ and with
standard deviation σ. Then the probability

Prθ
[
|θ̂ − θ| ≤ xσ

]
= erf(x/

√
2) (12)

that the estimate differs from the true value by no more than x standard deviations is given in
terms of the error function, which quickly converges to 1 as a function of x. Thus, e.g., the “5σ
standard” used in particle physics means that one only trusts estimators that give a wrong result
only one in

1

1− erf(5/
√
2)

� 1.7× 106

times. It is this interpretation that most practitioners will have in mind when they see an error
bar around a data point in the graph of a physics paper. Note that we assumed a Gaussian
distribution – a property that is not always justified and rarely ever checked. (Again, in quantum
estimation problems, true states close to the boundary of phase space will cause non-Gaussian
distributions of estimators, for the simple fact that a Gaussian function never vanishes and is
thus incompatible with compact parameter space.)

So, since we have a tendency of interpreting standard errors as confidence regions, we should
really directly devise estimators that output regions instead of point estimates, and that also
work in the absence of unfounded Gaussianity assumptions.

Formally, a confidence region C(X) is a region of the parameter space Θ that is selected based
on observed data X = X1, . . . , Xn. It should be large enough to provide sufficient coverage,
i.e. the true value θ must be contained in C with a given coverage probability 1− α:

Probθ[θ ∈ C(X)] ≥ 1− α ∀θ ∈ Θ. (13)

Simultaneously, the region should obviously be as small as possible, in order to be meaningful.
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A number of approaches are available for constructing confidence regions in quantum estima-
tion. One can use the re-sampling algorithms (bootstrap, jackknife) discussed above to create a
cloud of estimates and numerically find an ellipsoid enclosing a desired fraction of them. I am
not aware of a ready-to-use software implementation of this natural approach, but the open QIn-
fer software package [17] implements a similar logic in a Bayesian context. It could either be
used directly, or adapted to an orthodox paradigm. Several authors have argued for likelihood
ratio-based methods, where the confidence region around a maximum likelihood estimate is
chosen to include parameters of decreasing likelihood until the desired coverage is met [18,19].
Analytical bounds for the radius of trace-norm and Frobenius-norm balls that form confidence
regions are also available [20], which even have the property of achieving asymptotically opti-
mal size for any given rank of the density matrix (c.f. Sec. 7).

There is a Bayesian concept – credible regions – that fulfills a similar role to confidence regions
in orthodox theory. It is much easier to interpret, but, again, requires the specification of a prior
distribution. In any case, the Bayesian approaches to quantum state estimation tend to put more
of an emphasis on region estimation, so it pays to read e.g. [17, 21].

5.3 Interpretation

Confidence regions are closely related to hypothesis tests, and thus subject to the same potential
sources of confusion sketched in the introduction. In particular, the statement Eq. (13) says that
for a given value θ, the probability that an experiment will lead to θ �∈ C(X) is ≤ α. This is
distinct from a hypothetical statement of the form having seen the data X , the probability that
θ �∈ C(X) is ≤ α.

Let’s return to the example of a particle discovery in high-energy physics at the 5σ-level. The
particle either exists or it does not, and orthodox statistics does not assign a probability to it,
much less 1 − 1.7 × 10−7. But we should still have high confidence in the finding, as it was
obtained by a method that, whatever the truth, will be wrong no more than one in 1.7 × 107

times.

The Bayesian framework does quantify the certainty about the correctness of hypothesis in
terms of probabilities. The distinction is sometimes summarized as “orthodox methods deal
with the probability of the data given the model; while Bayesians can deal with the probability
of the model given the data”.

Similarly, the expected loss quantifies the squared deviation, when averaged over many hypo-
thetical runs of an otherwise identical experiment. It is a reasonable number to use – but keep
in mind that the average in its definition is not usually performed, so the direct operational
meaning of the number is not very clear.

6 Optimality criteria & “principles”

Which estimator should one use? Is there a principled reason for rejecting the ML estimator
(6) for the tank puzzle, which intuitively seems “too low” compared to the mean estimator (4),
which feels more reasonable?
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be too pure, and thus, the re-sampling process will produce less variation than a re-run of the
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Prθ
[
|θ̂ − θ| ≤ xσ

]
= erf(x/

√
2) (12)

that the estimate differs from the true value by no more than x standard deviations is given in
terms of the error function, which quickly converges to 1 as a function of x. Thus, e.g., the “5σ
standard” used in particle physics means that one only trusts estimators that give a wrong result
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1

1− erf(5/
√
2)

� 1.7× 106

times. It is this interpretation that most practitioners will have in mind when they see an error
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Probθ[θ ∈ C(X)] ≥ 1− α ∀θ ∈ Θ. (13)

Simultaneously, the region should obviously be as small as possible, in order to be meaningful.
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Analytical bounds for the radius of trace-norm and Frobenius-norm balls that form confidence
regions are also available [20], which even have the property of achieving asymptotically opti-
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times.

The Bayesian framework does quantify the certainty about the correctness of hypothesis in
terms of probabilities. The distinction is sometimes summarized as “orthodox methods deal
with the probability of the data given the model; while Bayesians can deal with the probability
of the model given the data”.

Similarly, the expected loss quantifies the squared deviation, when averaged over many hypo-
thetical runs of an otherwise identical experiment. It is a reasonable number to use – but keep
in mind that the average in its definition is not usually performed, so the direct operational
meaning of the number is not very clear.

6 Optimality criteria & “principles”

Which estimator should one use? Is there a principled reason for rejecting the ML estimator
(6) for the tank puzzle, which intuitively seems “too low” compared to the mean estimator (4),
which feels more reasonable?
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A number of optimality criteria and sundry principles have been developed for the purpose
of comparing and selecting estimation methods. This program is reasonably successful for
simple, one-dimensional models. But, as we will argue in this section, in higher-dimensional
cases relevant for quantum estimation, these guidelines are often not helpful. This leads to an
unsatisfactory conclusion: There is no unambiguous “optimal” or “best practice” or “general
purpose” scheme. Users will have to understand the trade-offs between various methods, and
will have to select one tailored to each given use case.

(However, I feel obliged to mention that in the tank case, one can show that the means estimator
has minimal risk among all unbiased estimators, for all possible values of N . In this sense, it
is objectively better than the MLE one, which we intuitively rejected. Glad this, at least, is
settled!)

6.1 Unbiased estimators

There seems to be a tendency to name statistical principles in such a way that makes them hard
to argue with – even if the formal definition does not adequately reflect the informal meaning
of the terms. We have already encountered this problem in the case of the likelihood function.
Here, we will find that the notion of unbiasedness is similarly problematic, in particular for
quantum problems.

By Eq. (8), an estimator θ̂ is unbiased if its expected value equals the true one Eθ[θ̂] = θ.
Nobody likes to be accused of being biased – so it’s natural to reject estimators whose bias does
not vanish, no?

To create some first doubt, note that, as argued in Sec. 5.3, the expectation value that appears in
the definition ranges over many hypothetical repetitions of an experimental procedure. As this
averaging is not usually performed in practice, it is therefore not clear that it has great relevance.

That’s a helpful realization, for the purpose of softening the blow that will come next. A slightly
disturbing result of Ref. [22] is a simple and elegant geometric argument showing that there are
no unbiased estimators that only return quantum states! The proof is reproduced in Fig. 3.

6.2 Optimal estimators

The various quantitative notions of uncertainty introduced in Sec. 5 suggest to look for “opti-
mal” estimators that reduce uncertainty as much as possible.

First we have to overcome a problem of orthodox statistics: One can easily construct two esti-
mators such that one of them performs better for some θ1, and the other one performs better for
another parameter θ2. Thus, the best we can hope for is a partial ordering, where an estimator is
considered worse if it is outperformed by another one for every θ ∈ Θ. (The situation is better
in the Bayesian setting, where one can order procedures by their average performance over the
prior distribution). An estimator that is dominated in this way is called inadmissible, as there
should be no reason to ever use it. (Another term whose everyday meaning will soon turn out
not to be defendable within the theory).

Disturbingly, the seemingly innocent notion of admissibility leads to highly counter-intuitive
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Fig. 3: There are no unbiased estimators of quantum states. Indeed, recall from basic convex
geometry that an extreme point of a convex set S is such that it cannot be written as a non-trivial
convex combination of elements of S. Pure states are extreme points of the convex set S of
density matrices. So suppose θ̂ is an unbiased estimator. Then by definition, Eρ[θ̂] = ρ. But
Eρ[θ̂] is a convex combination of all estimates that can occur due to random fluctuations when
performing a measurement on ρ (blue points). Thus we conclude that for all pure ρ, the estimate
θ̂ must be equal to ρ with probability 1. But this is impossible by the uncertainty principle. Note
for consistency that the proof fails when one tries to apply it to classical distributions. The ex-
treme points of the classical probability simplex are precisely the deterministic configurations,
for which indeed no randomness occurs.

consequences. This is demonstrated by Stein’s paradox, which we now sketch. Suppose the
aim is to estimate the mean θ of a scalar Gaussian variable X ∼ N(θ, 1) with variance 1
from a single observation. It is intuitive that θ̂ = X is a good estimator, and indeed, it is
admissible. Now assume that n ≥ 3 independent variables Xi ∼ N(θi, 1) are to be measured.
Say the temperature in Jülich, the caffeination level of a randomly chosen faculty member of
Princeton’s IAS, and the IQ of the last person to have entered Saint Peter’s Basilica in Rome
(all properly re-scaled to follow the indicated distribution). As these quantities have patently
no connection to each other, a well-behaved theory would confirm that it’s OK to estimate each
of these values independently, using the rule devised for the one-dimensional case. But... this
procedure is inadmissible! It is beaten by a so-called shrinkage estimator which, outrageously,
introduces dependencies between the estimates, but outperforms the more natural method for
every given set of true values θ ∈ R3!

Lesson learned: There is no simple criterion for selecting orthodox estimators for high-dimen-
sional problems. Case-by-case judgments will have to be made.

7 The role of positivity

What is the most important characteristic of quantum estimation problems, as compared to those
that occur more naturally in classical applications? In my opinion, the prevalence of positive
semi-definiteness constraints on quantum states and quantum evolution maps takes this role.
Taking them into account is often algorithmically and conceptually difficult, but can also lead
to significantly improvements in accuracy.

The geometry of the problem is shown in Fig. 4. To explain the idea, we consider the task of
characterizing a state ρ from a set of possibly informationally incomplete measurements whose
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Fig. 4: Geometry of optimal error regions. Quantum states are mapped by a measurement
matrix A to expectation values y. Conversely, confidence regions C for expectation values
give rise to confidence regions A−1(C) for quantum states. While possibly unbounded, the
intersection of A−1(C) with the set of states S+ will often be small. Error bars correspond e.g.
to the diameter of the intersection (green line).

results y follow a Gaussian distribution. If the dimension of the system is d, the state is an
element of Rd2 . The vector y of measurement outcomes belongs to Rm. The “measurement
map” sending states ρ to expected outcomes ȳ can be represented by an m× d2-matrix A such
that ȳ = Aρ. A, say, 95%-confidence region C for y can readily be found—in case of Gaussian
measurement statistics, it will be an easily described ellipsoid. A first 95%-confidence region
for ρ is the set of pre-images A−1(C) of C under the measurement map. However, in case of
informational incompleteness, A is singular, and the pre-image is unbounded (a cylinder with
ellipsoidal cross-section). This corresponds to infinite error bars.

At this point, we use the only prior information we have about any quantum experiment: phys-
ical states are non-negative. Thus we know that ρ must lie (with high confidence) in the inter-
section of the unbounded error region A−1(C) with the set of physical states. This intersection
is precisely the error region that follows from C and physicality, and it may become small, even
if A−1(C) is unbounded (Fig. 4). That such cases indeed exist follows from the theory of com-
pressed sensing as applied to density matrices [23, 24]. In particular, it was demonstrated that
for states of low rank, i.e. those with few non-zero eigenvalues, using positivity typically gives
rise to unbounded improvements of uncertainty. This is all the more relevant since, as argued
before, nearly-pure states are usually desired for quantum technology applications.

After the results of Ref. [23, 24] on the beneficial influence of the positivity constraint had
been obtained, it became a natural question whether there is a general-purpose algorithm that
can identify the smallest region in the intersection of a given uncertainty region and the set of
physical states. The answer is negative: As shown in Ref. [25], finding the diameter of the
intersection is NP-hard, i.e. computationally intractable. Only approximate solutions can be
obtained with efficient algorithms.

Thus, in summary, the positivity of states gives rise to the unique flavor and to the difficult
challenges of statistical problems in quantum estimation.
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Contents

1 Basics of Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Preventing measurements from happening . . . . . . . . . . . . . . . . . . . . . 8

3 A bit on real measurements: incomplete measurements . . . . . . . . . 9

4 The Bohr-Rosenfeld measurement of electromagnetic field mea-
surements in space and time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Creating entanglement by measurements on the vacuum . . . . . . . . 13

Lecture Notes of the 51st IFF Spring School “Quantum Technology” This is an Open Access publication distributed
under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited. (Forschungszentrum Jülich, 2020)
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A6.2 David P. DiVincenzo

1 Basics of Measurement

Let us first do the usual textbook story [1] of measurement. A qubit, say, is in some state
as time t evolves, |ψ(t)〉 = α(t)|0〉 + β(t)|1〉, where the complex state amplitudes α and β

(|α|2+ |β|2 = 1) are evolving smoothly in time in accordance with some Schrödinger equation,
in other words, according to some unitary time evolution operator U(t).

When we say “measure”, the rules change completely. Then reversible, unitary evolution is
suddenly, at the measurement time tm, replaced by stochastic, irreversible, projective evolu-
tion. The state “collapses” by projection either to |0〉 (with probability |α(tm)|2) or |1〉 with
probability 1− |α(tm)|2 = |β(tm)|2.

The arbitrariness of this prescription, the Born rule should bother you. What determines tm, and
why is the change instantaneous? Why is it stochastic? What if the initial state is entangled? I
will answer all these questions, but the last one is easiest, and allows me to introduce some of
the additional machinery of quantum theory. When we talk about entanglement, we are talking
about a multi-part quantum system. How do we describe the state of such a multi-part system?
Each system separately is described as a complex vector in a Hilbert space. Systems taken
together are described by a vector in the Kronecker product (⊗) space. This is a linear algebra
concept worth knowing about, see

https://en.wikipedia.org/wiki/Outer product#Contrast with the Kronecker product.

The vector for an unentangled state of two parts is just a Kronecker product of two vectors; an
entangled state is described by a linear combination of at least two such vectors.

In this linear algebra language, operators on these vectors are square matrices. Operators on
multi-part systems are also square matrices, constructed by the Kronecker product rule appro-
priate for matrices, this is covered in https://en.wikipedia.org/wiki/Kronecker product.

Now we can return to Born. For the single-system, the linear algebra prescription is to apply
a projection operator for each measurement outcome, namely Π0 =

(
1 0
0 0

)
and Π1 =

(
0 0
0 1

)
. My

example state from above we write in this notation as |ψ〉 =
(
α
β

)
. Then the probability of

outcome b (b = 0, 1) is given by the norm squared of the resultant vector:

pb = ‖Πb|ψ〉‖2. (1)

Now we can state generalized Born. Suppose we have a two-part state. A good example would
be the maximally entangled Bell state. It can be written as a linear combination of vectors
created by the Kronecker product; let us write this out once in long form:

|Ψ〉 = 1√
2

(
1

0

)
⊗

(
1

0

)
+

1√
2

(
0

1

)
⊗

(
0

1

)
. (2)

Suppose we measure only the first qubit. Generalized Born says that the projection operator on
the composite space is the Kronecker product of the projection on the measured operator with
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the identity operator 1, viz., Πb⊗1. The mathematical rule for the probabilities is then the same
as before, and gives the values p0 = p1 = 1/2 for the Bell state.

If the state has many parts and we only measure the first part, then the generalized Born op-
erators are Πb ⊗ 1 ⊗ 1 ⊗ ... ⊗ 1. If the state has N parts (so N − 1 unmeasured parts), this
is abbreviated Πb ⊗ 1⊗(N−1). A similar abbreviated notation is used for the tensor product of
identical state vectors. We apply this immediately for an important generalization of the Bell
state to N parts, called the Greenberger-Horn-Zeilinger (GHZ) state:

|ΨGHZ〉 =
1√
2

(
|0〉⊗N + |1〉⊗N

)
(3)

With this formalism in hand, I would like to take a first stab at the question, what really happens
when a measurement is performed? I will take the point of view that what is really fundamental
about quantum mechanics is unitary evolution, and that the concept of projective measurement
must be nothing other than a handy approximation.

We will say that measurement commences when the object to be measured (a qubit, in the
discussion I am about to give) interacts with another physical apparatus. This apparatus should
be macroscopic. Let us provisionally model it simply as a collection of many qubits. Let us
suppose that each apparatus qubit interacts with the original qubits such that their evolution is
that of a CNOT, with unitary matrix in the two qubit space




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0




. (4)

Fig. 1 shows this evolution in a circuit diagram. The horizontal axis is time – it does take time to
do a measurement! Formally the CNOTs can happen simultaneously (their matrices commute),
but even so, the interaction producing any single qubit cannot be instantaneous. We will come
back to this later.

Finally, suppose the apparatus qubits are prepared in a simple initial state, in fact |0〉⊗(N−1).
Then this evolution will result in a simple entangled state; if the original qubits is in an equal
superposition state, then the final state is exactly the GHZ state Eq. (3).

We will say that in this situation the measurement has taken place, and that the Born rule may be
applied. Why? We say that if N is large, the state of the qubit to be measured has been robustly
recorded in the apparatus. This has the consequence that it is easy to macroscopically “copy” the
outcome even further – as we like to say, “publish in the newspaper”. We have of course come to
the Schrödinger cat paradox – that the cat standing in for our apparatus, and then the newspaper
reporting its death or life, and all the people reading the newspaper, are in an ever larger GHZ
state. In this state, their state of knowledge (of the readers, that is) is perfectly correlated with
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Fig. 1: Quantum circuit of measurement: repeated “copying” of the quantum state with con-
trolled not (CNOT) operations.

the state of the original qubit. Therefore, it is a matter of computational economy to say that
the outcome is “DEAD” or “ALIVE” (as announced in the headline of the newspaper), with the
projective Born rule applied to the qubit. The probability factor is also the same as the norm
squared of the appropriate part of the GHZ state.

Since the only unknown in the GHZ state is the duplication factor N , it is this that must evolve
in time, as suggested by Fig. 1. It is interesting to inquire how it changes in time N(t). Before
the measurement starts, we can confidently say that N(0) = 1. In the figure, it is just a counter
summing up how many CNOTs have happened. It is interesting to inquire what happens to N(t)
in the actual thought experiment as laid out by Schrödinger.

Here is what Schrödinger said [2], interspersed with my interpretation as a measurement circuit:

One can even set up quite ridiculous cases. A cat is penned up in a steel chamber, along with
the following device (which must be secured against direct interference by the cat): in a Geiger
counter there is a tiny bit of radioactive substance, so small,...

I will simplify this “tiny bit” of substance to just one atom in an excited state. He actually
describes a more complicated situation, but I don’t think that my simplification loses anything
essential.

... that perhaps in the course of the hour one of the atoms decays, but also, with equal proba-
bility, perhaps none; ...
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I represent the one atom by one qubit; the 1 state is the metastable state, the 0 is the final state
after decay. But this decay emits an excitation (an α particle, say) into the environment. Let’s
represent this by one more qubit, 0 is empty environment, 1 is environment with one excitation.
We will interpret this decay as a unitary operation, which in the course of the hour would be the
transformation

Udecay =




1 0 0 0

0 1√
2

1√
2

0

0 −1√
2

1√
2

0

0 0 0 1




=




1 0 0 0

0

0

(
H

) 0

0

0 0 0 1




. (5)

The last part serves to define the 2× 2 Hadamard matrix H , which we will use later. We follow
Schrödinger’s description further:

...if it happens, the counter tube discharges...

This tells us that the evolution is not the pure unitary operation of Eq. (6), as it would be if the
atom were in interstellar space: the excitation released into the environment very soon reaches
the “counter”. Without knowing much about the inner workings of the counter, we can be
pretty confident that it very rapidly flips a whole lot of bits (e.g., a rush of electrons through a
detection circuit), which we can schematize as our CNOT network of Fig. 1. We might say that
this process happens continuously, and we will deal with this by saying that the decay evolution
is separated into many factors acting over a short period of time within the allotted hour:

|𝚿𝚿𝚿	

U𝜹𝜹							

|0⟩	
|0⟩	

|0⟩	

|0⟩	
|0⟩	

|0⟩	

|0⟩	

|0⟩	
U𝜹𝜹							

|0⟩	
|0⟩	

|0⟩	

|0⟩	
|0⟩	

|0⟩	

|0⟩	

U𝜹𝜹							

|0⟩	
|0⟩	

|0⟩	

|0⟩	
|0⟩	

|0⟩	

|0⟩	

Fig. 2: A quantum-ciircuit depiction of the steps of the indirect measurement performed in
Schrödinger’s thought experiment.

U δ
decay =




1 0 0 0

0 cos δ sin δ 0

0 − sin δ cos δ 0

0 0 0 1




(6)
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Note that if this evolution occurs repeatedly without disturbance, it will in a number of repeti-
tions equal to π

2δ
come to the Udecay above. But instead after every short evolution the excitation,

if emitted, propagates a short distance (schematized by the SWAP in Fig. y), and then a “record
is made”, that is, according to the action of the CNOT network:

|Ψ(δ)〉 = cos δ|10〉+ sin δ|00 1⊗n
0 〉 (7)

or after K stages of such interaction:

|Ψ(Kδ)〉 = cosK δ|10〉+
K−1∑
k=0

sin δ cosk δ|00 1⊗n
k 〉 (8)

The n new qubits represent the internal state of the counter; we might imagine that immediately,
this is nearly macroscopic, e.g., n ∼ 1018. In fact, the idea is that we get a fresh batch in every
small interval, that is, the signal comes in a particular window of time. This is the significance
of the subscript k in Eq. (8) (k = 0 in Eq. (7)). It should be understood that when an excitation
is not emitted into the environment, the counter qubits are not flipped, but they are still there;
therefore, the state in the first term of Eqs. (7) or (8) should be thought of as a shorthand for
|1 0⊗n〉.

Now Schrödinger proceeds further, and finally comes to the famous aspects of his thought
experiment:

...and through a relay releases a hammer which shatters a small flask of hydrocyanic acid. ...

At this point, this is just a bit of theatrics; nothing essential changes about the state anymore,
except that the record becomes “more macroscopic”, now involving everything in the enclosure,
even that cat. So, perhaps now n ∼ 1025. This is making the point that once the GHZ state has
reached macroscopic proportions, It is not hard to make it even more macroscopic, perhaps
by announcing the decay on loudspeakers worldwide, etc. Perhaps at this point n would be
1050. But nothing essential is changed about the measurement (but there can be a much longer
timescale process of erasure and forgetting, see the comment on Bennett’s work on the next
page).

Schödinger finishes ironically:

If one has left this entire system to itself for an hour, one would say that the cat still lives
if meanwhile no atom has decayed. The first atomic decay would have poisoned it. The ψ-
function of the entire system would express this by having in it the living and dead cat (pardon
the expression) mixed or smeared out in equal parts.

We have not imposed the “full hour” condition, which amounts to setting cos2K δ = 1/2. Using
this condition, we write the final “psi-function” (with Schrödinger’s flourish):

|Ψ(1/2)〉 = 1√
2
|1 0⊗n〉|LIVE〉+

K−1∑
k=0

√
ln 2

K
2−

k
2K |00 1⊗n

k 〉|DEAD〉 (9)
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We see that the theme which Schrödinger’s story focuses on is the every larger size of the
effective GHZ state. The N of Eq. (3) is, after the initiation of measurement, a very rapidly
growing function of time. While I have offered some speculation about how big N is in Eq.
(9), I would like to mention that there has been effort to give a formal definition of this N ,
referred to as the “cat size” [11]. The definition is given operationally: N is the maximum
number of subsets into which the “cat” could be subdivided, such that an ideal (mathematical)
measurement on each subset individually would yield, univocally, the correct measurement
outcome. More colloquially, it is given by the volume v of the smallest voxel in an MRI scan
of the cat such that each voxel makes it clear whether the cat is DEAD or ALIVE; then, N =

VCAT/v, with VCAT being the total volume of the cat. It would seem that N being the total
number of cells in the body of the cat would not be a bad guess.

In Eq. (9) the state has reached a condition that the probabilities of 0 and 1 for the original qubit
(the radioactive atom) are equal. But we see, and this is usually taken as one of the signature
features of measurement, that it is impossible to undo the measurement, meaning to turn the
qubit back into a coherent superposition of 0 and 1, 1/

√
2(|0〉 + |1〉). It is not strictly correct

that this transformation is impossible. There always exists a unitary transformation Uundo that
will rotate any state vector to any other state vector. Constructing such a transformation for the
state of Eq. (9) is extremely inconvenient, as it would involve interacting in an invasive way
with every degree of freedom of the cat and the rest of the apparatus.

C. Bennett [15] has pointed out that one can see that the undoing of the measurement is, at
another, more profound level, impossible. To explain his insight, we imagine that, unlike in
Schrödinger’s original story, the enclosure is out in the open. It is further imagined that some
light strikes the cat, and of the reflected light, some of it departs immediately into outer space.
Thus, some of the qubits needed for the undoing operation Uundo have left the area at the speed
of light; no material apparatus can possibly catch up with them and bring them back. With
advance planning one could surround the entire earth with mirrors, but barring this, the parts
necessary to undo the measurement are irretrievably gone. One can make a similar, but perhaps
less compelling, story of the excitations that travel inward, that is, into the deep earth.

Bennett further observes that while the measurement cannot be undone, it is quite possible for
the outcome of a completed measurement to be lost, again by the expedient of the departure of
some quanta into outer space. We imagine that a measurement process has brought us to Eq.
(8). Then the whole apparatus is destroyed, or maybe just falls apart due to age. (Let’s leave
the cat out of this.) The destruction per say does not destroy the record, to the extent that it is
just a unitary transformation on the full state. But if then some quanta escape into space, then
the information becomes even in principle not reconstructable on earth. Bennett surmises that
this is the status of, e.g., books written in antiquity that have been lost.

I will just note here that the (relatively rare) cases where a classical record lasts for a long time is
dealt with in the theory of quantum Darwinism [7]. Many facts about quite comment real-world
observations have been explained with this theory [8, 9].
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of the subscript k in Eq. (8) (k = 0 in Eq. (7)). It should be understood that when an excitation
is not emitted into the environment, the counter qubits are not flipped, but they are still there;
therefore, the state in the first term of Eqs. (7) or (8) should be thought of as a shorthand for
|1 0⊗n〉.

Now Schrödinger proceeds further, and finally comes to the famous aspects of his thought
experiment:

...and through a relay releases a hammer which shatters a small flask of hydrocyanic acid. ...

At this point, this is just a bit of theatrics; nothing essential changes about the state anymore,
except that the record becomes “more macroscopic”, now involving everything in the enclosure,
even that cat. So, perhaps now n ∼ 1025. This is making the point that once the GHZ state has
reached macroscopic proportions, It is not hard to make it even more macroscopic, perhaps
by announcing the decay on loudspeakers worldwide, etc. Perhaps at this point n would be
1050. But nothing essential is changed about the measurement (but there can be a much longer
timescale process of erasure and forgetting, see the comment on Bennett’s work on the next
page).

Schödinger finishes ironically:

If one has left this entire system to itself for an hour, one would say that the cat still lives
if meanwhile no atom has decayed. The first atomic decay would have poisoned it. The ψ-
function of the entire system would express this by having in it the living and dead cat (pardon
the expression) mixed or smeared out in equal parts.

We have not imposed the “full hour” condition, which amounts to setting cos2K δ = 1/2. Using
this condition, we write the final “psi-function” (with Schrödinger’s flourish):

|Ψ(1/2)〉 = 1√
2
|1 0⊗n〉|LIVE〉+

K−1∑
k=0

√
ln 2

K
2−

k
2K |00 1⊗n

k 〉|DEAD〉 (9)
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We see that the theme which Schrödinger’s story focuses on is the every larger size of the
effective GHZ state. The N of Eq. (3) is, after the initiation of measurement, a very rapidly
growing function of time. While I have offered some speculation about how big N is in Eq.
(9), I would like to mention that there has been effort to give a formal definition of this N ,
referred to as the “cat size” [11]. The definition is given operationally: N is the maximum
number of subsets into which the “cat” could be subdivided, such that an ideal (mathematical)
measurement on each subset individually would yield, univocally, the correct measurement
outcome. More colloquially, it is given by the volume v of the smallest voxel in an MRI scan
of the cat such that each voxel makes it clear whether the cat is DEAD or ALIVE; then, N =

VCAT/v, with VCAT being the total volume of the cat. It would seem that N being the total
number of cells in the body of the cat would not be a bad guess.

In Eq. (9) the state has reached a condition that the probabilities of 0 and 1 for the original qubit
(the radioactive atom) are equal. But we see, and this is usually taken as one of the signature
features of measurement, that it is impossible to undo the measurement, meaning to turn the
qubit back into a coherent superposition of 0 and 1, 1/

√
2(|0〉 + |1〉). It is not strictly correct

that this transformation is impossible. There always exists a unitary transformation Uundo that
will rotate any state vector to any other state vector. Constructing such a transformation for the
state of Eq. (9) is extremely inconvenient, as it would involve interacting in an invasive way
with every degree of freedom of the cat and the rest of the apparatus.

C. Bennett [15] has pointed out that one can see that the undoing of the measurement is, at
another, more profound level, impossible. To explain his insight, we imagine that, unlike in
Schrödinger’s original story, the enclosure is out in the open. It is further imagined that some
light strikes the cat, and of the reflected light, some of it departs immediately into outer space.
Thus, some of the qubits needed for the undoing operation Uundo have left the area at the speed
of light; no material apparatus can possibly catch up with them and bring them back. With
advance planning one could surround the entire earth with mirrors, but barring this, the parts
necessary to undo the measurement are irretrievably gone. One can make a similar, but perhaps
less compelling, story of the excitations that travel inward, that is, into the deep earth.

Bennett further observes that while the measurement cannot be undone, it is quite possible for
the outcome of a completed measurement to be lost, again by the expedient of the departure of
some quanta into outer space. We imagine that a measurement process has brought us to Eq.
(8). Then the whole apparatus is destroyed, or maybe just falls apart due to age. (Let’s leave
the cat out of this.) The destruction per say does not destroy the record, to the extent that it is
just a unitary transformation on the full state. But if then some quanta escape into space, then
the information becomes even in principle not reconstructable on earth. Bennett surmises that
this is the status of, e.g., books written in antiquity that have been lost.

I will just note here that the (relatively rare) cases where a classical record lasts for a long time is
dealt with in the theory of quantum Darwinism [7]. Many facts about quite comment real-world
observations have been explained with this theory [8, 9].
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Fig. 3: A modification of the measurement circuit of Fig. 1. The specific pre-entanglement of
the environment, paradoxically, prevents any production of useful copies of the measurement!

2 Preventing measurements from happening

It would appear that the idealization of Fig. 1, the repeated applications of CNOTs, is the most
efficient way to build up a measurement, and we feel that something like this is going on all
the time in natural processes that produce a macroscopic “cat size”. But further theoretical
analysis shows something quite different could happen. Fig. 3 shows a modification of the
measurement circuit. The only difference is that the initial environment, rather than itself being
in the unentangled |0〉⊗N state, is subject to a short series of interactions, viz., the depth-5 circuit
shown (repeated down the line of N qubits). This makes the environment somewhat entangled,
but you might imagine that it still effectively consists of a set of disconnected parts, since there
is no time for a signal to propagate very far down this line of N qubits.

Nevertheless, there is an amazing fact about this operation: after the N CNOTs that we thought
would create the GHZ state, the cat number is still 1, no matter how large N is! That means
that an ideal measurement on even N − 1 of the environment qubits reveals nothing about the
original qubit – it remains in an entangled state with the one remaining qubit. This situation, of
arranging conditions such that it is very hard to measure a qubit, is connected with the possibility
of quantum error correction codes – qubit which are hard for the environment to measure are
also hard for the environment to decohere. Quantum states that have error correction power are
closely related to the state here, in that they are both described by the “stabilizer theory”, about
which I will say no more here.

This fact, that a straightforward “preparation” of the environment can result in a big alteration
of the dynamics of measurement, is a rather new observation, only coming with the advent of
quantum information theory. The multi-qubit state we have introduced is called the cluster state,
[10] which has many interesting properties and roles in the theory of quantum computation.
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While “easy” to prepare from the theoretical point of view, it does not occur naturally as far
as we know, and will require the advent of reliable quantum computers to make its creation
routine.

3 A bit on real measurements: incomplete measurements

I would like to come to few more technical things, of interest in current work. Let us go back
to a single qubit, and to the simplest scenario outlined in Eq. (1). It is understood that in a
setting of indirect measurement, the measurement operators need not be projectors. Actually,
Schödinger’s cat experiment is such an indirect measurement, and the following formalism
could be applied to it. In the setting of indirect measurement, outcome a can be associated with
a general measurement matrix Ma. Ma is not a projector, is not Hermitian, and is not unitary. If
outcome a is obtained, state |ψ〉 is transformed via a linear transformation to the unnormalized
state

Ma|ψ〉. (10)

The probability of this outcome is ||Ma|ψ〉|| = 〈ψ|M †
aMa|ψ〉. We alternatively consider the

measurement to be the nonlinear transformation ending in the normalized state

Ma|ψ〉
||Ma|ψ〉||

. (11)

The only constraint on Ma comes from completeness, or in other words, the necessity for the
sum of all probabilities to be one. This gives

∑
a

M †
aMa = 1. (12)

The constraint that this puts on any individual measurement operator is

M †
aMa ≤ 1, (13)

equality only occurring in the trivial case of only one outcome, and Ma being ordinary unitary
evolution.

Given this simple extension of measurement theory, I want to jump to a rather sophisticated
application of these simple equations. This will involve a description of a very important mea-
surement in quantum technology, which is the homodyne measurement. We will see that this is
covered by the discussion just given, with the added feature that the measurement is repeated
over and over. Such repetition is completely uninteresting in the case of projective measure-
ment; a second application of the projector gives no further change compared with the first
application. But the interesting, and realistic, case is one in which any one application is un-
informative, so that a good measurement only results from many applications. Uninformative
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will means that all (or most) of the operators Ma are close to being proportional to the identity
operator,

Ma ≈ c1, (14)

for some constant |c| < 1.

Homodyne measurement is usually given a rather lengthy physical explanation, which can be
found in many places (e.g., Wiseman and Milburn) [12] . But I would like to jump right to a
mathematical hypothesis offered by Gambetta (his Eq. (7.105) [13]), which permits us to see
immediately that this physical measurement satisfies the equations given above. Gambetta’s
hypothesis is

M̂I =

(
dt

2π

)1/4

exp(−I2dt/4){1− [iĤdt−√
γIL̂dt+

1

2
γL̂†L̂dt]} (15)

We have adopted two points of Gambetta’s notation: we now put hats over operators on the
Hilbert space, and the measurement outcome is now labeled I . The operator L̂ determines the
measurement that is being done, for standard heterodyne measurement it is a photon destruction
operator, but we will see other operators in the following. The outcome I is now understood
to be real-valued, with any value between −∞ to ∞, and we see that the measurement has
an infinitesimal prefactor that is a function of the time differential dt. Of course, the gaussian
prefactor strongly suppresses Is far outside the range −1/

√
dt � I � 1/

√
dt.

Fractional powers of infinitesimals are probably unfamiliar to you. But you can confirm that
these peculiar forms are necessary in order to satisfy the continuous-valued form of the com-
pleteness relation, ∫ ∞

−∞
M̂ †

I M̂IdI = 1, (16)

with corrections only at order dt2. We will shortly see that the stochastic calculus, or the Ito cal-
culus, is needed to describe the time evolution under repeated application of this measurement;
but I will mention that one Ito rule is needed to arrive at Eq. (16), namely the replacement of
the stochastic quantity I2dt by its leading-order expectation value 1.

Let me proceed on immediately to discuss the result of repeated application of Eq. (15). We
assume that in each successive interval dt of time that measurement outcome I1, I2, ... Ik is
obtained. Then, as Gambetta writes (his Eq. (7.42)), the resultant wavefunction is

|ψI(t)〉 =
M̂Ik(t, t− dt)M̂Ik−1

(t− dt, t− 2dt)...M̂I1(t0 + dt, t0)|ψ(t0)〉
N

. (17)

N is a factor to keep the final state normalized. Of course, the numerator of this expression
has very tiny norm (of order dtk/4), reflecting the fact that to get any particular sequence of
outcomes I is highly unlikely. Taking one step of this normalized evolution, Gambetta shows
that the evolution is given by a Schrödinger-like equation:

d|ψI(t)〉 =
[
−iĤdt+

√
γ(L̂− 〈L̂+ L̂†〉t/2)(dW +

√
γ〈L̂+ L̂†〉tdt)

−γ/2

(
L̂†L̂+ L̂〈L̂+ L̂†〉t −

3

4
〈L̂+ L̂†〉2t

)
dt

]
|ψI(t)〉. (18)
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This equation introduces a rescaled version of the Gaussian random variable I , in the form of
the Wiener increment dW , another Gaussian random variable with mean 0 and variance dt. The
notation 〈...〉t denotes the diagonal matrix element of the operator for state |ψI(t)〉. Note that
this makes the evolution equation nonlinear; its nonlinearity arises entirely from the normalizing
factor N in Eq. (17).

Note that the stochastic Schrödinger equation of Eq. (18) can be extended to the stochastic
master equation:

dρ̂(t) = −i[Ĥ, ρ̂(t)]dt+ γD[L̂]ρ̂(t)dt+
√
ηγH[L̂]ρ̂(t)dW, (19)

D[L̂]ρ̂ ≡ L̂ρ̂L̂† − 1
2
(L̂†L̂ρ̂+ ρ̂L̂†L̂), (20)

H[L̂]ρ̂ ≡ L̂ρ̂+ ρ̂L̂† − Tr[(L̂+ L̂†)ρ̂]ρ̂ = L̂ρ̂+ ρ̂L̂† − 〈L̂+ L̂†〉ρ̂. (21)

Eq. (19) contains the new parameter η the “measurement efficiency”. When η = 1 this equation
gives the same state evolution as the Schrödinger equation Eq. (18). η < 1 gives the possibility
of modeling measurements that are more noisy than necessary.

4 The Bohr-Rosenfeld measurement of electromagnetic field
measurements in space and time

I will finish these notes with some topics which I consider only partially finished, that is, on
which original research could still be done. The first of these involves the measurements of
electric and magnetic fields in space. Suppose that you (i.e., a measuring apparatus) goes out
into the vacuum, and at some time (or within some time integral) measures the strength of the
electric field in the x direction. According to the Born rule as applied to the vacuum state of the
quantum electromagnetic field, this measurement should typically yield some non-zero value.
The mean over many measurements would indeed be zero, but there is a zero-point fluctuation,
so that the observed field will have a gaussian distribution around zero.

In Ref. [4], Bohr and Rosenfeld (BR) consider several very fundamental general aspects of this
measurement. They stated for the first time the observation that the measurement at a point in
space-time of a field value is not defined, that is, will lead to diverging values. However, if the
measurement is over a finite test volume in space and time, the statistics of the measurement
values becomes well defined.

BR give an extensive discussion of the properties of the classical physical apparatus that will do
the measurement. It should contain a solid body with dimensions matched to the test volume,
and with a body charge and mass. The electric field couples to the charge, and the body accel-
erates under this force. The measurement of the displacement of the body after a specific length
of time constitutes the field measurement. This displacement will be accordingly positive or
negative, or we can say (anachronistically, as BS predates Schödinger’s cat by several years)
that the test body is in a Schrödinger-cat superposition of forward and backward displacement.
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Eq. (19) contains the new parameter η the “measurement efficiency”. When η = 1 this equation
gives the same state evolution as the Schrödinger equation Eq. (18). η < 1 gives the possibility
of modeling measurements that are more noisy than necessary.

4 The Bohr-Rosenfeld measurement of electromagnetic field
measurements in space and time

I will finish these notes with some topics which I consider only partially finished, that is, on
which original research could still be done. The first of these involves the measurements of
electric and magnetic fields in space. Suppose that you (i.e., a measuring apparatus) goes out
into the vacuum, and at some time (or within some time integral) measures the strength of the
electric field in the x direction. According to the Born rule as applied to the vacuum state of the
quantum electromagnetic field, this measurement should typically yield some non-zero value.
The mean over many measurements would indeed be zero, but there is a zero-point fluctuation,
so that the observed field will have a gaussian distribution around zero.

In Ref. [4], Bohr and Rosenfeld (BR) consider several very fundamental general aspects of this
measurement. They stated for the first time the observation that the measurement at a point in
space-time of a field value is not defined, that is, will lead to diverging values. However, if the
measurement is over a finite test volume in space and time, the statistics of the measurement
values becomes well defined.

BR give an extensive discussion of the properties of the classical physical apparatus that will do
the measurement. It should contain a solid body with dimensions matched to the test volume,
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It is clear that BR have in mind a very specific sort of classical apparatus in mind, with masses,
springs, coils (for magnetic field measurements) and recording pointers, but they provide no
figures of what they envision.

BR’s main theoretical concern had to do with the compatibility of this measurement scenario
with the commutation relations of the quantum electromagnetic field. One example of these
commutators, as stated in BR, is (r2 = (x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2):

[Ex(t1, x1, y1, z1), Ex(t2, x2, y2, z2)] = (22)

i�
(

−∂2

∂x1∂x2

+
1

c2
∂2

∂t1∂t2

)[
1

r
δ
(
t2 − t1 −

r

c

)
− 1

r
δ
(
t1 − t2 −

r

c

)]

There are similar commutators for all the field components (Ex,y,z, Bx,y,z); the electric fields
commute with magnetic fields in the same coordinate direction, but not with ones in perpendic-
ular directions.

When written in this old fashioned way, one can see that the structure of this commutator is
exceedingly singular. As BR mentioned, this had led Peierls and Landau to conclude that the
Heisenberg uncertainty relation would not apply, that is, that the precision of measurement of
non-commuting variables would not be determined by this commutator. BR’s first step, in taking
on this question, was to introduce the idea, which has now become standard in field theory, that
the observable should be considered an averaged field quantity, that is, over a volume in space
and time. This “smooths off” the severe singularities of the field commutator.

In addition, this “test volume” concept was precisely matched, in BR’s approach, with the size
of the sensing element. They take very seriously the idea that there should be a complete
specification of a classical apparatus that does the field measurements, with a test volume of a
specified mass and charge density interacting with the field for a specified length of time, and
a spring apparatus to determine the resulting impulse. While in other settings Bohr provided
realistic technical drawings of gedanken experiments (for example, Fig. 4 is his apparatus for
weighing a photon), unfortunately Bohr and Rosenfeld provided no visual specifications for the
complex machines that they describe.

Without such details, it is still possible to understand qualitatively what is going on, and why the
commutator above may give an accurate indication of what measurements cannot be performed
together without Heisenberg uncertainty. For example, their electric field detector is basically
a charged body, and its acceleration provides a measurement of the field. As Preskill [3] notes,
this acceleration produces additional radiation, which travels outward along the light cone start-
ing at space-time position 1. If space-time position 2 is on this light cone, then it will be struck
by this radiation, disturbing its attempt to make a similar acceleration measurement. This is
consistent with the commutator, which says that only field operators at points 1 and 2 on this
light cone fail to commute.
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Fig. 4: An example of a very concrete concept of a thought experiment of Bohr. This
is his figure for “weighing a photon”, constructed to resolve a paradox proposed by Ein-
stein. Figure from https://physics.stackexchange.com/questions/8295/einsteins-box-unclear-
about-bohrs-retort

5 Creating entanglement by measurements on the vacuum

I will end with some extremely paradoxical (on the face of it) observations about the quantum
properties electromagnetic vacuum (discovered by [5]). They are not immediately about quan-
tum measurement, but as with BR they use again pairs of ”detectors” that interact with the field
at only specific locations in space-time. The details of the detectors are very different, and the
actual measurement step is considered as an explicitly separate second step. The detector is
just a quantum system, situated at rest at position (x, y, z), with two states, where an interaction
with the field can be turned on and off in time:

Ω

2
σz + ε(t)(σ+ + σ−)Ex(t, x, y, z) (23)

The setup of “Entanglement from the Vacuum” [6] is shown in Fig. 5. In the inertial frame
chosen, two probes are placed at different space positions 1 and 2 separated by distance L. The
detectors are “turned on” simultaneously, meaning that ε(t) jumps from zero to a finite value.
After a short time T , both probes are turned off, and they are henceforth decoupled from the
electromagnetic field.

Resnik calculates the final state of the two probes right after the end of the interaction time T . He
finds that the state has entanglement, meaning that the state of the two probes are correlated, in
fact to a degree that is stronger than that which is possible in classical physics (this is the subject
of “Bell inequality violation”, see NC, Sec. 2.6.). This means that subsequent measurement
outcomes of the two probes are certainly correlated, even though they are uncorrelated before
being turned on. By some quantification that I will not explain here, the amount of entanglement
is at least exp(−(L/cT )2).
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It is clear that BR have in mind a very specific sort of classical apparatus in mind, with masses,
springs, coils (for magnetic field measurements) and recording pointers, but they provide no
figures of what they envision.

BR’s main theoretical concern had to do with the compatibility of this measurement scenario
with the commutation relations of the quantum electromagnetic field. One example of these
commutators, as stated in BR, is (r2 = (x1 − x2)

2 + (y1 − y2)
2 + (z1 − z2)

2):

[Ex(t1, x1, y1, z1), Ex(t2, x2, y2, z2)] = (22)
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There are similar commutators for all the field components (Ex,y,z, Bx,y,z); the electric fields
commute with magnetic fields in the same coordinate direction, but not with ones in perpendic-
ular directions.

When written in this old fashioned way, one can see that the structure of this commutator is
exceedingly singular. As BR mentioned, this had led Peierls and Landau to conclude that the
Heisenberg uncertainty relation would not apply, that is, that the precision of measurement of
non-commuting variables would not be determined by this commutator. BR’s first step, in taking
on this question, was to introduce the idea, which has now become standard in field theory, that
the observable should be considered an averaged field quantity, that is, over a volume in space
and time. This “smooths off” the severe singularities of the field commutator.

In addition, this “test volume” concept was precisely matched, in BR’s approach, with the size
of the sensing element. They take very seriously the idea that there should be a complete
specification of a classical apparatus that does the field measurements, with a test volume of a
specified mass and charge density interacting with the field for a specified length of time, and
a spring apparatus to determine the resulting impulse. While in other settings Bohr provided
realistic technical drawings of gedanken experiments (for example, Fig. 4 is his apparatus for
weighing a photon), unfortunately Bohr and Rosenfeld provided no visual specifications for the
complex machines that they describe.

Without such details, it is still possible to understand qualitatively what is going on, and why the
commutator above may give an accurate indication of what measurements cannot be performed
together without Heisenberg uncertainty. For example, their electric field detector is basically
a charged body, and its acceleration provides a measurement of the field. As Preskill [3] notes,
this acceleration produces additional radiation, which travels outward along the light cone start-
ing at space-time position 1. If space-time position 2 is on this light cone, then it will be struck
by this radiation, disturbing its attempt to make a similar acceleration measurement. This is
consistent with the commutator, which says that only field operators at points 1 and 2 on this
light cone fail to commute.
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is his figure for “weighing a photon”, constructed to resolve a paradox proposed by Ein-
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After a short time T , both probes are turned off, and they are henceforth decoupled from the
electromagnetic field.

Resnik calculates the final state of the two probes right after the end of the interaction time T . He
finds that the state has entanglement, meaning that the state of the two probes are correlated, in
fact to a degree that is stronger than that which is possible in classical physics (this is the subject
of “Bell inequality violation”, see NC, Sec. 2.6.). This means that subsequent measurement
outcomes of the two probes are certainly correlated, even though they are uncorrelated before
being turned on. By some quantification that I will not explain here, the amount of entanglement
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Fig. 5: Space-time diagram of Resnik’s version of the Summer-Werner procedure for drawing
entanglement non-causally out of the vacuum.

This seems to be in bald contradiction to a basic premise of quantum information theory, which
is that LOCC (local operations and classical communication) cannot create entanglement (NC
Sec. 12.5). Surely the action of turning on and off the probes is local, and the setup is arranged
so that no classical signal can possibly pass from one to the other – they are outside each other’s
light cone.

The resolution of this paradox is that there is an unstated (or unemphasized) premise of LOCC,
which is that there is no other Hilbert space involved other than that of the two qubits (or
probes). But this is not the case for the quantum vacuum – it has a huge (one might say multiply
infinite) Hilbert space. If one inquires where the entanglement comes from, one finds that it
is pre-present in the quantum state of the vacuum. The very existence of the vacuum results
in quantum correlations, even at a distance. Non-trivial correlations can be present because
the quantum state of the vacuum is not an eigenstate of the electric field operator. Due to the
commutator expression above, there does exist some quantum state of the electromagnetic field
that is a simultaneous eigenstate of the electric field operators at the two probes. If the field
were in this state, then no entanglement would result from the interaction of the probes with
this field. But this is a state far from the vacuum state – it would have in fact a diverging value
of the expectation value of the energy of the field, or, less precisely, it would be a state with
many photons.

Quantum Measurement A6.15

References

[1] N. D. Mermin, Quantum Computer Science: An Introduction (Cambridge University
Press) (2007).
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The development of computers and their interconnection via networks has fundamentally
changed the way we process and transfer information. Similar to today’s classical informa-
tion processing, envisaged quantum networks can be categorized into infrastructures which
distribute information over large distances via a quantum internet [1] and those which process
information in local area networks (quantum LAN) [2]. Local quantum networks can be tailored
for distributed quantum computation in which quantum states and entanglement are shared be-
tween multiple quantum processors [3]. As for monolithic quantum computers, these distributed
quantum machines can provide exponential speed up compared to conventional computing ap-
proaches [4]. Individual quantum processors can consist of many coupled stationary, atomic or
solid-state quantum systems, which store and process quantum information [5, 6]. Subroutines
of the full quantum algorithm may run on separate processors [7–10], which are connected by
classical and quantum channels [11]. Quantum channels used in local quantum networks are
optimized for high-bandwidth quantum communication and enable error-correction across dif-
ferent nodes to protect quantum information against decoherence [12–16]. These requirements
render direct quantum channels between two nodes an efficient way for scaling up distributed
quantum computers [2, 17]. Direct quantum channels offer the possibility to transmit arbitrary
quantum states directly and to generate entanglement deterministically between two nodes us-
ing single photons [2, 17, 18]. First algorithms for distributed quantum computing [19, 20] and
efficient implementations of quantum gates between different nodes [21–23] have been devel-
oped. Experimentally, recent progress has been made to realize deterministic quantum commu-
nication in direct quantum channels between separate quantum systems with superconducting
circuits [24–27]. Here, we present an experimental implementation of a basic quantum network
with circuit quantum electrodynamics (circuit QED) systems [26, 28] using single itinerant mi-
crowave photons as information carriers [29, 30].

We first review experimental realizations of quantum communication protocols in various phys-
ical systems in the optical and microwave regime. Then we present experimental realizations of
quantum communication protocols with single shaped microwave photons using a direct quan-
tum channel. We discuss our experimental implementation based on a cavity assisted Raman
transition |f, 0〉 ↔ |g, 1〉 [31], and describe the calibration routines used to emit and absorb
single photons with high probability. We discuss the direct transfer of qubit states and the gen-
eration of entanglement based on two quantum communication protocols, which use different
mappings of our local quantum states to itinerant photons. First, we map quantum states, locally
stored in qubits at a node of the network, to the Fock-state basis of itinerant photons and realize
deterministic quantum communication between two separated quantum systems. Second, we
show that photon loss and qubit decay can be detected in a protocol which maps quantum states
to a time-bin superposition of a single photon.

Remote entanglement experiments have been performed in many different physical systems
(Fig. 1) using optical photons with atomic ensembles [36–40, 60], trapped ions
[41–45], single atoms - Bose Einstein condensates [46], vibrational states of diamonds [47],
rare-earth doped crystals [48], single atoms [49, 50], nitrogen-vacancy centers [51–53], quan-
tum dots [57, 58], or using microwave photons in superconducting circuits [24–28, 54–56]. In
these experiments, schemes have been implemented which generate remote entanglement prob-
abilistically based on joint measurements, which project the remote systems on an entangled
state, based on the scattering of a single photon or two photons from two remote systems,
which is/are interfered on a beam splitter and detected afterwards, and based on direct transfer
of photons between the two systems. These probabilistic protocols can be implemented using
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Fig. 1: Overview of performance metrics of remote entanglement experiments in different phys-
ical architectures. a) Entanglement generation rate Γent, b) CHSH-value S [32], c) concurrence
C [33,34] and d) entangled state fidelity F [35]. The data is grouped by physical system: atomic
ensembles (ae) [36–40] , trapped ions (ion) [41–45] , single atom Bose-Einstein-condensate
(sab) [46] , vibrational state of diamonds (vs) [47] , rare-earth doped crystals (rec) [48] ,
single atoms (sa) [49, 50] , nitrogen-vacancy (nv) centers [51–53] , superconducting circuits
(sc) [24–28, 54–56] and quantum dots (qd) [57, 58] . The colors indicate different implementa-
tions: probabilistic unheralded (red), probabilistic heralded (blue), guaranteeing a deterministic
delivery of an entangled state at a pre-specified time (yellow), and fully deterministic protocols
(green). Symbols indicate different schemes to realize the remote interaction: measurement-
induced (triangle), single- (cross) or two-photon (squares) interference and detection, direct
transfer (diamond), direct transfer with shaped photons (circles), multi-mode characteristic of
communication channel (two half ellipses). Lines in (c) are bounds [59] on C calculated from
measured values of S .
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The development of computers and their interconnection via networks has fundamentally
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distribute information over large distances via a quantum internet [1] and those which process
information in local area networks (quantum LAN) [2]. Local quantum networks can be tailored
for distributed quantum computation in which quantum states and entanglement are shared be-
tween multiple quantum processors [3]. As for monolithic quantum computers, these distributed
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proaches [4]. Individual quantum processors can consist of many coupled stationary, atomic or
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classical and quantum channels [11]. Quantum channels used in local quantum networks are
optimized for high-bandwidth quantum communication and enable error-correction across dif-
ferent nodes to protect quantum information against decoherence [12–16]. These requirements
render direct quantum channels between two nodes an efficient way for scaling up distributed
quantum computers [2, 17]. Direct quantum channels offer the possibility to transmit arbitrary
quantum states directly and to generate entanglement deterministically between two nodes us-
ing single photons [2, 17, 18]. First algorithms for distributed quantum computing [19, 20] and
efficient implementations of quantum gates between different nodes [21–23] have been devel-
oped. Experimentally, recent progress has been made to realize deterministic quantum commu-
nication in direct quantum channels between separate quantum systems with superconducting
circuits [24–27]. Here, we present an experimental implementation of a basic quantum network
with circuit quantum electrodynamics (circuit QED) systems [26, 28] using single itinerant mi-
crowave photons as information carriers [29, 30].

We first review experimental realizations of quantum communication protocols in various phys-
ical systems in the optical and microwave regime. Then we present experimental realizations of
quantum communication protocols with single shaped microwave photons using a direct quan-
tum channel. We discuss our experimental implementation based on a cavity assisted Raman
transition |f, 0〉 ↔ |g, 1〉 [31], and describe the calibration routines used to emit and absorb
single photons with high probability. We discuss the direct transfer of qubit states and the gen-
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stored in qubits at a node of the network, to the Fock-state basis of itinerant photons and realize
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to a time-bin superposition of a single photon.
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tum dots [57, 58], or using microwave photons in superconducting circuits [24–28, 54–56]. In
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abilistically based on joint measurements, which project the remote systems on an entangled
state, based on the scattering of a single photon or two photons from two remote systems,
which is/are interfered on a beam splitter and detected afterwards, and based on direct transfer
of photons between the two systems. These probabilistic protocols can be implemented using
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Fig. 1: Overview of performance metrics of remote entanglement experiments in different phys-
ical architectures. a) Entanglement generation rate Γent, b) CHSH-value S [32], c) concurrence
C [33,34] and d) entangled state fidelity F [35]. The data is grouped by physical system: atomic
ensembles (ae) [36–40] , trapped ions (ion) [41–45] , single atom Bose-Einstein-condensate
(sab) [46] , vibrational state of diamonds (vs) [47] , rare-earth doped crystals (rec) [48] ,
single atoms (sa) [49, 50] , nitrogen-vacancy (nv) centers [51–53] , superconducting circuits
(sc) [24–28, 54–56] and quantum dots (qd) [57, 58] . The colors indicate different implementa-
tions: probabilistic unheralded (red), probabilistic heralded (blue), guaranteeing a deterministic
delivery of an entangled state at a pre-specified time (yellow), and fully deterministic protocols
(green). Symbols indicate different schemes to realize the remote interaction: measurement-
induced (triangle), single- (cross) or two-photon (squares) interference and detection, direct
transfer (diamond), direct transfer with shaped photons (circles), multi-mode characteristic of
communication channel (two half ellipses). Lines in (c) are bounds [59] on C calculated from
measured values of S .
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heralding techniques, which allow one to re-transmit the quantum information in case an er-
ror is detected during the protocol. Heralding protocols can also provide deterministic remote
entanglement at predetermined times [61]. Fully deterministic quantum communication can be
achieved by either using direct transfer of photons with a time-reversible temporal envelope [17]
or by exploiting multi-mode characteristic of the communication channel [27]. An overview of
figures of merit such as the entanglement generation rate Γent, CHSH-value S [32], concurrence
C [33, 34] and entangled state fidelity F [35] of remote entanglement experiments is presented
in Fig. 1.

1 Quantum communication with single photons

In our adaptation of the protocol proposed by Ignacio Cirac [17], each quantum node consists
of a planar, chip-based, circuit QED architecture, in which a transmon qubit [62] is dispersively
coupled to two coplanar microwave resonators [63], analogous to an atom coupled to two cavity
modes (Fig. 2). One resonator is dedicated to dispersive transmon readout [64] and the second
one to excitation transfer [30]. The transfer resonators of the two nodes are tuned during device
fabrication and by choosing of qubit resonator detunings to have matching frequencies νT ≈
8.400 GHz. All resonators are coupled to dedicated Purcell filters [65–67]. An external coaxial
line of 0.9 m length, bisected with a circulator, connects the transfer circuits of both chips.
With this setup, photons are routed from node A to B, and from node B to a detection line.
As detailed in Ref. [30, 31], we generate a controllable light-matter interaction, by applying a
coherent microwave tone to the transmon which induces an effective interaction g̃f0g1(t) with
tunable amplitude and phase between states |f, 0〉 and |g, 1〉 (f0g1) [30, 31] with the vacuum
state |0〉 and the single-photon Fock state |1〉. The two lowest energy eigenstates |g〉, |e〉 of the
transmon form the qubit subspace and the second excited state |f〉 is used as an auxiliary level to
control the matter-light interaction in our experiment. The f0g1-interaction swaps an excitation
from the transmon to the transfer resonator, which then couples to a mode propagating towards
node B. By controlling g̃f0g1(t), we shape the temporal mode of the itinerant photon to have
a time-symmetric envelope. By inducing the reverse process |g, 1〉 ↔ |f, 0〉 with the time
reversed amplitude and phase profile of g̃f0g1(t), we absorb the itinerant photon in the transmon
at node B. Ideally, this procedure returns all photonic modes to their vacuum state.

As a first step in the characterization of the excitation transfer protocol, we initialize the trans-
mon at the receiving node B in state |f〉 with the aim to create a photon. This photon provides a
reference signal to extract the transfer efficiency for photons between the sending and receiving
nodes. Inducing the effective coupling g̃f0g1(t) with a f0g1 drive pulse truncated at time τ (Rτ

f0g1)
we emit a symmetric photon (Fig. 3a). Here and in all following characterization measurements,
we use active reset techniques to initialize both transmons in their ground states before the quan-
tum communication protocols [68, 69] and extract the population of the transmon states using
single-shot readout correcting for qubit readout errors (for details see [26]). The populations of
the three lowest levels of the transmon Pg, Pe and Pf are measured immediately after truncating
the emission pulse Rτ

f0g1 at time τ (see Fig. 3b). We observe that the transmon smoothly evolves
from |f〉 to |g〉 during the emission process. At the end of the protocol the emitting transmon
reaches a ground state population of Pg = 95.8% limiting the photon emission efficiency.
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Fig. 2: a) Schematic of a setup for realizing a deterministic unidirectional entanglement proto-
col between two cavity QED nodes of a quantum network. At the first node, a three level system
is prepared in its second excited state |f〉 (gray half-circle) and coherently driven (g̃f0g1(t), blue
arrow) to |g〉 (blue half-circle) creating the transfer cavity field (light yellow). The cavity field
couples into the directional quantum channel with rate κT as a single photon wavepacket with
an effective bandwidth κp

eff (yellow hyperbolic secant shape). In the second quantum node,
the time reversed drive g̃f0g1(−t) transfers the excitation from |g〉 to |f〉 in the presence of the
transferred photon field |1〉. Finally, the protocol is completed with a transfer pulse between |f〉
and |e〉 (red half-circle) to return to the qubit subspace. Additionally, each three level system
is coupled to a readout cavity (gray). b) Implementation of the schematic depicted in (a) in a
planar, chip-based, circuit QED architecture. A directional quantum channel between the two
nodes is realized using two semi-rigid coaxial cables and a circulator which connects the output
ports of the transfer circuit Purcell filters. c) False-colored micrograph of a sample of the same
design as the one used in the remote communication experiments. The inset shows a scanning
electron microscope (SEM) micrograph of the asymmetric SQUID with a designed ratio of 1 : 5
between the areas of the Josephson junctions. The output transmission lines are galvanically
coupled to the corresponding circuit. The input to the transfer circuit is an auxiliary line to
perform resonator spectroscopy in transmission.



A7.4 P. Kurpiers, ..., A. Wallraff
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ror is detected during the protocol. Heralding protocols can also provide deterministic remote
entanglement at predetermined times [61]. Fully deterministic quantum communication can be
achieved by either using direct transfer of photons with a time-reversible temporal envelope [17]
or by exploiting multi-mode characteristic of the communication channel [27]. An overview of
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in Fig. 1.
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of a planar, chip-based, circuit QED architecture, in which a transmon qubit [62] is dispersively
coupled to two coplanar microwave resonators [63], analogous to an atom coupled to two cavity
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fabrication and by choosing of qubit resonator detunings to have matching frequencies νT ≈
8.400 GHz. All resonators are coupled to dedicated Purcell filters [65–67]. An external coaxial
line of 0.9 m length, bisected with a circulator, connects the transfer circuits of both chips.
With this setup, photons are routed from node A to B, and from node B to a detection line.
As detailed in Ref. [30, 31], we generate a controllable light-matter interaction, by applying a
coherent microwave tone to the transmon which induces an effective interaction g̃f0g1(t) with
tunable amplitude and phase between states |f, 0〉 and |g, 1〉 (f0g1) [30, 31] with the vacuum
state |0〉 and the single-photon Fock state |1〉. The two lowest energy eigenstates |g〉, |e〉 of the
transmon form the qubit subspace and the second excited state |f〉 is used as an auxiliary level to
control the matter-light interaction in our experiment. The f0g1-interaction swaps an excitation
from the transmon to the transfer resonator, which then couples to a mode propagating towards
node B. By controlling g̃f0g1(t), we shape the temporal mode of the itinerant photon to have
a time-symmetric envelope. By inducing the reverse process |g, 1〉 ↔ |f, 0〉 with the time
reversed amplitude and phase profile of g̃f0g1(t), we absorb the itinerant photon in the transmon
at node B. Ideally, this procedure returns all photonic modes to their vacuum state.

As a first step in the characterization of the excitation transfer protocol, we initialize the trans-
mon at the receiving node B in state |f〉 with the aim to create a photon. This photon provides a
reference signal to extract the transfer efficiency for photons between the sending and receiving
nodes. Inducing the effective coupling g̃f0g1(t) with a f0g1 drive pulse truncated at time τ (Rτ

f0g1)
we emit a symmetric photon (Fig. 3a). Here and in all following characterization measurements,
we use active reset techniques to initialize both transmons in their ground states before the quan-
tum communication protocols [68, 69] and extract the population of the transmon states using
single-shot readout correcting for qubit readout errors (for details see [26]). The populations of
the three lowest levels of the transmon Pg, Pe and Pf are measured immediately after truncating
the emission pulse Rτ

f0g1 at time τ (see Fig. 3b). We observe that the transmon smoothly evolves
from |f〉 to |g〉 during the emission process. At the end of the protocol the emitting transmon
reaches a ground state population of Pg = 95.8% limiting the photon emission efficiency.
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To verify that the emitted photon envelope has the targeted shape and bandwidth κeff
p,B/2π =

10.6 MHz, we repeat the emission protocol with an initial transmon state (|g〉 + |f〉)/
√
2 and

measure the averaged electric field amplitude 〈âout(t)〉 of the emitted photon state (|0〉+|1〉)/
√
2

(Fig. 3c) using heterodyne detection [70]. Instead of preparing the single photon Fock state |1〉,
for this measurement, we prepare the (|0〉 + |1〉)/

√
2 state to conveniently measure its non-

vanishing average electric field amplitude [30].

Repeating the emission protocol at node A we observe similar dynamics of the transmon popu-
lation (see Fig. 3e). We adjust the amplitude and phase of the transfer pulse (Fig. 3d) such that
the photons emitted from node A have a bandwidth κeff

p,A/2π = 10.4MHz similar to κeff
p,B/2π.

The measured envelope of the photon emitted from node A (Fig. 3f) is slightly distorted by the
reflection at node B as determined by the response function of its transfer resonator.

Fig. 3: The transmons at node B (a) and node A (d) are prepared in the state |f〉. We char-
acterize (dots) the time dependence (τ ) of the qutrit populations Pg,e,f (b, e) while driving the
|f, 0〉 to |g, 1〉 transition (f0g1). The phase (white-blue shading) of the f0g1 drive is modulated
to compensate the drive-induced quadratic ac Stark shift. The mean field amplitude squared
| 〈aout(τ)〉 |2 of the traveling photons emitted from node B (c) and node A (f) is obtained for
the emitted photon state (|0〉 + |1〉)/

√
2. The effective photon bandwidths are adjusted to be

κeff
p,A/2π = 10.4MHz and κeff

p,B/2π = 10.6MHz. The solid lines in (b, c, e, f, h) are results of
master equation simulations. The time dependence of Ps when executing the excitation transfer
protocol (pulse shapes in dashed rectangle in g) from qubit A to qubit B (h) are extracted simul-
taneously with the amplitude of the emitted field from node A. i) shows the residual | 〈aout(τ)〉 |2
(light yellow x50) during the absorption process.
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We evaluate the ratio of the integrated power of the detected fields∫
|〈âAout(t)〉|2dt/

∫
|〈âBout(t)〉|2dt to extract the photon loss lAB = 23.0 ± 0.5% between node

A and B. This is possible, since we detect the field of each of the emitted photons in the same
detection line by making use of the circulator between the two nodes (Fig. 2b). The path trav-
eled by the two emitted photons towards the detector differs only by the length of the waveguide
separating the two samples from each other. In addition, we estimate the photon loss between
nodes A and B based on the electrical specifications of the individual circuit elements connect-
ing the nodes: two printed circuit boards including connectors (each 2.5 ± 1%), two coaxial
cables of length 0.4m (each 4.0±0.1%) [71] and a microwave circulator (13±2% according to
manufacturer). With these parameters we estimate an accumulated photon loss between nodes
A and B of 24±3%, which is in good agreement with the measured value of lAB = 23.0±0.5%.

To characterize the absorption of a single time-symmetric photon emitted from node A at the
receiving node by time-reversing the emission pulse of node B (Fig. 3a and g), we measure the
population of transmon B by interrupting the transfer process at time τ . For this characterization
measurement, we apply a π-pulse to transmon B to map the receiving qubit |f〉 state back to the
qubit subspace before performing qubit readout. We observe the population of |e〉 to smoothly
rise and saturate at P sat

e = 67.5 % (Fig. 3h). This saturation level reflects the efficiency of the
protocol for the transfer of a single photon, which is executed in a pulse sequence of 180 ns
duration (Fig. 3g). From the ratio of the integrated power of the emitted photon in the absence
(Fig. 3i) or presence (Fig. 3f) of the absorption pulse, we determine the absorption efficiency
to reach 98.1± 0.1%. We estimate that the finite truncation of the f0g1-pulses contributes with
∼ 1.1% to the inefficiency and leakage to the second, weakly-coupled input port of the Purcell
filter with ∼ 0.8% (Fig. 2c).

The results of master equation simulations of the excitation transfer (solid lines in Fig. 3), using
parameters extracted from independent measurements, display excellent agreement with the
measured data. This demonstrates a high level of control over the emission and absorption
processes and an accurate understanding of the experimental imperfections dominated by qutrit
decoherence and photon loss.

2 Deterministic Protocols

2.1 Deterministic Quantum State Transfer

We use the techniques presented above to deterministically transfer an arbitrary qubit state via
a direct quantum channel from node A to node B at a rate of 50 kHz. We prepare the receiv-
ing transmon B in state |g〉, apply a Rπ

ef pulse to the transmitting transmon A, followed by the
emission/absorption pulse and finally a rotation Rπ

ef on the receiving transmon B. We character-
ize the quantum state transfer by reconstructing its process matrix χdet with quantum process
tomography [72] (Fig. 4b,c). For that purpose, we prepare each of the six mutually unbiased
qubit basis-states |g〉, |e〉, (|g〉+ |e〉)/

√
2, (|g〉+ i |e〉)/

√
2, (|g〉−|e〉)/

√
2, (|g〉− i |e〉)/

√
2 [73]

using the rotations xR0
ge,

xR
π/2
ge , xR

−π/2
ge , yR

π/2
ge , yR

−π/2
ge and xRπ

ge at node A, transfer the corre-
sponding states to node B, and reconstruct the transferred state using quantum state tomography
(QST). QST of a single qutrit [74] is performed by measuring the qutrit state population with
single-shot readout, after applying the respective tomography gates: xR0

ge,
xR

π/2
ge , yR

π/2
ge , xRπ

ge,
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|〈âAout(t)〉|2dt/

∫
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Fig. 4: a) Pulse scheme used to characterize the qubit state transfer between the two nodes.
We prepare six mutually unbiased input states at node A (denoted by ζRφ

ge). b) Experimentally
obtain process matrix (absolute value shown as colored bars). The gray and red wire frames
show the ideal and the master equation simulation of the absolute values of the process matrix,
respectively. c) Bloch sphere representation of the quantum states transfer of the six ideal
input states states at node A (shown as red dots on the upper sphere) and the corresponding,
experimentally obtained output states at node B (shown as green dots on the lower sphere).
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ef . The elements of the density matrix are then
reconstructed with a maximum-likelihood method [75]. We obtain the process matrix through
linear inversion, from these density matrices. Performing QST of the qutrit subspace is required
to characterize residual population in |f〉 after the qubit state transfer, which is mainly caused
by energy relaxation from the |f〉 level in combination with the single qubit rotation Rπ

ef swap-
ping |e〉 with |f〉 populations. The obtained density matrices have a non-unit trace in the qubit
subspace and so does the qubit state transfer process matrix. This reduction method gives a
conservative estimate of the obtained fidelities and are discussed in more detail in Section 2.2.
We determine a process fidelity of Fdet

p = tr(χdetχideal) = 80.02± 0.07%. The process matrix
χsim calculated using master equation simulations agrees very well with the data (absolute val-
ues shown as red wire frames in Fig. 4b) showing the high level of experimental control. This
is supported by the small trace distance [35] tr |χdet − χsim| /2 = 0.015, which ideally is 0 for
identical process matrices and 1 for orthogonal ones.

2.2 Deterministic Generation of Remote Entanglement

Using a modified excitation transfer protocol we deterministically generate two-qubit remote
entangled states between nodes A and B. The protocol starts by preparing transmon A in state
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(|e〉 + |f〉)/
√
2 and B in state |g〉, and applying the emission/absorption pulses followed by a

rotation Rπ
ef on transmon B to generate the Bell state |ψ+〉 = (|e, g〉 + |g, e〉)/

√
2 (Fig. 5a).

Alternatively, a remote entangled state can be generated by preparing the transmon at node A in
|f, 0〉, swapping half of the population to |g, 1〉 using R

π/2
f0g1 and applying the same |g, 1〉 ↔ |f, 0〉

absorption pulse at node B. The R
π/2
f0g1 can be used to decrease the emission time, however, the

a)

b) c)

e)d)

Fig. 5: a) Pulse scheme to generate deterministic remote entanglement between nodes A and
B. b) Real and c) imaginary part of the generated density matrix. The ideal Bell state |ψ+〉
is depicted with gray wire frames. d) Expectation values of two-qubit Pauli operators and
e) reconstructed density matrix after execution of the remote entanglement protocol. The
colored bars indicate the measurement results, the ideal expectation values for the Bell state
|ψ+〉 = (|e, g〉+ |g, e〉)/

√
2 are shown in gray wire frames and the results of a master equation

simulation in red.
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absorption process requires the same time. Thus, the full alternative protocol is not shorter than
our implementation.

Since leakage to the |f〉 level at both nodes leads to errors in the two-qubit density matrix recon-
struction, we extract the full two-qutrit density matrix ρ̂det3⊗3 from QST experiments (Fig. 5b,c).
To do so, we apply two local tomography gates on transmons A and B, from the 81 pairs of
gates that can be formed from the single-qutrit QST gates, and extract the state populations
using single shot measurements of the two qutrits. We observe a total residual population of
3.5% of the |f〉 level of both transmons after the execution of the entanglement protocol show-
ing that the entangled state can not be described rigorously by a two-qubit density matrix. We
verify the three-level bipartite entanglement by using the computable cross norm or realignment
(CCNR) criterion [76, 77], which states that a state must be entangled if ccnr > 1. We obtain
ccnr = 1.612 ± 0.003 with the measured entangled state ρ̂det3⊗3, witnessing unambiguously the
entanglement of the two qutrits.

For illustration purposes, we display the two-qubit density matrix ρ̂detm (Fig. 5d,e), as the two-
qubit elements of ρ̂det3⊗3. This choice of reduction from a two-qutrit to a two-qubit density matrix
conserves the state fidelity Fdet

s =
〈
ψ+|ρ̂detm |ψ+

〉
=

〈
ψ+|ρ̂det3⊗3|ψ+

〉
[35], but ρ̂detm has a non-unit

trace. In addition, this reduction method gives a conservative estimate of the concurrence C(ρ̂m),
compared to a projection of ρ̂det3⊗3 on the set of physical two-qubit density matrices. Making this
choice, we find a state fidelity Fdet

s =
〈
ψ+|ρ̂detm |ψ+

〉
= 78.9 ± 0.1% relative to the ideal Bell

state, and a concurrence C(ρ̂detm ) = 0.747± 0.004.

The density matrix ρ̂sim and equivalently the Pauli sets obtained from the master equation simu-
lations of the entanglement protocol (red wireframe in Fig. 5d,e) are in excellent agreement with
the experimental results, displaying a small trace distance tr

∣∣ρ̂detm − ρ̂sim
∣∣ /2 = 0.024. We de-

compose the infidelity into approximately 10.5% photon loss, 9.5% finite transmon coherence,
and 1% photon absorption inefficiency.
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3 Time-Bin Encoding Protocols

We extend the deterministic quantum state transfer scheme to a protocol which encodes quan-
tum information as a time-bin superposition of a single photon, making it suitable for heralded
quantum communication in a direct quantum channel. The time-bin based transfer protocol
relies on encoding the transmitted quantum information in a suitably chosen subspace S such
that any error, which may be encountered during transmission, causes the system to leave this
subspace. On the receiving end, a measurement which determines whether the system is in S
but does not distinguish between individual states within S, can be used to detect if an error oc-
curred. Crucially, when the transfer is successful, this protocol does not disturb the transmitted
quantum information. The single photon Fock-state encoding used in Section 2.1 is not suitable
to detect errors due to photon loss because the error does not cause a transition out of the code
subspace {|0〉 , |1〉}.

As in the deterministic case, the stationary quantum nodes are transmon qubits coupled to copla-
nar waveguide resonators. The two lowest energy eigenstates of the transmon, |g〉 and |e〉, form
the qubit subspace and the second excited state, |f〉, is used to detect potential errors. A variant
of the protocol also allows for remote, heralded entanglement generation (see Section 3.2).

The process for transferring quantum information stored in the transmon qubit into a time-bin
superposition state consists of the steps illustrated in Fig. 6a: The transmon qubit at node A is
initially prepared in a superposition of its ground and first excited state, α |g〉 + β |e〉, and the
resonator in its vacuum state |0〉. Next, two pulses are applied to transform this superposition
into α |e〉 + β |f〉. Then, a f0g1-pulse induces the transition from |f, 0〉 to |g, 1〉, which is
followed by spontaneous emission of a photon from the resonator. The temporal mode profile
of the f0g1-pulse is adjusted such that the photon is time-symmetric. After this first step, the
system is in the state α |e, 0〉⊗|0〉+β |g, 0〉⊗|1a〉, where |0〉 and |1a〉 denote the vacuum state of
the waveguide and the single-photon state in the time-bin mode a. Next, the population of state
|e〉 is swapped into |f〉 and the photon emission process is repeated, this time to create a single
photon in a time-bin mode b. The resulting state of the system is |g, 0〉 ⊗ (α |1b〉+ β |1a〉).

By reversing both f0g1-pulses in the time-bin encoding scheme (Fig. 6b) an incoming single
photon in the time-bin superposition state α |1b〉 + β |1a〉 will cause the receiving transmon-
resonator system, initialized in |g, 0〉, to be driven to the state α |e, 0〉+ β |g, 0〉 as the photon is
absorbed. Thus, this protocol transfers the qubit state encoded as a superposition of |g〉 and |e〉
from transmon A to transmon B. In short, the sequence reads

(
α |g〉A + β |e〉A

)
⊗ |g〉B →

|g〉A ⊗
(
α |1b〉+ β |1a〉

)
⊗ |g〉B →

|g〉A ⊗
(
α |g〉B + β |e〉B

)
(1)

where we have omitted the states of the resonators and the propagating field whenever they are
in their respective vacuum states.

An important property of this time-bin encoded transfer protocol is its ability to detect photon
loss in the communication channel. Indeed, if a photon is lost or not absorbed by the receiver,
node B receives a vacuum state at its input instead of the desired single-photon state. This
implies that both absorption pulse sequences leave transmon B in its ground state |g〉 which is
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a) b)node A: sender node B: receiver

Fig. 6: Schematic representation of the pulse sequence implementing the time-bin encoded
transmission process at the sender (a) and the receiver (b). In the level diagrams, the gray verti-
cal lines represent Hamiltonian matrix elements due to the microwave drive between transmon
levels while the diagonal ones show the transmon-resonator coupling. a) The qubit state is ini-
tially stored as a superposition of |g, 0〉 (blue dot) and |e, 0〉 (red dot). The first two pulses map
this state to a superposition of |e, 0〉, |f, 0〉 and the third pulse transfers |f, 0〉 into |g, 0〉 while
emitting a photon in time bin a (see red symbol for photon in mode a). Then, after |e, 0〉 is
swapped to |f, 0〉, the last pulse again transfers |f, 0〉 into |g, 0〉 and emits a photon in time bin
b. b) Reversing the protocol we reabsorb the photon, mapping the time-bin superposition back
onto a superposition of transmon states.

subsequently mapped into |f〉 by the final three pulses. The successful quantum state transfer
can thus be heralded by performing a quantum non-demolition readout of the transmon which
distinguishes between |f〉 and the subspace spanned by |g〉, |e〉, but does not measure within
this subspace. Such a binary measurement of a qutrit state can, for example, be realized by
suppressing the measurement-induced dephasing in the (g,e)-subspace using parametric ampli-
fication and feedback [78] or by engineering the dispersive shifts of two transmon states on
the readout resonator to be equal [79]. Furthermore, the |f〉 state population can be swapped
to an ancilla qubit Ba which can be read out independently of transmon B in single-shot [80].
The swap operation can be performed using flux pulses [81] or an all-microwave gate driving
the |fB, gBa〉 into |gB, eBa〉 (fgge) transition. In addition, the time-bin encoding protocol also
detects failures of the state transfer due to energy relaxation of the transmon qubits during the
protocol, e.g. if no photon is emitted from A due to energy relaxation to |g〉 before the first time
bin is populated.

3.1 Time-Bin-Encoded Quantum State Transfer

We implement the time-bin encoding protocol in a setup identical to the one used for determin-
istic quantum communication (Fig. 2), up to an exchange of the cryogenic coaxial circulator
in the connection between the two samples with a rectangular waveguide isolator which af-
fects the bandwidth of the transfer resonators due to its different impedance (κA

T = 7.4MHz,
κB
T = 12.6MHz).
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To characterize the time-bin encoding protocol, we perform qutrit single-shot readout and use
quantum process tomography. We initialize both transmons in their ground states [68, 69] and
subsequently prepare the qubit at node A in one of the six mutually unbiased qubit basis states
(Fig. 4b). We then run the time-bin encoded emission and reabsorption protocol (Fig. 6 and
Fig. 7a) and implement quantum state tomography at node B for all six input states (Section 2.1).
Directly after the tomography pulses, we read out the |g〉, |e〉 and |f〉 states of transmon B in
single-shot mode. Based on these single-shot measurements, we postselect experimental runs in

Fig. 7: a) Pulse scheme for characterizing the time-bin encoding protocol using quantum
process tomography (QPT). ζRφ

ij label DRAG microwave pulses. b) Real part of the qutrit
density matrix ρ̂cor for the input state |−〉 = (|g〉 − |e〉)/

√
2 after the state transfer protocol

reconstructed using measurement-error correction. The magnitude of each imaginary part is
< 0.017. c) Projection of ρ̂cor (b) onto the (g,e)-subspace ρ̂prcor performed numerically which we
use to reconstruct the process matrix χpr

cor (absolute value shown in (d)). The colored bars show
the measurement results, the gray wire frames the ideal density or process matrix, respectively.
The results of numerical master equation simulations are depicted as red wire frames.
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which transmon B was measured in the computational space keeping on average P qst
suc = 64.6%

of the data, and transferring qubit states at a rate Γqst/2π = P qst
sucΓexp/2π ≈ 32.3 kHz based

in a bare experimental repetition rate of Γexp = 50 kHz. Using the post-selected data, we
reconstruct the normalized density matrices ρ̂ps of the qubit output state at node B using a
maximum-likelihood approach without correcting for readout errors. In this post-selected ap-
proach, we obtain the process matrix χps of the quantum state transfer and compute an av-
eraged state fidelity of Fps

s = avg(〈ψin|ρ̂ps|ψin〉) = 88.2 ± 0.2% and a process fidelity of
Fps

p = tr(χpsχideal) = 82.3± 0.2% relative to the ideal input states |ψin〉 and the ideal identity
process, respectively.

Detecting errors to herald successful transfers does require a measurement which discriminates
between |f〉 and the subspace spanned by |g〉, |e〉, but does not measure within this subspace, as
described in Section 3. To benchmark only the encoding part of the time-bin encoding protocol
we assume an ideal heralding measurement. To do so, we reconstruct all six qutrit density
matrices ρ̂cor of the output state at node B using the same dataset as for post-selection but correct
for measurement errors in the qutrit subspace. These qutrit density matrices have 39.1% average
population of level |f〉 indicating the detection of errors after the time-bin encoding protocol,
which is compatible with 1−P qst

suc of the post-selected analysis (Fig. 7b). Next, we project these
density matrices numerically onto the qubit (g,e)-subspace ρ̂prcor (Fig. 7c), simulating an ideal
error detection and reconstruct the process matrix χpr

cor of the quantum state transfer (Fig. 7d).
In this way, we find an average state fidelity of F cor

s = avg(〈ψin|ρ̂prcor|ψin〉) = 93.5 ± 0.1%
and a process fidelity of F cor

p = tr(χpr
corχideal) = 90.3 ± 0.2% based on these measurement-

error-corrected density matrices. This analysis allows us also to compare the time-bin encoding
protocol directly to the deterministic quantum state transfer protocol (Section 2.1), in which
we obtained Fdet

p = 80.02 ± 0.07%. This comparison clearly displays the capability of time-
bin encoding to reduce the effect of photon loss, when assuming perfect readout. In addition,
we demonstrated with the post-selected experiments that F ps

p > F det
p at our current readout

fidelities. Such direct comparison of fidelities, however, should be done with caution because it
depends on the loss of the quantum channel. We expect the fidelity of the deterministic protocol
to decrease linearly with loss, while the fidelity of the time-bin encoding protocol remains
constant, with a linear decrease of its success probability. The time-bin encoding protocol thus
complements deterministic protocols to perform heralded quantum communication in direct
quantum channels.

In addition, we analyze the sources of infidelity by performing numerical master equation sim-
ulations of the time-bin encoding protocol which we compare to the measurement-error cor-
rected density and process matrices. We find excellent agreement with the experimental results,
indicated by a small trace distance tr |χpr

cor − χsim| /2 = 0.03. The master-equation-simulation
results indicate that approximately 5.5% of the infidelity can be attributed to |f〉 → |e〉 and
|e〉 → |g〉 relaxation at both transmons during the protocol. Pure qutrit dephasing explains the
remaining infidelity.
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3.2 Time-Bin-Encoded Generation of Remote Entanglement

As in the deterministic case, we use a modification of the state-transfer protocol to generate
entanglement between the distant nodes (Fig. 8a). Both transmon-resonator systems at the

Fig. 8: a) Pulse scheme for generating remote entanglement between nodes A and B (see text for
details). Real (b) and imaginary (c) part of the two-qutrit density matrix ρ̂cor reconstructed after
execution of the time-bin remote entanglement protocol correcting for measurement-errors as in
the deterministic case. The colored bars indicate the measurement results. The ideal expectation
values for the Bell state |ψ+〉 = (|gA, eB〉 + |eA, gB〉)/

√
2 are shown as gray wire frames and

the results of a master equation simulation as red wire frames. d) Numerical projection of
ρ̂cor onto the (g,e)-subspace to obtain the two-qubit density matrix ρ̂prcor which is in excellent
agreement with our master equation simulations (trace distance of 0.028). e) Post-selected two-
qubit density matrix ρ̂ps without correcting for measurement-errors.
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network nodes are first initialized in their ground states. The first two pulses of the remote-
entanglement protocol prepare transmon A in an equal superposition state 1/

√
2(|e〉 + |f〉),

followed by a pulse sequence which entangles the transmon state |g〉 and |e〉 with the time-
bin qubit and maps the state of the time-bin qubit to transmon qubit B. This process can be
summarized as

1√
2

(
(|e〉A + |f〉A

)
⊗ |g〉B →

1√
2

(
|g〉A ⊗ |1a〉+ |e〉A ⊗ |1b〉

)
⊗ |g〉B →

1√
2

(
|g〉A ⊗ |e〉B + |e〉A ⊗ |g〉B

)
. (2)

In case of an error, transmon B ends up in state |f〉B.

We execute the entanglement-generation protocol by post-selecting only experimental runs in
which neither qutrit is found in the |f〉 state using individual single-shot readout of both trans-
mon qubits. Under this condition, we retain P ent

suc ≈ 61.5% of the data and obtain a Bell state
fidelity of Fps

s = 〈ψ+|ρ̂ps|ψ+〉 = 82.3±0.4% compared to an ideal |ψ+〉 Bell state (Fig. 8e). In
these post-selected experiments, we generate entangled states at rate Γent/2π = P ent

sucΓexp/2π ≈
30.8 kHz. To benchmark the time-bin encoded entanglement protocol, we use full two-qutrit
state tomography of the transmons in which we correct for measurement errors with the same
data set as for post-selection. The reconstructed density matrix (Fig. 8b,c) displays a high pop-
ulation of the |gA, fB〉, |eA, fB〉 states, Pgf = 16.0% and Pef = 21.4%, and small population
of |fA, gB〉, |fA, eB〉 and |fA, fB〉 ,

∑
i={g,e,f} Pfi = 2.7%, which indicates that photon loss is a

significant source of error. We project onto the qubit (g,e)-subspace numerically and obtain a
two-qubit density matrix, Fig. 8d, showing a fidelity of F cor

s = 〈ψ+|ρ̂prcor|ψ+〉 = 92.4 ± 0.4%.
F cor
s is the fidelity we expect to obtain with an ideal qubit readout. For finite fidelity in distin-

guishing between the pair of states |g〉, |e〉 and the state |f〉, we expect a false positive heralding
of the entanglement protocol to occur with a probability of approximately 5%, and thus, an over-
all state fidelity of approximately 87%. Comparing these results to the fully deterministic case
(Section 2.2), F det

s ≈ 79%, shows the potential of the presented time-bin encoding protocol to
generate high fidelity remote entanglement even in the presence of photon loss. Using a master
equation simulation we attribute approximately 6.5% of the infidelity to energy relaxation and
the rest to dephasing.

4 Conclusion and Outlook

Quantum networks across remote nodes are based on reliable, high-bandwidth quantum com-
munication, which has been investigated in a variety of physical systems. Here, we have pre-
sented the operation of a direct quantum channel in a small network connecting two remote
nodes, realized in circuit QED architecture. The direct quantum channel is established us-
ing time-symmetric itinerant single photons as information carriers. To emit and absorb these
itinerant photons at the nodes we use an all-microwave cavity-assisted Raman process at the
f0g1-transition. Using this quantum channel enabled by photon exchange, we employed a Fock-
state encoding to realize a deterministic quantum communication protocol between two remote
nodes. We achieved a qubit-state-transfer process fidelity of 80.02 ± 0.07% and generated
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Bell states |ψ+〉 with a fidelity of 78.9 ± 0.1%. Related work independently achieved similar
results with superconducting circuits [24–27]. Our approach demonstrates a high remote quan-
tum communication rate of 50 kHz making the Fock-state encoding particularly interesting for
quantum communication in low-loss quantum channels. We are confident that the state transfer
rate can be improved to 1MHz, the inverse of the protocol duration including active reset. The
loss in the quantum channel between the two nodes can be reduced by replacing the isolator
(insertion loss: 13± 2% ) in our quantum channel with a low-loss superconducting switch [82]
which still allows for thermalization of the waveguide field, or by tunable couplers at both ends
of the waveguide [83, 84]. In the second approach, we transferred quantum information in a
time-bin superposition of a single photon. The time-bin encoding provides the possibility to
detect communication errors making the quantum communication rate linearly proportional to
the transmission probability. Using time-bin encoding we improved the qubit-state-transfer pro-
cess fidelity to 92.4 ± 0.4% and the Bell-state fidelity to 90.3 ± 0.2% when considering ideal
error detection. Time-bin encoding thus provides an opportunity for realizing heralded quantum
communication in lossy, direct quantum channels.

For all remote communication experiments, we find excellent agreement of our experimental
results with numerical master equation simulations indicating a high level of control over our
experimental system. Using these master equation simulations for the Fock-state encoding, we
decompose the Bell-state infidelity into approximately 10.5% photon loss, 9.5% finite trans-
mon coherence times and 1% photon absorption inefficiency for our experimental setup. For
the time-bin encoding, we conclude from the master equation simulations that all photon loss
is detected in our scheme and that the residual Bell-state infidelity is explained by the finite
transmon coherence times. Using time-bin encoding, we also obtain from the master equation
simulations that approximately 2/3 of communication errors due to energy relaxation of the
transmon are detected, since such decay errors lead to the same final qutrit state as photon loss.

The master equation simulations allow us to predict the performance of improved remote com-
munication experiments. For example, we estimate that state fidelities of 98.3% using the
Fock-state encoding and 98.1% using the time-bin encoding can be obtained for coherence
times of 30µs for the ge-transitions and of 15µs for the ef-transitions. For theses estimates
we assume the absence of photon loss and perfect heralding but otherwise circuit parameters
identical to the presented experiments. Improving the presented circuit QED systems to obtain
higher photon emission and absorption bandwidths, we estimate that our Fock-state encoding
protocol can be performed in 100 ns (currently 180 ns), and the time-bin encoding protocol in
230 ns. These short protocol durations and high fidelities indicate that the presented remote
communication schemes can potentially be integrated in larger distributed quantum comput-
ing algorithms with neither performance degradation nor time overhead, e.g. with state-of-
the-art qubit readout times of approximately 60-300 ns [66, 67, 80, 85, 86] and two-qubit gate
times of 40-160 ns [87–90]. These advantages make quantum communication protocols such as
those implemented using the f0g1-interaction interesting for realizing future large-scale quan-
tum computing architectures.
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Twenty years ago Daniel Loss and David DiVincenzo
proposed that the spin of a single electron in a semi -
conductor quantum dot could form not just a model but
also a real, physical qubit.1 Their theoretical work pre-
dated by four years the first experiments to success-
fully trap a single electron in a gate-defined quantum
dot, and it predated by several more years the first co-
herent manipulation of a single spin in a semiconduc-
tor. Semiconductor spin qubits now come in four dis-
tinct flavors, each of which was proposed by theory
that set a target for experiments to pursue. Those exper-
iments always brought surprises, and the interplay be-
tween theory and experiment makes semiconductor spin
qubits a particularly vibrant field of study.
In this article we describe the experimental develop-

ment and the current state of the art of semiconductor quan-
tum-dot spin qubits. Functional and scalable qubits must

meet well-defined criteria.2 First, reliably initializing each qubit
into one of its two levels must be possible. Second, the final
state of each qubit must be knowable by a projective measure-
ment that gives the correct answer with high probability. Third,
qubit manipulation must be implementable using high-quality
single- and two-qubit gates. 

Imagine the spin state as a vector pointing on a sphere, com-
monly known as the Bloch sphere. Single-qubit gates corre-
spond to rotations of the state vector that are independent of
the state of any other qubit in the system. In the case of two-
qubit gates, rotation of one qubit depends on the state of the

other. And when the second qubit it-
self starts off in a superposition of
states, the two qubits become entan-
gled with each other. The recent satis-
faction of all those requirements with
quantum dots led to the demonstra-
tion of the first—and at two qubits the
smallest possible—quantum semi-
conductor processor.

That single-electron spins in a
semiconductor chip can act as qubits
is remarkable. Unlike atoms or photons
in a vacuum, an electron in a semi -
conductor resides in a noisy, solid-state
environment. Engineering that envi-
ronment so that it doesn’t rapidly de-

grade or decohere the spin-qubit states has been a key chal-
lenge for our field.

Errors are unavoidable and necessitate quantum error-
correction techniques (see PHYSICS TODAY, February 2005, 
page 19). To be effective, the techniques require that initializa-
tion, readout, and single- and two-qubit operations have error
rates below 1%. Furthermore, quantum error correction involves
an overhead in the number of qubits that can easily reach 1000
physical error-prone qubits to encode one protected error-free
qubit. Therefore, a future quantum computer capable of solv-
ing relevant problems beyond the reach of a supercomputer
will likely contain millions of physical qubits. (See the article
by David Weiss and Mark Saffman, PHYSICS TODAY, July 2017,
page 44.)

Semiconductor quantum dots have a tiny footprint that of-
fers the prospect of integrating millions of qubits, akin to clas-
sical integrated circuits. The corresponding electron density in
quantum-dot devices, however, is far smaller than in classical
transistors, with each single electron in a qubit typically spread
over a region roughly 20 nm × 20 nm in size. For such a device
to work as intended, the materials and nanofabricated struc-
tures must have very li�le disorder, to ensure that electrons are
easy to position and control. Pulling off that achievement en-
tails uniform pa�erning of the gate electrodes but also having
low densities of trapped charges in the substrate, in the di-
electrics, and at the interfaces.

Because of the need for ultrahigh quality, the path to a large-
scale quantum computer of any type is a marathon, not a

pen any textbook on quantum mechanics,
and the two-state system of choice is
likely to be a spin-1⁄2 particle, such as an

electron. The corresponding states, spin up
and spin down, form the prototypical quantum

bit (qubit), and rotations of the spin state constitute the simplest 
quantum logic gates. Because of their negative charge, electrons can be
manipulated with voltages applied to nanoscale electrodes, or gates.
And the application of appropriate voltages can confine the electrons
to small islands called quantum dots (see the article by Marc Kastner,
PHYSICS TODAY, January 1993, page 24). 
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sprint. And research today is motivated by a vision that will
take years to bring to fruition. In the case of semiconductor spin
qubits, that vision relies on long coherence times and on recent
advances in gate fidelity—a common metric to express the
quality of quantum gates—fueled by a move to silicon-based
devices. 

Intriguingly, spin qubits in semiconductors could also be 
integrated with classical integrated-circuit technology, includ-
ing processing, memory, and the distribution of signals. Inte-
gration on chip is natural, because quantum-dot qubits use gate
electrodes just as field-effect transistors do. Integration could also
occur at the system level, with clusters of chips communicating
with one another.

From transistor to qubit 
The field-effect transistor is a good starting point for under-
standing a quantum dot. In a transistor, the flow of electrons
between two contacts (source and drain) is switched on or 
off via the voltage on a metal gate electrode placed above the
space between the contacts (the channel). A positive gate volt-
age a�racts electrons to the channel and produces a conducting
path from source to drain. A negative gate voltage, by contrast,
empties the channel such that no source–drain current can
flow. If one were to replace the gate electrode with three in -
dependently biased electrodes, the electronic potential landscape
between the contacts could be shaped to create a potential-

 energy minimum separated from the contact regions by poten-
tial barriers. 

At low temperature, typically below 4 K, the thermal energy
is lower than the energy needed to add or remove electrons
from the potential well. Thus the well is occupied by a discrete
number of electrons. When the electrons are confined tightly
enough that orbital motion is frozen out quantum mechani-
cally, the device is known as a quantum dot.

Arrays of tunnel-coupled quantum dots can be formed with
additional gate electrodes, as shown in figure 1. The voltages
on the blue gate electrodes control the depth of the potential
minima and thereby the number of electrons on each quantum
dot. The voltages on the hatched blue gates control the tunnel
barriers between adjacent dots and between the dots and the
reservoirs. Nowadays, quantum dots are routinely tuned to 
the limit in which just a single electron resides on each dot. 
Researchers can verify the tuning by monitoring the current
through an auxiliary nearby quantum dot that acts as an
electrometer.

Spin qubits
When one electron resides in each quantum dot in the presence
of a magnetic field, each electron spin becomes an appealing
qubit. Indeed, that simple configuration, with one electron in
one dot, was proposed by Loss and DiVincenzo in 1998. In sub-
sequent years, alternative spin qubits have made their debut.
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FIGURE 1. A SCHEMATIC OF TWO
TUNNEL-COUPLED QUANTUM DOTS.
(a) Two patterned metal layers 
separated by dielectrics (not shown) 
define the quantum dots. Voltages 
applied to the lower-layer gates (orange)
delimit the channel, which runs parallel
to the x-axis. Voltages applied to the
upper-layer gates (blue) shape the 
potential landscape along the channel
as shown in the panel b cross section.
(b) An electron is confined in each of
two local potential minima, the two
quantum dots. Tunnel barriers separate
the dots from each other and from 
electron reservoirs. The reservoirs,
whose highest occupied electron 
level is at the Fermi energy EF, are 
connected to contacts via implant 
regions.
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For instance, a qubit can comprise two collective states of two
or three spins that reside in either two or three quantum dots.
Those flavors are known as singlet–triplet qubits3 (two electrons,
one each in two dots), exchange-only qubits4 (three electrons
in three dots), and quantum-dot hybrid qubits (three electrons
in two dots).5 The trade-offs between them are many and still
under investigation. Ultimately, the various qubit types are ini-
tialized, manipulated, and read out using the same physical
principles, but their robustness to specific noise sources varies,
as does their ease of operation. 

The first wave of successful spin-qubit experiments started
in the early 2000s and used quantum dots defined by gate elec-
trodes over a gallium arsenide/aluminum gallium arsenide two-
dimensional electron gas. That heterostructure technology had
been the workhorse of mesoscopic physics for more than a
decade and provided a platform in which spin qubits were
easy to control. Initial work largely met the important require-
ments for individual qubits—namely, that they could be initial-
ized, manipulated, and read out.

As outlined in the box above, qubits can be implemented
using nanosecond gate-voltage pulses and resonant mi-
crowave excitation of gate electrodes or current-carrying 
wires. Single-shot readout is performed indirectly, by induc-

ing spin-dependent tunneling of an electron while detecting
the position of the electron in real time. The groups of Leo
Kouwenhoven and one of us (Vandersypen) at Del� University
of Technology (TU Del�), Charles Marcus at Harvard Univer-
sity, and Seigo Tarucha at the University of Tokyo were the
main players to carry out those early experimental demonstra-
tions. The GaAs work culminated in the creation of entangled
states of singlet–triplet qubits by Amir Yacoby and coworkers
at Harvard. They reached a fidelity—the extent to which the
actual state resembles a two-qubit entangled state—of 72% and
later improved it6 to greater than 90%. 

Relaxation and decoherence
Spin qubits in GaAs benefit from remarkably long energy re-
laxation times T1, the time it takes a qubit to change from a
high-energy state to the ground state. For single-spin qubits, T1

can exceed 1 second at low temperature (100 mK or lower) in
a 1 T field. That’s three orders of magnitude longer than the
longest T1 in superconducting qubits. 

By comparison, T2
*, the time it takes the qubit phase to ran-

domize, is just tens of nanoseconds in GaAs dots.3 The phase
of the electron’s spin is randomized through hyperfine cou-
pling to the roughly 1 million nuclear spins of atoms in the

Reading out the spin state of an electron on
a quantum dot involves making a so-called
spin-to-charge conversion,16 whereby the
electron is allowed to tunnel from one loca-
tion to another in a way that depends on its
spin state—or more specifically, on whether
the qubit is up or down. A nearby charge
sensor is sensitive to the dots’ electron oc-
cupation; the current through the sensor
thus indirectly reveals the spin state. 

In one scenario, the Pauli exclusion prin-
ciple provides the spin dependence: Two
electrons can reside on the same dot only
when they are in a spin-singlet state. For a
spin-triplet state, each electron is forced to
reside on its own dot. In another
scenario, a qubit’s two spin states
are aligned above and below the
reservoir’s Fermi level—the high-
est occupied energy level (see panel a of
the figure). That protocol is usually effective
for any qubit separated by at least a few
times the thermal energy. When the elec-
tron in the dot occupies the lower-energy
spin, it doesn’t have enough energy to
leave and no tunneling occurs. But if the
higher-energy spin state is occupied, the
electron can tunnel out and is detected. Af-
terwards, another electron tunnels into the
dot from the reservoir.

Initialization is commonly the result of

readout, after which an electron with a
known spin resides in the dot. Alternatively,
initialization can be achieved by allowing
the electron spin qubit to thermalize to its
ground state. 

Resonant control of spin qubits uses
magnetic or electric excitation at radio or
microwave frequencies. Magnetic excita-
tion can coherently drive spin transitions
directly when the excitation is resonant
with the energy difference between spin-
up and spin-down states (see panel b in the
figure).17 The excitation’s amplitude controls
the rotation frequency of the spin vector
around the Bloch sphere, its phase controls

the rotation axis, and its duration controls
the rotation angle.

Resonant electrical excitation, by contrast,
can drive single-spin transitions because of
spin–orbit coupling.18 The excitation causes
the electron to oscillate back and forth in a
quantum dot, and the electron experiences
an oscillating effective magnetic field that
rotates the electron’s spin. Alternatively, in
the presence of a suitably engineered mag-
netic field gradient at the dot location, an
electrically driven electron experiences a
real, oscillating magnetic field, again allow-
ing for coherent spin rotations. In the case
of the quantum-dot hybrid qubit (three

electrons in two dots), resonant
electric fields alone drive transi-
tions between the qubit states.5

Gate-voltage pulses provide
another method to controllably manipulate
spin states. The basic idea is to abruptly—
typically within nanoseconds—turn on the
tunnel coupling between two neighboring
spins by applying a gate-voltage pulse that
lowers the tunneling barrier between their
corresponding dots, so that the electron
wavefunctions overlap. The overlap leads
to an exchange interaction between the
spins, as suggested in the figure’s panel c,
and the two spin states are periodically 
exchanged. 
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quantum dot, with which the electron wavefunction overlaps.
The interaction is impossible to avoid because every Ga and As
isotope carries a nuclear spin of 3⁄2.

Moreover, despite the low temperatures and strong mag-
netic fields used with typical spin-qubit measurements, the nu-
clear spins point in nearly random orientations. The result is a
statistically fluctuating and slowly varying collective effect on
the electron spin known as the random nuclear or Overhauser
field. Although the randomness of the nuclear field can be sig-
nificantly reduced for singlet–triplet qubits by using sophisti-

cated pulse schemes,6 the random nuclear field has signifi-
cantly slowed the progress of GaAs-based spin qubits.

Enter silicon
As early as 1998, it was clear that silicon would be preferable
to GaAs as a host material for spin qubits. Fewer than 5% of
naturally occurring Si atoms carry a nuclear spin, and those
nuclear spins can be largely eliminated by using isotopically
enriched 28Si. Although Si is the cornerstone of today’s semi-
conductor technology, it has taken many years of materials de-
velopment and nanofabrication advances to make Si quantum
dots suitable for spin-qubit experiments. 

Two main quantum-dot platforms have emerged. In the
first, pioneered by one of us (Eriksson) and colleagues at the
University of Wisconsin–Madison, electrons are confined in Si
quantum wells by silicon germanium barriers above and
below the well.7 In the second, developed by Andrew Dzurak
and colleagues at the University of New South Wales (UNSW)
in Sydney, electrons are confined against a Si-SiO2 interface—
as in n-doped metal oxide semiconductor technology.8 In both
cases, gate electrodes on the surface are used to accumulate
electrons in quantum dots and to form tunnel barriers between
the dots.

The randomization time T2
* is significantly longer in Si than

in GaAs, with T2
* reaching 1 µs in natural Si and up to 100 µs

in purified 28Si. That’s an improvement over GaAs by four or-
ders of magnitude,9 and it translates directly to single-spin gate
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FIGURE 3. A TWO-QUBIT LOGIC
GATE. (a) In a Bloch sphere diagram,
a qubit rotates along a line of longi-
tude during a resonant microwave
pulse (see figure 2). (b) In the 
absence of a microwave pulse, a 
state precesses along a latitude line
around the vertical axis of the Bloch
sphere. (c) A controlled NOT (CNOT)
gate is an operation that flips a 
target qubit (Q2, blue) based on the
state of the control qubit (Q1, red).
With Q2 initialized spin down, the
plots show the time evolution of the
spin-up probability of both qubits
when Q1 is spin up (top) or spin
down (bottom). In each case, two
single-qubit π/2 rotations are 
applied, separated by free evolution,
during which the two qubits interact.
For an interaction of 0.5 µs, the 
sequence flips Q2 if Q1 is down but
not if Q1 is up. (Adapted from ref. 11,
M. Veldhorst et al.)
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For instance, a qubit can comprise two collective states of two
or three spins that reside in either two or three quantum dots.
Those flavors are known as singlet–triplet qubits3 (two electrons,
one each in two dots), exchange-only qubits4 (three electrons
in three dots), and quantum-dot hybrid qubits (three electrons
in two dots).5 The trade-offs between them are many and still
under investigation. Ultimately, the various qubit types are ini-
tialized, manipulated, and read out using the same physical
principles, but their robustness to specific noise sources varies,
as does their ease of operation. 

The first wave of successful spin-qubit experiments started
in the early 2000s and used quantum dots defined by gate elec-
trodes over a gallium arsenide/aluminum gallium arsenide two-
dimensional electron gas. That heterostructure technology had
been the workhorse of mesoscopic physics for more than a
decade and provided a platform in which spin qubits were
easy to control. Initial work largely met the important require-
ments for individual qubits—namely, that they could be initial-
ized, manipulated, and read out.

As outlined in the box above, qubits can be implemented
using nanosecond gate-voltage pulses and resonant mi-
crowave excitation of gate electrodes or current-carrying 
wires. Single-shot readout is performed indirectly, by induc-

ing spin-dependent tunneling of an electron while detecting
the position of the electron in real time. The groups of Leo
Kouwenhoven and one of us (Vandersypen) at Del� University
of Technology (TU Del�), Charles Marcus at Harvard Univer-
sity, and Seigo Tarucha at the University of Tokyo were the
main players to carry out those early experimental demonstra-
tions. The GaAs work culminated in the creation of entangled
states of singlet–triplet qubits by Amir Yacoby and coworkers
at Harvard. They reached a fidelity—the extent to which the
actual state resembles a two-qubit entangled state—of 72% and
later improved it6 to greater than 90%. 

Relaxation and decoherence
Spin qubits in GaAs benefit from remarkably long energy re-
laxation times T1, the time it takes a qubit to change from a
high-energy state to the ground state. For single-spin qubits, T1

can exceed 1 second at low temperature (100 mK or lower) in
a 1 T field. That’s three orders of magnitude longer than the
longest T1 in superconducting qubits. 

By comparison, T2
*, the time it takes the qubit phase to ran-

domize, is just tens of nanoseconds in GaAs dots.3 The phase
of the electron’s spin is randomized through hyperfine cou-
pling to the roughly 1 million nuclear spins of atoms in the

Reading out the spin state of an electron on
a quantum dot involves making a so-called
spin-to-charge conversion,16 whereby the
electron is allowed to tunnel from one loca-
tion to another in a way that depends on its
spin state—or more specifically, on whether
the qubit is up or down. A nearby charge
sensor is sensitive to the dots’ electron oc-
cupation; the current through the sensor
thus indirectly reveals the spin state. 

In one scenario, the Pauli exclusion prin-
ciple provides the spin dependence: Two
electrons can reside on the same dot only
when they are in a spin-singlet state. For a
spin-triplet state, each electron is forced to
reside on its own dot. In another
scenario, a qubit’s two spin states
are aligned above and below the
reservoir’s Fermi level—the high-
est occupied energy level (see panel a of
the figure). That protocol is usually effective
for any qubit separated by at least a few
times the thermal energy. When the elec-
tron in the dot occupies the lower-energy
spin, it doesn’t have enough energy to
leave and no tunneling occurs. But if the
higher-energy spin state is occupied, the
electron can tunnel out and is detected. Af-
terwards, another electron tunnels into the
dot from the reservoir.

Initialization is commonly the result of

readout, after which an electron with a
known spin resides in the dot. Alternatively,
initialization can be achieved by allowing
the electron spin qubit to thermalize to its
ground state. 

Resonant control of spin qubits uses
magnetic or electric excitation at radio or
microwave frequencies. Magnetic excita-
tion can coherently drive spin transitions
directly when the excitation is resonant
with the energy difference between spin-
up and spin-down states (see panel b in the
figure).17 The excitation’s amplitude controls
the rotation frequency of the spin vector
around the Bloch sphere, its phase controls

the rotation axis, and its duration controls
the rotation angle.

Resonant electrical excitation, by contrast,
can drive single-spin transitions because of
spin–orbit coupling.18 The excitation causes
the electron to oscillate back and forth in a
quantum dot, and the electron experiences
an oscillating effective magnetic field that
rotates the electron’s spin. Alternatively, in
the presence of a suitably engineered mag-
netic field gradient at the dot location, an
electrically driven electron experiences a
real, oscillating magnetic field, again allow-
ing for coherent spin rotations. In the case
of the quantum-dot hybrid qubit (three

electrons in two dots), resonant
electric fields alone drive transi-
tions between the qubit states.5

Gate-voltage pulses provide
another method to controllably manipulate
spin states. The basic idea is to abruptly—
typically within nanoseconds—turn on the
tunnel coupling between two neighboring
spins by applying a gate-voltage pulse that
lowers the tunneling barrier between their
corresponding dots, so that the electron
wavefunctions overlap. The overlap leads
to an exchange interaction between the
spins, as suggested in the figure’s panel c,
and the two spin states are periodically 
exchanged. 
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quantum dot, with which the electron wavefunction overlaps.
The interaction is impossible to avoid because every Ga and As
isotope carries a nuclear spin of 3⁄2.

Moreover, despite the low temperatures and strong mag-
netic fields used with typical spin-qubit measurements, the nu-
clear spins point in nearly random orientations. The result is a
statistically fluctuating and slowly varying collective effect on
the electron spin known as the random nuclear or Overhauser
field. Although the randomness of the nuclear field can be sig-
nificantly reduced for singlet–triplet qubits by using sophisti-

cated pulse schemes,6 the random nuclear field has signifi-
cantly slowed the progress of GaAs-based spin qubits.

Enter silicon
As early as 1998, it was clear that silicon would be preferable
to GaAs as a host material for spin qubits. Fewer than 5% of
naturally occurring Si atoms carry a nuclear spin, and those
nuclear spins can be largely eliminated by using isotopically
enriched 28Si. Although Si is the cornerstone of today’s semi-
conductor technology, it has taken many years of materials de-
velopment and nanofabrication advances to make Si quantum
dots suitable for spin-qubit experiments. 

Two main quantum-dot platforms have emerged. In the
first, pioneered by one of us (Eriksson) and colleagues at the
University of Wisconsin–Madison, electrons are confined in Si
quantum wells by silicon germanium barriers above and
below the well.7 In the second, developed by Andrew Dzurak
and colleagues at the University of New South Wales (UNSW)
in Sydney, electrons are confined against a Si-SiO2 interface—
as in n-doped metal oxide semiconductor technology.8 In both
cases, gate electrodes on the surface are used to accumulate
electrons in quantum dots and to form tunnel barriers between
the dots.

The randomization time T2
* is significantly longer in Si than

in GaAs, with T2
* reaching 1 µs in natural Si and up to 100 µs

in purified 28Si. That’s an improvement over GaAs by four or-
ders of magnitude,9 and it translates directly to single-spin gate
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FIGURE 3. A TWO-QUBIT LOGIC
GATE. (a) In a Bloch sphere diagram,
a qubit rotates along a line of longi-
tude during a resonant microwave
pulse (see figure 2). (b) In the 
absence of a microwave pulse, a 
state precesses along a latitude line
around the vertical axis of the Bloch
sphere. (c) A controlled NOT (CNOT)
gate is an operation that flips a 
target qubit (Q2, blue) based on the
state of the control qubit (Q1, red).
With Q2 initialized spin down, the
plots show the time evolution of the
spin-up probability of both qubits
when Q1 is spin up (top) or spin
down (bottom). In each case, two
single-qubit π/2 rotations are 
applied, separated by free evolution,
during which the two qubits interact.
For an interaction of 0.5 µs, the 
sequence flips Q2 if Q1 is down but
not if Q1 is up. (Adapted from ref. 11,
M. Veldhorst et al.)
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FIGURE 2. DRIVEN EVOLUTION OF A SINGLE QUBIT. When an
applied microwave pulse is close to resonance with the spin qubit—
that is, with the energy difference between its up and down states
(17.98 GHz here)—the qubit undergoes driven rotations, or Rabi 
oscillation, and the probability of finding it spin-up oscillates as a
function of the pulse duration. (Adapted from ref. 10.) 

SEMICONDUCTOR SPINS



B1.6 Lieven M.K. Vandersypen1 and Mark A. Eriksson2

AUGUST 2019 | PHYSICS TODAY 43

fidelities10 of greater than 99.9% (see figure 2). Furthermore,
given that the nuclear-spin bath evolves slowly on the time
scale of the electron-spin dynamics, it is possible to extend the
coherence times to tens of milliseconds9 using dynamic decou-
pling techniques, extensions of the Hahn spin-echo concept.

Even longer electron-spin coherence times are obtained for
electrons bound to phosphorus-31 dopants in 28Si-enriched ma-
terial. The positively charged 31P donor provides the confining
potential for the electron. The system is convenient because it
avoids the need for bandgap engineering, though actual de-
vices do contain gate electrodes to manipulate the confining
potential in time. The group of Andrea Morello at UNSW has
shown that individual 31P nuclear spins can provide a nuclear-
spin qubit with an exceedingly long T2

* of 0.6 s. 
Quantum-dot and donor qubits in 28Si behave in many re-

spects like isolated electrons trapped in a vacuum, and they
allow for extremely high single-qubit control fidelity. In con-
trast to quantum-dot lithography, ion implantation produces
an uncertainty that makes it challenging to position multiple
donors with respect to each other. The group of Michelle Sim-
mons, also at UNSW, has shown that scanning tunneling mi-
croscope lithography can position atoms with much higher
precision than is possible through implantation. 

With isotopically enriched 28Si now available on wafer
scales and at moderate costs, and with several methods 
available to confine electron spins in electronic devices, the

prospects for practical Si spin qubits have
risen sharply.

Putting it all together
Building on the long-lived coherence in Si
quantum-dot spin qubits, several groups
have now demonstrated high-fidelity con-
trol of two single-spin qubits.11 In 2015 the
Dzurak group got a two-qubit gate work-
ing with single-qubit control and indepen -
dent readout of the two spins. The two-qubit
gate relied on the interaction between neigh-

boring spins, as outlined in the box. That interaction, in com-
bination with single-qubit rotations, enables a controlled-NOT
(CNOT) gate, as illustrated in figure 3. Two years later two
teams—a collaboration of our own groups at TU Del� and at
the University of Wisconsin–Madison and, independently, the
group of Jason Pe�a at Princeton University—demonstrated
entanglement of two single-spin qubits in a Si/SiGe double
quantum dot. 

To further illustrate the recent progress of Si spin qubits, 
figure 4 shows the implementation of a simple quantum algo-
rithm on two Si spin qubits. We and our colleagues at TU Del�
and the University of Wisconsin–Madison successfully pro-
grammed all four instances of Grover’s search algorithm for
two qubits.11 The algorithm is designed to invert a function f(x)
and identify the unique n-bit input value x0 for which f(x0) = 1.
For all other input values, f(x) = 0. Without further knowledge
of f, there is no more efficient method using a classical com-
puter than exhaustively searching through the space of input
values, evaluating f(x) using one input value a�er another until
hi�ing the input value x0.

The quantum case behaves very differently. Figure 4 illus-
trates how the occupation probabilities of the four basis states
∣00〉, ∣01〉, ∣10〉, and ∣11〉 evolve throughout the steps of the quan-
tum algorithm for each of the four possible functions f. Starting
off with qubits Q1 and Q2 both in the ∣00〉 ground state, the first
step is to prepare an equal superposition of the four basis states
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(b) The two-spin probabilities of the qubit
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(∣00〉 + ∣01〉 + ∣10〉 + |11〉)/2, with each term
having equal weight. In each panel, Uf is a 
different interaction (CZij) that picks out one
particular two-qubit state; that state then gets
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interference. Dashed and solid lines show, 
respectively, the ideal populations and the 
results of a model that includes decoherence.
(Adapted from ref. 11, T. F. Watson et al.)
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via simultaneous 90-degree ro-
tations of each qubit from about
100 ns to 200 ns in the circuit.
Next, a unitary transformation Uf

is executed that corresponds to
calling the function f from about
200 ns to 350 ns.

Because the qubits are in su-
perposition, the function is evalu-
ated for all four of its input values
(00, 01, 10, and 11) in a quantum
superposition as well. The func-
tion call is implemented with a
two-qubit gate, which flips the
phase of the |x0〉 component in
the superposition. At that point
in the circuit, all probabilities 
remain 1⁄4, as shown in figure 4.
Subsequent single-qubit and two-qubit operations, identical
for the four cases, boost the amplitude of the term |x0〉 using
quantum interference at the expense of the other terms.

Networked qubit registers
The two-qubit experiment can be scaled up to a few dozen
qubits in linear arrays of quantum dots. Researchers, most no-
tably at CNRS Grenoble, have already gone beyond 1D arrays
and reported the first demonstrations of small 2D arrays of
quantum dots. But limits exist to the number of tunnel-coupled
quantum dots that can be realistically integrated monolithically.
To scale up further, it is likely that on-chip quantum links will
be required to connect distant quantum registers with each
other, forming networks of interconnected multiqubit registers.

Many proposals exist for making such links, and their re-
alization is an active area of research. One heavily pursued 
approach uses microwave photons stored in on-chip super -
conducting resonators to indirectly mediate the coupling between
distant spins on the chip. Adopting that tack, three groups made
a major breakthrough in their recent observation of so-called
strong coupling of a single microwave photon and an electron
spin qubit (see reference 12 and PHYSICS TODAY, April 2018,
page 17). A second promising approach is to apply periodic
gate voltages to induce a traveling-wave potential that shu�les
electrons through channels across the chip. Initial results on
quantum-dot arrays indicate that spin coherence can be pre-
served during such shu�ling.13

Challenges in scaling up
Low fabrication yield still slows progress in many labs, and
working devices are not all identical. Researchers must com-
pensate for disorder in the form of charged defects and impu-
rities in the semiconductor by tweaking the gate voltages.
That’s time-consuming, and low-frequency charge noise makes
frequent retuning necessary. Furthermore, high-frequency
charge noise limits the two-qubit gate fidelity. Nevertheless,
the first experiments achieved two-qubit gate fidelities of 
92–98% under suboptimal conditions, and 99% fidelity seems
within reach.14

Recent experiments have shown encouraging improve-
ments in charge noise. And yield, qubit uniformity, and charge
noise are expected to benefit from industrial efforts to fabricate

quantum-dot arrays using commercial methods. The work is
ongoing at the CEA’s Leti Institute, an electronics information
technology laboratory in Grenoble, France; at Imec, headquar-
tered in Belgium, using electron-beam lithography; and at Intel
Corp using all-optical lithography (see page 38). 

Another challenge comes from the nature of Si, whose con-
duction band has six degenerate minima, or valleys, in the bulk.
The degeneracy is problematic for spin-qubit operation be-
cause the Pauli exclusion principle, which normally forbids two
electrons with the same spin to occupy the orbital ground state,
gets circumvented and the two-qubit gate fails. 

Confined structures such as quantum dots li� that sixfold
degeneracy. But the so-called valley spli�ing—the energy gap
to the first excited valley state—depends strongly on atomic-
scale details that are locked in during growth and that can vary
across a sample. In some of the Si/SiGe quantum dots mea -
sured to date, the valley spli�ing is too small to be useful. In
contrast, a metal-oxide semiconductor quantum dot can have
large valley spli�ing because of the hard confinement from the
silicon oxide layer. The flip side is that this same oxide interface
is a source of disorder that is larger than the disorder at the epi-
taxial interface of Si/SiGe quantum wells. 

Scaling challenges can also arise at higher levels in the sys-
tem—from the control electronics to the quantum-computer ar-
chitecture and so�ware layers. For example, every quantum
dot (and superconducting qubit) made today requires that at
least one wire be connected off-chip, which presents a wiring
bo�leneck for going beyond a few thousand qubits. To over-
come the bo�leneck, we envision two solutions that work in
tandem: crossbar addressing schemes, like those used in dis-
plays and memory chips, and on-chip classical multiplexing
circuits to distribute signals.15

A vision of qubit registers 
Imagine a large-scale Si chip consisting of local 2D quantum-
dot arrays addressed using crossbars and classical multiplex-
ing electronics that are connected by quantum links.15 Figure 5
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fidelities10 of greater than 99.9% (see figure 2). Furthermore,
given that the nuclear-spin bath evolves slowly on the time
scale of the electron-spin dynamics, it is possible to extend the
coherence times to tens of milliseconds9 using dynamic decou-
pling techniques, extensions of the Hahn spin-echo concept.

Even longer electron-spin coherence times are obtained for
electrons bound to phosphorus-31 dopants in 28Si-enriched ma-
terial. The positively charged 31P donor provides the confining
potential for the electron. The system is convenient because it
avoids the need for bandgap engineering, though actual de-
vices do contain gate electrodes to manipulate the confining
potential in time. The group of Andrea Morello at UNSW has
shown that individual 31P nuclear spins can provide a nuclear-
spin qubit with an exceedingly long T2

* of 0.6 s. 
Quantum-dot and donor qubits in 28Si behave in many re-

spects like isolated electrons trapped in a vacuum, and they
allow for extremely high single-qubit control fidelity. In con-
trast to quantum-dot lithography, ion implantation produces
an uncertainty that makes it challenging to position multiple
donors with respect to each other. The group of Michelle Sim-
mons, also at UNSW, has shown that scanning tunneling mi-
croscope lithography can position atoms with much higher
precision than is possible through implantation. 

With isotopically enriched 28Si now available on wafer
scales and at moderate costs, and with several methods 
available to confine electron spins in electronic devices, the

prospects for practical Si spin qubits have
risen sharply.

Putting it all together
Building on the long-lived coherence in Si
quantum-dot spin qubits, several groups
have now demonstrated high-fidelity con-
trol of two single-spin qubits.11 In 2015 the
Dzurak group got a two-qubit gate work-
ing with single-qubit control and indepen -
dent readout of the two spins. The two-qubit
gate relied on the interaction between neigh-

boring spins, as outlined in the box. That interaction, in com-
bination with single-qubit rotations, enables a controlled-NOT
(CNOT) gate, as illustrated in figure 3. Two years later two
teams—a collaboration of our own groups at TU Del� and at
the University of Wisconsin–Madison and, independently, the
group of Jason Pe�a at Princeton University—demonstrated
entanglement of two single-spin qubits in a Si/SiGe double
quantum dot. 

To further illustrate the recent progress of Si spin qubits, 
figure 4 shows the implementation of a simple quantum algo-
rithm on two Si spin qubits. We and our colleagues at TU Del�
and the University of Wisconsin–Madison successfully pro-
grammed all four instances of Grover’s search algorithm for
two qubits.11 The algorithm is designed to invert a function f(x)
and identify the unique n-bit input value x0 for which f(x0) = 1.
For all other input values, f(x) = 0. Without further knowledge
of f, there is no more efficient method using a classical com-
puter than exhaustively searching through the space of input
values, evaluating f(x) using one input value a�er another until
hi�ing the input value x0.

The quantum case behaves very differently. Figure 4 illus-
trates how the occupation probabilities of the four basis states
∣00〉, ∣01〉, ∣10〉, and ∣11〉 evolve throughout the steps of the quan-
tum algorithm for each of the four possible functions f. Starting
off with qubits Q1 and Q2 both in the ∣00〉 ground state, the first
step is to prepare an equal superposition of the four basis states
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via simultaneous 90-degree ro-
tations of each qubit from about
100 ns to 200 ns in the circuit.
Next, a unitary transformation Uf

is executed that corresponds to
calling the function f from about
200 ns to 350 ns.

Because the qubits are in su-
perposition, the function is evalu-
ated for all four of its input values
(00, 01, 10, and 11) in a quantum
superposition as well. The func-
tion call is implemented with a
two-qubit gate, which flips the
phase of the |x0〉 component in
the superposition. At that point
in the circuit, all probabilities 
remain 1⁄4, as shown in figure 4.
Subsequent single-qubit and two-qubit operations, identical
for the four cases, boost the amplitude of the term |x0〉 using
quantum interference at the expense of the other terms.

Networked qubit registers
The two-qubit experiment can be scaled up to a few dozen
qubits in linear arrays of quantum dots. Researchers, most no-
tably at CNRS Grenoble, have already gone beyond 1D arrays
and reported the first demonstrations of small 2D arrays of
quantum dots. But limits exist to the number of tunnel-coupled
quantum dots that can be realistically integrated monolithically.
To scale up further, it is likely that on-chip quantum links will
be required to connect distant quantum registers with each
other, forming networks of interconnected multiqubit registers.

Many proposals exist for making such links, and their re-
alization is an active area of research. One heavily pursued 
approach uses microwave photons stored in on-chip super -
conducting resonators to indirectly mediate the coupling between
distant spins on the chip. Adopting that tack, three groups made
a major breakthrough in their recent observation of so-called
strong coupling of a single microwave photon and an electron
spin qubit (see reference 12 and PHYSICS TODAY, April 2018,
page 17). A second promising approach is to apply periodic
gate voltages to induce a traveling-wave potential that shu�les
electrons through channels across the chip. Initial results on
quantum-dot arrays indicate that spin coherence can be pre-
served during such shu�ling.13

Challenges in scaling up
Low fabrication yield still slows progress in many labs, and
working devices are not all identical. Researchers must com-
pensate for disorder in the form of charged defects and impu-
rities in the semiconductor by tweaking the gate voltages.
That’s time-consuming, and low-frequency charge noise makes
frequent retuning necessary. Furthermore, high-frequency
charge noise limits the two-qubit gate fidelity. Nevertheless,
the first experiments achieved two-qubit gate fidelities of 
92–98% under suboptimal conditions, and 99% fidelity seems
within reach.14

Recent experiments have shown encouraging improve-
ments in charge noise. And yield, qubit uniformity, and charge
noise are expected to benefit from industrial efforts to fabricate

quantum-dot arrays using commercial methods. The work is
ongoing at the CEA’s Leti Institute, an electronics information
technology laboratory in Grenoble, France; at Imec, headquar-
tered in Belgium, using electron-beam lithography; and at Intel
Corp using all-optical lithography (see page 38). 

Another challenge comes from the nature of Si, whose con-
duction band has six degenerate minima, or valleys, in the bulk.
The degeneracy is problematic for spin-qubit operation be-
cause the Pauli exclusion principle, which normally forbids two
electrons with the same spin to occupy the orbital ground state,
gets circumvented and the two-qubit gate fails. 

Confined structures such as quantum dots li� that sixfold
degeneracy. But the so-called valley spli�ing—the energy gap
to the first excited valley state—depends strongly on atomic-
scale details that are locked in during growth and that can vary
across a sample. In some of the Si/SiGe quantum dots mea -
sured to date, the valley spli�ing is too small to be useful. In
contrast, a metal-oxide semiconductor quantum dot can have
large valley spli�ing because of the hard confinement from the
silicon oxide layer. The flip side is that this same oxide interface
is a source of disorder that is larger than the disorder at the epi-
taxial interface of Si/SiGe quantum wells. 

Scaling challenges can also arise at higher levels in the sys-
tem—from the control electronics to the quantum-computer ar-
chitecture and so�ware layers. For example, every quantum
dot (and superconducting qubit) made today requires that at
least one wire be connected off-chip, which presents a wiring
bo�leneck for going beyond a few thousand qubits. To over-
come the bo�leneck, we envision two solutions that work in
tandem: crossbar addressing schemes, like those used in dis-
plays and memory chips, and on-chip classical multiplexing
circuits to distribute signals.15

A vision of qubit registers 
Imagine a large-scale Si chip consisting of local 2D quantum-
dot arrays addressed using crossbars and classical multiplex-
ing electronics that are connected by quantum links.15 Figure 5
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depicts what such a network of quantum and classical electron-
ics might look like.

Si spin qubits are particularly well suited to realize that vi-
sion. First, the quantum dots, quantum links, and classical on-
chip electronics can all be integrated using the same process
steps. Those parts, moreover, can leverage today’s transistor
technology. Second, with a typical spacing of 100 nm, quantum
dots are extremely compact: 1000 dots can fit inside an area of
10 µm2. Third, Si spin-qubit coherence times are extremely long
and can accommodate sequential operations on the qubits,
which may be needed using crossbar addressing schemes.
Fourth, Si spin qubits are resilient to temperature and suffer
only modest degradation of charge noise and spin-relaxation
times between 20 mK and 1 K. 

Those are significant assets for scaling up Si spin qubits into
a truly integrated circuit of quantum and classical components
on a single chip. Scientific and technological challenges remain,
but the prospect is very real that Si spin qubits may be scaled
up to the many millions of qubits that will likely be needed to
solve real-world problems beyond the reach of any classical
machine. For example, a large-scale quantum computer will be
capable of efficiently computing the properties of materials
and molecules, with possible applications ranging from energy
harvesting and storage to the design of drugs and catalysts.

We thank our many colleagues at TU Delft, the University of 
Wisconsin–Madison, and around the world for numerous collaborations
and productive discussions.
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steps. Those parts, moreover, can leverage today’s transistor
technology. Second, with a typical spacing of 100 nm, quantum
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and can accommodate sequential operations on the qubits,
which may be needed using crossbar addressing schemes.
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B2.2 Fabian Hassler

1 Introduction

The concept of identical particles is one of the most counterintuitive features of many-body
quantum mechanics, maybe second only to the concept of entanglement. In fact, even the
bosonic exchange statistics, which is the closest to our classical world, has puzzled researchers
time and time again. The hallmark experiment by Hanbury Brown and Twiss [1], showing two
photon interference, was initially facing strong criticism: Brannen and Fergusen for example
stated that “it would appear to the authors [. . . ] that if such a correlation did exist, it would
call for a major revision of some fundamental concepts in quantum mechanics” [2]. As a reply,
Purcell did point out that “the electromagnetic field is a classical field after all, which is why the
Brown-Twiss effect only appears odd if one looks at it from a particle point of view; its oddness
being simply the peculiarity of bosons” [3]. Going over to fermions, we do not even have a
classical analog. The basic principle of fermions is that they are described by anticommuting
numbers. However, all observables, being part of our everyday classical world, are bosonic.
The consistency with quantum mechanics then demands ‘superselection’, which means that all
observables have to be formed by an even number of fermionic operators.

The idea of using identical particles and their exchange statistics as a resource for quantum
computation is only a couple of decades old [4, 5]. The reasons is that ‘simple’ fermions and
bosons, which we are familiar with from the basic physics courses, are not useful for this task.
Researchers have been looking at extensions of the concept of exchange statistics of identical
particles beyond the notion of fermions and bosons. However, in three dimensions nothing
interesting arises as all possible parastatistics can be reduced to bosons and fermions.

In two dimension, we know that charged particles (with charge q) pick up the Aharonov-Bohm
phase qΦ/� when encircling a magnetic flux Φ. The Aharonov-Bohm phase is topological in
the sense that it does not depend on the concrete trajectory taken by the particles but only on the
winding of the particle around the flux. Composite (bosonic) particles consisting of an electric
charge q and a magnetic flux Φ acquire a phase θ = qΦ/2� when exchanged.1 The value θ = 0
(θ = π) corresponds to a composite boson (fermion). However, also other values are allowed
which correspond to Abelian anyons. In three dimension, the construction does not work. In
fact, it is a theorem by Dirac [6] that a consistent theory only allows for pointlike magnetic
charges (called magnetic monopoles) that produce a flux of size Φ0 = n × 2π�/q leading to
θ = nπ (n ∈ Z). We can understand Dirac’s argument as follows: since there is no well-defined
winding number between two point particles in three dimensions, there can be no topological
phase which restricts the charge of potential magnetic monopoles.

The general idea how to use identical particles for topological quantum computation is the
following. In the standard gate model of quantum computers, a calculation consists of three
steps: (1) initialization in the state |i〉 = |0, 0, . . . 〉, (2) application of a gate U (a general unitary
operator) on |i〉 which produces |f〉 = U |i〉, (3) measurement of the outcomes oj ∈ {0, 1} in
the computational basis with probabilities P (o1, o2, . . . ) = |〈o1, o2, . . . |f〉|2. In a topological
quantum computer, the three steps are replaced by operations involving anyons [7]: (1) the
initialization is replaced by splitting a pair of anyons out of the vacuum, (2) a gate is done by
braiding the anyons around each other, (3) the measurement is performed by fusion (pairwise
annihilation), see Fig. 4(c).

1 The factor 1
2 arises as exchanging the particle only moves them halfway around each other.
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To obtain nontrivial gates, braiding should perform a unitary gate on the ground state manifold.
Since Abelian anyons only produce phases, they are not useful for this task but rather non-
Abelian anyons are needed. Note that the computation on non-Abelian anyons is topological.
The trajectories (worldlines) in the process splitting-braiding-fusion form a knot in space-time.
The result of the computation does not depend on the concrete form of the worldlines but only
on the topology of the knot. It is in this respect, that the computation performed by non-Abelian
anyons is robust.

The outline of the lecture is as follows: first, we will introduce the notion of a topological su-
perconductor. Then, we will show that Majorana zero modes appear as zero energy solutions of
the Bogoliubov-de Gennes equation describing a spinless p-wave superconductor in one dimen-
sion. The zero modes will turn out to be non-Abelian anyons called Ising anyons. However,
note that braiding of Ising anyons does not result in the application of any arbitrary unitary
gate. Thus, we will introduce an alternative class of anyons called ‘Fibonacci anyons’. We will
show that they are in fact universal, i.e., an arbitrary computation can be performed by braiding.
There are by now several reviews where further information on these subjects can be found.
For Majorana zero modes, see for example Refs. [8–10]. More information about topological
quantum computation can be found in Refs. [7, 11–14].

2 Topological superconductors

In the context of quantum mechanics, topology refers to a static system described by a Hamilto-
nian where the properties of certain eigenstates are insensitive to small perturbations (disorder).
In order that these states are not affected by hybridization with other states of the system, the
energy necessarily has to be in an energy gap (bandgap) of the system such that direct coupling
is forbidden by energy conservation.

2.1 Topological quantum number

A prime example for a topological system in one dimension (1D) is given by the Jackiw-Rebbi
(JR) model (1976) with the Hamiltonian [15]

HJR = vFpσ
z +M(x)σx =

(
−i�vF∂x M(x)

M(x) i�vF∂x

)
, (1)

where σj denote the Pauli matrices which represent an (artificial) spin degree of freedom. The
first term describes the motion of a particle with velocity ±vF and momentum p = −i�∂x.
The particle is chiral as the direction ‘±’ of motion depends on the spin. The second term
proportional to M(x) leads to backscattering (as it couples the two directions of motion) and
the appearance of a ‘mass’, i.e., a gap in the energy spectrum, see below.

Let us first discuss the case where the mass does not depend on position with M(x) ≡ M̄ . In
this case, the system is translation-invariant and we can find eigenstates of the form

ψk = eikxvk . (2)
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1 Introduction
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numbers. However, all observables, being part of our everyday classical world, are bosonic.
The consistency with quantum mechanics then demands ‘superselection’, which means that all
observables have to be formed by an even number of fermionic operators.

The idea of using identical particles and their exchange statistics as a resource for quantum
computation is only a couple of decades old [4, 5]. The reasons is that ‘simple’ fermions and
bosons, which we are familiar with from the basic physics courses, are not useful for this task.
Researchers have been looking at extensions of the concept of exchange statistics of identical
particles beyond the notion of fermions and bosons. However, in three dimensions nothing
interesting arises as all possible parastatistics can be reduced to bosons and fermions.

In two dimension, we know that charged particles (with charge q) pick up the Aharonov-Bohm
phase qΦ/� when encircling a magnetic flux Φ. The Aharonov-Bohm phase is topological in
the sense that it does not depend on the concrete trajectory taken by the particles but only on the
winding of the particle around the flux. Composite (bosonic) particles consisting of an electric
charge q and a magnetic flux Φ acquire a phase θ = qΦ/2� when exchanged.1 The value θ = 0
(θ = π) corresponds to a composite boson (fermion). However, also other values are allowed
which correspond to Abelian anyons. In three dimension, the construction does not work. In
fact, it is a theorem by Dirac [6] that a consistent theory only allows for pointlike magnetic
charges (called magnetic monopoles) that produce a flux of size Φ0 = n × 2π�/q leading to
θ = nπ (n ∈ Z). We can understand Dirac’s argument as follows: since there is no well-defined
winding number between two point particles in three dimensions, there can be no topological
phase which restricts the charge of potential magnetic monopoles.

The general idea how to use identical particles for topological quantum computation is the
following. In the standard gate model of quantum computers, a calculation consists of three
steps: (1) initialization in the state |i〉 = |0, 0, . . . 〉, (2) application of a gate U (a general unitary
operator) on |i〉 which produces |f〉 = U |i〉, (3) measurement of the outcomes oj ∈ {0, 1} in
the computational basis with probabilities P (o1, o2, . . . ) = |〈o1, o2, . . . |f〉|2. In a topological
quantum computer, the three steps are replaced by operations involving anyons [7]: (1) the
initialization is replaced by splitting a pair of anyons out of the vacuum, (2) a gate is done by
braiding the anyons around each other, (3) the measurement is performed by fusion (pairwise
annihilation), see Fig. 4(c).

1 The factor 1
2 arises as exchanging the particle only moves them halfway around each other.
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Fig. 1: (a) Spectrum of the Jackiw-Rebbi model. It consists of two bands, one at positive
and one at negative energies Ek. For large momentum �k, the spectrum assumes the form
Ek = ±vF�|k|. Close to k ≈ 0, there is an anticrossing with a bandgap of size 2M̄ . (b)
Probability distribution |Ψ0(x)|2 for finding the particle in the bound state with E = 0 at the
position x. It is peaked at the position x ≈ 0 where the mass changes sign. The decay happens
on the characteristic scale ξ = �vF/M̄ proportional to the inverse gap.

Solving the eigenvalue equation HJRψk = Ekψk in this case, leads to the result

Ek = ±
√

(�vFk)2 + M̄2, vk =

(
Ek − k

M̄

)
. (3)

Looking at the spectrum, cf. Fig. 1(a), we see that the JR Hamiltonian is a model for a 1D
semiconductor with a bandgap of 2|M̄ |. At first sight, it looks like the sign of M̄ does not
matter.

However, let us see what happens if we bring a semiconductor with a positive bandgap M̄ > 0
in proximity to a semiconductor with a negative bandgap −M̄ . We model this system by a
mass M(x) that depends on position and that assumes the asymptotic values M(x) → ±M̄
for x → ∓∞, see Fig. 1(b). We claim that there will be in this case a single state with energy
E = 0. We show this by directly computing the eigenstate, i.e., solving the problem

HJRΨ0 = −i�vFσz∂xΨ0 +M(x)σxΨ0 = 0 . (4)

After a slight rearrangement using σzσx = iσy, we obtain

d

dx
Ψ0(x) = κ(x)σyΨ0(x), with κ(x) =

M(x)

�vF
. (5)

with the solutions

Ψ0 = N exp

[
±
∫ x

0

dx′ κ(x′)

]
χ±y , χ±y =

1√
2

(
eiπ/4

±e−iπ/4

)
, (6)

where N > 0 is the normalization constant and χ±y denote the eigenvectors of σy to the
eigenvalues ±1.

For our choice of M(x), we have that
∫ x

0

dx′ κ(x′) → ∓∞, x → ±∞ . (7)
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In order that the state Ψ0 is normalizable, we are only allowed to take the ‘+’ sign in Eq. (6).
Concluding, we have found the bound eigenstate Ψ0(x) ∝ exp

[∫ x

0
dx′ κ(x′)

]
χ+y of the JR

model at energy zero. The rest of the spectrum consists of extended states above the gap with
energy |E| ≥ M̄ . The energy of the state Ψ0 is within the gap.

Recapitulating the argument that has lead to the identification of Ψ0, we realize that the presence
of the state is independent of the concrete form of M(x) and only depends on the sign of the
asymptotic values for x → ±∞. It is in this sense, that the state Ψ0 is topological and insensitive
to disorder. In fact, one calls Q = sgnM a (Z2) topological charge that can take values ±1.
Bringing two systems with opposite topological charge in proximity, a bound state within the
gap is trapped at the interface. This state is insensitive to disorder as its presence is guaranteed
by the properties (topological charge) of the bulk away from the interface.

2.2 Kitaev model

Kitaev (2001) introduced a Hamiltonian (called the Kitaev model) that implements the JR model
in a one-dimensional (1D) superconducting system. The model is given by [16]

HK =
∑
p

ξpc
†
pcp +

1

2

∑
p

∆ p (c−pcp + c†pc
†
−p), (8)

where cp are fermionic annihilation operators that obey the canonical anticommutation relation
{cp, c†q} = δp,q, {cp, cq} = 0. The first term described spinless electrons with momentum p and
energy ξp = p2/2m − µ relative to the chemical potential µ. The second term proportional to
∆ > 0 describes the superconduction pairing.2 As we will see below, the fact that the problem
is realized in a superconductor has crucial implications on the properties of the bound state Ψ0.
In fact, it turns out that the resulting excitations at the interface are Majorana zero modes which
follow non-Abelian statistics that are useful for quantum computing.

In order to make contact to the JR model, we write the model in Nambu space

HK =
1

2

∑
p

C†
pHBdG(p)Cp (9)

with Cp = (cp, c
†
−p)

T and where we have introduced the Bogoliubov-de Gennes Hamiltonian

HBdG(p) = ξpτ
z +∆ p τx (10)

with τ j Pauli matrices acting on the Nambu space. Due to the fact, that the Hamiltonian HBdG

is derived from HK by doubling the degrees of freedom when going over from cp to Cp, it
enjoys the relation τxHBdG(−p)τx = −HBdG(p). As a result, each eigenmode of HK leads to
two eigenstates: for each eigenstate ΨE(p) of HBdG at energy E, there is a state τxΨE(−p) at
energy −E.

As before, we are interested in states close to E = 0. The Hamiltonian HBdG allows for such a
state only when p = 0 (such that the second term vanishes) and µ = 0 (such that the first term

2 The pairing is of p-type as there is no s-wave pairing for spinless electrons.
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(�vFk)2 + M̄2, vk =
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. (3)

Looking at the spectrum, cf. Fig. 1(a), we see that the JR Hamiltonian is a model for a 1D
semiconductor with a bandgap of 2|M̄ |. At first sight, it looks like the sign of M̄ does not
matter.

However, let us see what happens if we bring a semiconductor with a positive bandgap M̄ > 0
in proximity to a semiconductor with a negative bandgap −M̄ . We model this system by a
mass M(x) that depends on position and that assumes the asymptotic values M(x) → ±M̄
for x → ∓∞, see Fig. 1(b). We claim that there will be in this case a single state with energy
E = 0. We show this by directly computing the eigenstate, i.e., solving the problem

HJRΨ0 = −i�vFσz∂xΨ0 +M(x)σxΨ0 = 0 . (4)

After a slight rearrangement using σzσx = iσy, we obtain
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dx
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where N > 0 is the normalization constant and χ±y denote the eigenvectors of σy to the
eigenvalues ±1.

For our choice of M(x), we have that
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0
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model at energy zero. The rest of the spectrum consists of extended states above the gap with
energy |E| ≥ M̄ . The energy of the state Ψ0 is within the gap.
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of the state is independent of the concrete form of M(x) and only depends on the sign of the
asymptotic values for x → ±∞. It is in this sense, that the state Ψ0 is topological and insensitive
to disorder. In fact, one calls Q = sgnM a (Z2) topological charge that can take values ±1.
Bringing two systems with opposite topological charge in proximity, a bound state within the
gap is trapped at the interface. This state is insensitive to disorder as its presence is guaranteed
by the properties (topological charge) of the bulk away from the interface.
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Kitaev (2001) introduced a Hamiltonian (called the Kitaev model) that implements the JR model
in a one-dimensional (1D) superconducting system. The model is given by [16]
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where cp are fermionic annihilation operators that obey the canonical anticommutation relation
{cp, c†q} = δp,q, {cp, cq} = 0. The first term described spinless electrons with momentum p and
energy ξp = p2/2m − µ relative to the chemical potential µ. The second term proportional to
∆ > 0 describes the superconduction pairing.2 As we will see below, the fact that the problem
is realized in a superconductor has crucial implications on the properties of the bound state Ψ0.
In fact, it turns out that the resulting excitations at the interface are Majorana zero modes which
follow non-Abelian statistics that are useful for quantum computing.

In order to make contact to the JR model, we write the model in Nambu space
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1

2

∑
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C†
pHBdG(p)Cp (9)

with Cp = (cp, c
†
−p)

T and where we have introduced the Bogoliubov-de Gennes Hamiltonian

HBdG(p) = ξpτ
z +∆ p τx (10)

with τ j Pauli matrices acting on the Nambu space. Due to the fact, that the Hamiltonian HBdG

is derived from HK by doubling the degrees of freedom when going over from cp to Cp, it
enjoys the relation τxHBdG(−p)τx = −HBdG(p). As a result, each eigenmode of HK leads to
two eigenstates: for each eigenstate ΨE(p) of HBdG at energy E, there is a state τxΨE(−p) at
energy −E.

As before, we are interested in states close to E = 0. The Hamiltonian HBdG allows for such a
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Fig. 2: (a) A Majorana zero mode appears at the interface between a 1D topological supercon-
ductor and the vacuum. The vacuum is modeled by a negative chemical potential µ such that
there are no electrons present. (b) Segments of a topological superconductor can be depleted by
gates. In our effective model, the gates lead to a negative chemical potential. At each domain
wall (interface between the ‘vacuum’ and the superconductor) at position xj a Majorana zero
mode emerges. Due to the overlap proportional to exp(−d/ξ) with ξ = �∆/µ̄, these modes are
not exactly at zero energy but at an energy ε � µ̄e−d/ξ.

vanishes). To describe the physics near the band closing at µ = 0 and p = 0, we expand around
p = 0 3

HBdG ≈ −µτ z +∆ p τx . (11)

We see that HBdG is in fact the JR model with the replacement

σz �→ τx, vF �→ ∆, (12)
σx �→ −τ z, M �→ µ . (13)

With that, we can identify the sign of µ with the topological charge. Indeed, the Kitaev model
HK describes a topological superconductor when µ > 0. For µ < 0, the electrons are depleted
from the wire and the state is a conventional insulator.

The mapping of HBdG onto the JR-model allows to predict that an end state will appear at the
interface of a topological superconductor (µ > 0) to vacuum (µ < 0). In particular, we model
the situation of Fig. 2 by a chemical potential µ(x) that changes sign at x = 0. The Hamiltonian
HBdG has the bound state

Ψ0(x) = f(x)χ+y , f(x) = N exp

[∫ x

0

dx′ µ(x′)/�∆
]

(14)

at energy E = 0 that is localized close to the interface at x = 0. It is separated by a gap µ̄ from
the extended states.

3 Treating the rest as a perturbation that can be included in principle later on.
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2.3 Majorana zero modes

As we have seen before, a single eigenmode of HK with energy E > 0 corresponds to two states
of HBdG with energy ±E. It is thus interesting to understand what the single state of HBdG at
E = 0 corresponds to. To this end, we calculate the second-quantized operator

γ =
√
2
∑
p

∫
dxΨ0(x)

∗ ·Cp e
ipx/� =

∫
dx f(x)

[
eiπ/4ψ(x) + e−iπ/4ψ†(x)

]
(15)

that corresponds to the eigenstate Ψ0; here, ψ(x) =
∑

p e
ipx/�cp is the field operator that anni-

hilates a particle at the position x and fulfills the anticommutation relations {ψ(x), ψ†(x′)} =
δ(x− x′), {ψ(x), ψ(x′)} = 0.

The fermionic mode γ is special in that it is Hermitian with γ† = γ. In physical terms, this
means that annihilating an excitation in the mode γ is the same as creating one. Such an excita-
tion is only possible at zero energy which corresponds to the chemical potential of the supercon-
ductor. Due to the aforementioned Hermiticity, the excitation described by γ is called Majorana
zero mode. With a straightforward calculation, one can show that γ2 = γ†γ = 1. Generalizing
these properties to multiple points xj where the chemical potential µ changes sign, we obtain a
Majorana zero mode γj at each interface (domain wall) at xj . These modes fulfill the Clifford
algebra

{γi, γj} = 2δi,j (16)

which encodes the normalization γ2
j = 1 together with the fermionic statistics γiγj = −γjγi.

As we have seen before, a single Majorana zero mode γ that is formed at the position where the
chemical potential changes sign is pinned at zero energy. We can understand this in algebraic
terms by noting that the effective low energy Hamiltonian Heff can only involve the excitation
γ as the other excitations are at the energy µ̄. Due to superselection (see below), each term of a
Hamiltonian has to involve an even power of fermionic operators. However, all such terms are
trivial as γ2n = (γ2)n = 1 so the effective Hamiltonian vanishes.

This argument does not work any more as soon as two Majorana zero modes γ1 and γ2 are
present. In fact, there is only one Hermitian combination iγ1γ2 that involves an even number of
fermionic operators. So the effective Hamiltonian has to be of the form

Heff = ε iγ1γ2 . (17)

In fact, the energy ε is approximately given by the overlap

ε ≈ 〈f1|HBdG|f2〉 � µ̄

∫
dx f(x− x1)

∗f(x− x2) � µ̄e−d/ξ (18)

with d = |x2 − x1| the distance between the zero modes and ξ = �∆/µ̄ the decay length that is
proportional to the inverse gap.

3 Majorana qubits

We have seen that the low energy properties of a topological superconductor are given by the
Majorana zero modes γj that are pinned at the domain walls where the sign of µ changes. We
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ductor. Due to the aforementioned Hermiticity, the excitation described by γ is called Majorana
zero mode. With a straightforward calculation, one can show that γ2 = γ†γ = 1. Generalizing
these properties to multiple points xj where the chemical potential µ changes sign, we obtain a
Majorana zero mode γj at each interface (domain wall) at xj . These modes fulfill the Clifford
algebra

{γi, γj} = 2δi,j (16)

which encodes the normalization γ2
j = 1 together with the fermionic statistics γiγj = −γjγi.

As we have seen before, a single Majorana zero mode γ that is formed at the position where the
chemical potential changes sign is pinned at zero energy. We can understand this in algebraic
terms by noting that the effective low energy Hamiltonian Heff can only involve the excitation
γ as the other excitations are at the energy µ̄. Due to superselection (see below), each term of a
Hamiltonian has to involve an even power of fermionic operators. However, all such terms are
trivial as γ2n = (γ2)n = 1 so the effective Hamiltonian vanishes.

This argument does not work any more as soon as two Majorana zero modes γ1 and γ2 are
present. In fact, there is only one Hermitian combination iγ1γ2 that involves an even number of
fermionic operators. So the effective Hamiltonian has to be of the form

Heff = ε iγ1γ2 . (17)

In fact, the energy ε is approximately given by the overlap

ε ≈ 〈f1|HBdG|f2〉 � µ̄

∫
dx f(x− x1)

∗f(x− x2) � µ̄e−d/ξ (18)

with d = |x2 − x1| the distance between the zero modes and ξ = �∆/µ̄ the decay length that is
proportional to the inverse gap.

3 Majorana qubits

We have seen that the low energy properties of a topological superconductor are given by the
Majorana zero modes γj that are pinned at the domain walls where the sign of µ changes. We
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are interested in the Hilbert space that can be accessed by acting with the modes γj on the
ground state |0〉. It is an easy exercise in algebra to show that given a set of 2N Majorana zero
modes, we can construct N Dirac fermions cj via

cj =
1

2
(γ2j−1 + iγ2j), c†j =

1

2
(γ2j−1 − iγ2j). (19)

The Dirac fermions fulfill the canonical anticommutation relations {ci , c
†
j} = δi,j and {ci, cj} =

0.

The Hilbert space of a single fermionic mode (N = 1) is two-dimensional: the mode is either
filled or empty distinguished by the eigenvalue of the number operators nj = c†jcj which have
eigenvalues 0 or 1.4 Operators which will turn out to be important in the following discussion
are the fermion parity operators Pj = 1 − 2nj = (−1)nj which have the eigenvalue +1 if the
number of fermions is even and −1 if the number of fermions is odd. In terms of the Majorana
operators, the parity operators assume the simple form

Pj = −iγ2j−1γ2j. (20)

If we think about an implementation for a quantum computer, we are used to the example of
a spin-1

2
particle which is a model system for a generic two-level system [17]. However, we

can ask ourself the question whether we can also use the many-body Fock space for quantum
computation purposes. We know that the occupation states |n1, n2, . . . , nN〉 with nj ∈ {0, 1}
form a basis for the N -mode fermionic Fock space generated by the creation operators c†j ,
j ∈ {1, . . . , N}, starting from the vacuum state denoted by |0〉. The Fock space has dimension
2N (each mode can be either occupied or empty). Thus counting the degrees of freedom, we
are tempted to conclude that a fermionic system with N -modes emulates N -qubits. In the next
section, we will see that this naı̈ve counting argument is not completely correct as it violates the
so-called superselection rule.

3.1 Fermionic quantum computation

Expressing a Hamiltonian H or in fact any physical observable A which are bosonic operators
in terms of fermionic creation and annihilation operators, we are bound to only include terms
where an even number of fermion operators appear.5 The result is that the total fermion parity
P =

∏
j Pj = (−1)

∑
j nj is strictly conserved in a closed system; the reason for this is the fact

that
PAP = A (21)

which follows from PcjP = −cj and the fact that each term in A involves an even number of
fermionic operators. Note that the superconducting Hamiltonian (8) conserves the total fermion
parity even so the number of fermions is not conserved. Due to this constraint, we have the

4 Note that nj is idempotent as n2
j = c†jcjc

†
jcj = c†j(1 − c†jcj)cj = nj which proves the fact that the eigenvalues

of nj are 0 or 1.
5 From the correspondence principle, we know that for large quantum numbers the expectation values of operators
for physical observables should behave like (real) numbers. Due to the anticommutation relation of fermionic
operators, the correspondence principle for a potential fermionic observable would instead lead to anticommuting
Graßmann numbers on the classical level.
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Fig. 3: (a) Sketch of the parity Majorana qubit: Two Majorana zero modes together form a
single Dirac fermionic mode whose Hilbert space is two-dimensional as the mode can either
be empty or filled. Both states have the same energy. Four Majorana zero modes thus form a
four-dimensional Hilbert space of which due to the conservation of the total fermion parity only
a two-dimensional subspace can be accessed. This degenerate two-dimensional subspace is the
Majorana qubit. Gates on the qubit can be either performed by braiding or by coupling two
Majorana zero modes. As indicated in the figure, coupling γ1 to γ2 implements a σ̄z-operation
whereas coupling γ2 to γ3 leads to a σ̄x-operation. Given the fact that the Majorana zero modes
are sufficiently far apart from each other and that the environment only acts locally on the
system, these operations are not performed ‘accidentally’ by the environment and the Majorana
qubit is protected from both sign flip and bit flip errors. As these protection originates from
the conservation of the total fermion parity, the qubit is called parity-protected. (b) Elementary
operation of the braid group. The geometric representation of the braid group is in space-time;
the horizontal axis is the spacial axis whereas the vertical one is temporal. The counterclockwise
exchange of Majorana zero modes γ1 and γ2 in space-time forms the braid B1.

following superselection rule: given two states in a fermionic Fock space |ψ+〉 and |ψ−〉 with
different fermion parity, P|ψ±〉 = ±|ψ±〉 we have

〈ψ−|A|ψ+〉 = 〈ψ−|PAP|ψ+〉 = −〈ψ−|A|ψ+〉 = 0 (22)

for all observables A. Thus, there is no point in making superpositions between states of dif-
ferent parity as there will be no effect on any observable. We can thus restrict ourselves to one
superselection sector and keep the total fermion parity fixed with either P = +1 or P = −1.
The conclusion of this argument is that out of the 2N states in a fermionic Fock space, only
2N−1 can be effectively used for quantum computation purposes.

A further restriction to quantum computation using fermions arises from the fact that nonin-
teracting fermions subject to beam splitters, phase-shifters (delay lines), measurements of the
state of a single electron (so-called fermionic linear optics) does in fact not lead to any entan-
glement [18]. In order to generate entanglement, we need to add parity measurement of two
electrons which effectively involves interactions between different electrons [19, 20].

3.2 Encoding of a qubit

We have seen in the last section that due to the parity-conservation, we need to have two
fermionic modes to encode a single qubit. For concreteness, we will work in the even par-
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are interested in the Hilbert space that can be accessed by acting with the modes γj on the
ground state |0〉. It is an easy exercise in algebra to show that given a set of 2N Majorana zero
modes, we can construct N Dirac fermions cj via

cj =
1

2
(γ2j−1 + iγ2j), c†j =

1

2
(γ2j−1 − iγ2j). (19)

The Dirac fermions fulfill the canonical anticommutation relations {ci , c
†
j} = δi,j and {ci, cj} =

0.

The Hilbert space of a single fermionic mode (N = 1) is two-dimensional: the mode is either
filled or empty distinguished by the eigenvalue of the number operators nj = c†jcj which have
eigenvalues 0 or 1.4 Operators which will turn out to be important in the following discussion
are the fermion parity operators Pj = 1 − 2nj = (−1)nj which have the eigenvalue +1 if the
number of fermions is even and −1 if the number of fermions is odd. In terms of the Majorana
operators, the parity operators assume the simple form

Pj = −iγ2j−1γ2j. (20)

If we think about an implementation for a quantum computer, we are used to the example of
a spin-1

2
particle which is a model system for a generic two-level system [17]. However, we

can ask ourself the question whether we can also use the many-body Fock space for quantum
computation purposes. We know that the occupation states |n1, n2, . . . , nN〉 with nj ∈ {0, 1}
form a basis for the N -mode fermionic Fock space generated by the creation operators c†j ,
j ∈ {1, . . . , N}, starting from the vacuum state denoted by |0〉. The Fock space has dimension
2N (each mode can be either occupied or empty). Thus counting the degrees of freedom, we
are tempted to conclude that a fermionic system with N -modes emulates N -qubits. In the next
section, we will see that this naı̈ve counting argument is not completely correct as it violates the
so-called superselection rule.

3.1 Fermionic quantum computation

Expressing a Hamiltonian H or in fact any physical observable A which are bosonic operators
in terms of fermionic creation and annihilation operators, we are bound to only include terms
where an even number of fermion operators appear.5 The result is that the total fermion parity
P =

∏
j Pj = (−1)

∑
j nj is strictly conserved in a closed system; the reason for this is the fact

that
PAP = A (21)

which follows from PcjP = −cj and the fact that each term in A involves an even number of
fermionic operators. Note that the superconducting Hamiltonian (8) conserves the total fermion
parity even so the number of fermions is not conserved. Due to this constraint, we have the

4 Note that nj is idempotent as n2
j = c†jcjc

†
jcj = c†j(1 − c†jcj)cj = nj which proves the fact that the eigenvalues

of nj are 0 or 1.
5 From the correspondence principle, we know that for large quantum numbers the expectation values of operators
for physical observables should behave like (real) numbers. Due to the anticommutation relation of fermionic
operators, the correspondence principle for a potential fermionic observable would instead lead to anticommuting
Graßmann numbers on the classical level.
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Fig. 3: (a) Sketch of the parity Majorana qubit: Two Majorana zero modes together form a
single Dirac fermionic mode whose Hilbert space is two-dimensional as the mode can either
be empty or filled. Both states have the same energy. Four Majorana zero modes thus form a
four-dimensional Hilbert space of which due to the conservation of the total fermion parity only
a two-dimensional subspace can be accessed. This degenerate two-dimensional subspace is the
Majorana qubit. Gates on the qubit can be either performed by braiding or by coupling two
Majorana zero modes. As indicated in the figure, coupling γ1 to γ2 implements a σ̄z-operation
whereas coupling γ2 to γ3 leads to a σ̄x-operation. Given the fact that the Majorana zero modes
are sufficiently far apart from each other and that the environment only acts locally on the
system, these operations are not performed ‘accidentally’ by the environment and the Majorana
qubit is protected from both sign flip and bit flip errors. As these protection originates from
the conservation of the total fermion parity, the qubit is called parity-protected. (b) Elementary
operation of the braid group. The geometric representation of the braid group is in space-time;
the horizontal axis is the spacial axis whereas the vertical one is temporal. The counterclockwise
exchange of Majorana zero modes γ1 and γ2 in space-time forms the braid B1.

following superselection rule: given two states in a fermionic Fock space |ψ+〉 and |ψ−〉 with
different fermion parity, P|ψ±〉 = ±|ψ±〉 we have

〈ψ−|A|ψ+〉 = 〈ψ−|PAP|ψ+〉 = −〈ψ−|A|ψ+〉 = 0 (22)

for all observables A. Thus, there is no point in making superpositions between states of dif-
ferent parity as there will be no effect on any observable. We can thus restrict ourselves to one
superselection sector and keep the total fermion parity fixed with either P = +1 or P = −1.
The conclusion of this argument is that out of the 2N states in a fermionic Fock space, only
2N−1 can be effectively used for quantum computation purposes.

A further restriction to quantum computation using fermions arises from the fact that nonin-
teracting fermions subject to beam splitters, phase-shifters (delay lines), measurements of the
state of a single electron (so-called fermionic linear optics) does in fact not lead to any entan-
glement [18]. In order to generate entanglement, we need to add parity measurement of two
electrons which effectively involves interactions between different electrons [19, 20].

3.2 Encoding of a qubit

We have seen in the last section that due to the parity-conservation, we need to have two
fermionic modes to encode a single qubit. For concreteness, we will work in the even par-
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ity superselection sector and have the single logical qubit encoded as |0̄〉 = |00〉 and |1̄〉 =
|11〉. Thinking about a possible implementation in terms of Majorana modes, we encode each
fermionic mode in a pair of Majorana zero modes which are localized states sufficiently far
separated from each other, see Fig. 3. We denote the Majorana zero modes on the top as γ1 and
γ2 and the one on the bottom as γ3 and γ4, correspondingly. The Majorana modes are at zero
energy thus the two states |0̄〉 and |1̄〉 are degenerate in energy. The parity of the number of
electrons on the superconducting segments are given by P1 = −iγ1γ2 and P2 = −iγ3γ4. Due
to the parity constraint, we have P1 = P2 and the action of both operators on the logical qubit
emulates the σz Pauli-operator,

σ̄z = −iγ1γ2 = −iγ3γ4 . (23)

In order to have a complete qubit, we are left with the task to find a logical σ̄x, an operator
which anticommutes with σ̄z. It is easy to see that

σ̄x = −iγ2γ3 = −iγ1γ4 (24)

anticommutes with σ̄z due to the fact that the single Majorana fermions shared by both operators
anticommute with each other. In the situation where all the Majorana modes are sufficiently far
separated from each other, either gate on the logical qubit is a nonlocal operator. Due to this
nonlocality, it is highly unlikely that uncontrolled, random fluctuations in the environment will
execute a gate and thus act as an error on the logical qubit. This protection of the Majorana qubit
is called symmetry-protected topological order [21, 22] or simply parity-protection [23]. The
decisive difference to full topological order, as it is for example present in Kitaev’s toric code
[24], is the fact that logical Pauli operators are only required to be nonlocal as long as the parity
symmetry is conserved. Having a reservoir tunneling single electrons on the superconducting
island is a local process which violates the parity-conservation and immediately brings the
Majorana qubit out of its computational subspace.

The requirement for operating the Majorana qubit successfully in a protected manner is that
the environment does not provide single unpaired electrons. This sounds on the first sight very
stringent. However, the physical implementation of the system does only involve supercon-
ductors where most of the electrons are paired up into Cooper pairs and where at temperature
T only a exponentially small fraction proportional to the Boltzmann factor e−∆/kBT remains
unpaired. The storage time of quantum information in a Majorana qubit thus is expected to
increase exponentially when lowering the electron temperature.

3.3 Fusion and splitting

We have seen before that if you bring the Majorana zero modes γ1 and γ2 close together, there is
a finite energy splitting ε � µ̄e−d/ξ due to the overlap of the modes, see Fig. 4(a). This splitting
breaks the parity protection and as a result the two states |0〉 and |1〉 are no longer degenerate
in energy. It is then possible to detect in which state the system is [12, 23, 25]. The process
of bringing two Majorana modes together is called fusion. Graphically, we denote the fusion
experiment as the red box in Fig. 4(b). The fusion experiment implements the measurement in
the computational basis and is the last step in a quantum computation.

The reverse process is called splitting and is depicted as the blue box in Fig. 4(b). If one starts
with the vacuum state |0〉 when the Majorana zero modes are overlapping, the Majorana states

Topological Quantum Computers B2.11

(a)

d

E

|1⟩

|0⟩

∝ e−d/ξ
ϵ0

(b) (c)

|0⟩ |0⟩

|0⟩ |0⟩

|0⟩ |0⟩

α = ? β = ?

γ1 γ2 γ3 γ4 γ1 γ2 γ3 γ4

γ1 γ3 γ2 γ4| (γ1, γ2)0⟩ | (γ3, γ4)0⟩

Fig. 4: (a) Bringing two Majorana zero modes in close proximity (called fusion) such that their
distance d is of the decay length ξ, the energy difference ∝ exp(−d/ξ) between the state |0〉 and
|1〉 breaks the parity protection. By measuring whether or not the system is in the ground state,
a projective measurement in the computational basis states |0〉 and |1〉 is performed. Similarly,
we can split the Majorana zero modes that are initialized in the ground state |0〉 and produce
a parity protected state. (b) The fusion outcome (red box) of Majorana zero modes that have
been initialized to the vacuum (by splitting, blue box) is well-defined. (c) If the Majorana zero
modes have been interchanged (braided), the fusion outcomes α, β fluctuate.

can be separated from each other such that the initial state |0〉 becomes degenerate with |1〉 and
parity protection is achieved. It is clear that if one fuses the zero modes again immediately after
the splitting, the outcome of the fusion experiment is the state |0〉 with certainty, see Fig. 4(b).
On the other hand, if the pairing is changed such that at the fusion different Majorana zero
modes are paired up as in the splitting, the result is unclear, see Fig. 4(c).

As we are now thinking about different ways of pairing the Majorana zero modes to pro-
duce Dirac fermion that can be either empty or occupied, it is useful to introduce the notation
|(γ1, γ2)j〉. It denotes whether the state formed by γ1 and γ2 is occupied (j = 1) or empty
(j = 0). With this new notation, we can write for the logical state

|0̄〉 =
∣∣(γ1, γ2)0 (γ3, γ4)0

〉
, |1̄〉 =

∣∣(γ1, γ2)1 (γ3, γ4)1
〉
. (25)

The fusion experiment in Fig. 4(c) produces the outcome α, β ∈ {0, 1} with probability

P (α, β) =
∣∣〈(γ1, γ3)α (γ2, γ4)β

∣∣(γ1, γ2)0 (γ3, γ4)0
〉∣∣2 . (26)

Due to the conservation of the total parity P , the only possible outcomes are α = β = 0 and
α = β = 1. We will calculate the probabilities in the next section. However, we have to
first introduce the part of Fig. 4(c) in between the splitting and the fusion of the Majorana zero
modes. The exchange of the zero modes is called braiding.

4 Braiding

Exchange statistics is introduced in the basic physics courses as the action of permutations of
the symmetric group SN with N ! elements on the wavefunction of N identical particles. There
are two possibilities: either the wavefunction remains invariant (‘bosons’) or the wavefunc-
tion acquires a minus sign (‘fermions’) under the exchange of two particles. On a mathematical
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ity superselection sector and have the single logical qubit encoded as |0̄〉 = |00〉 and |1̄〉 =
|11〉. Thinking about a possible implementation in terms of Majorana modes, we encode each
fermionic mode in a pair of Majorana zero modes which are localized states sufficiently far
separated from each other, see Fig. 3. We denote the Majorana zero modes on the top as γ1 and
γ2 and the one on the bottom as γ3 and γ4, correspondingly. The Majorana modes are at zero
energy thus the two states |0̄〉 and |1̄〉 are degenerate in energy. The parity of the number of
electrons on the superconducting segments are given by P1 = −iγ1γ2 and P2 = −iγ3γ4. Due
to the parity constraint, we have P1 = P2 and the action of both operators on the logical qubit
emulates the σz Pauli-operator,

σ̄z = −iγ1γ2 = −iγ3γ4 . (23)

In order to have a complete qubit, we are left with the task to find a logical σ̄x, an operator
which anticommutes with σ̄z. It is easy to see that

σ̄x = −iγ2γ3 = −iγ1γ4 (24)

anticommutes with σ̄z due to the fact that the single Majorana fermions shared by both operators
anticommute with each other. In the situation where all the Majorana modes are sufficiently far
separated from each other, either gate on the logical qubit is a nonlocal operator. Due to this
nonlocality, it is highly unlikely that uncontrolled, random fluctuations in the environment will
execute a gate and thus act as an error on the logical qubit. This protection of the Majorana qubit
is called symmetry-protected topological order [21, 22] or simply parity-protection [23]. The
decisive difference to full topological order, as it is for example present in Kitaev’s toric code
[24], is the fact that logical Pauli operators are only required to be nonlocal as long as the parity
symmetry is conserved. Having a reservoir tunneling single electrons on the superconducting
island is a local process which violates the parity-conservation and immediately brings the
Majorana qubit out of its computational subspace.

The requirement for operating the Majorana qubit successfully in a protected manner is that
the environment does not provide single unpaired electrons. This sounds on the first sight very
stringent. However, the physical implementation of the system does only involve supercon-
ductors where most of the electrons are paired up into Cooper pairs and where at temperature
T only a exponentially small fraction proportional to the Boltzmann factor e−∆/kBT remains
unpaired. The storage time of quantum information in a Majorana qubit thus is expected to
increase exponentially when lowering the electron temperature.

3.3 Fusion and splitting

We have seen before that if you bring the Majorana zero modes γ1 and γ2 close together, there is
a finite energy splitting ε � µ̄e−d/ξ due to the overlap of the modes, see Fig. 4(a). This splitting
breaks the parity protection and as a result the two states |0〉 and |1〉 are no longer degenerate
in energy. It is then possible to detect in which state the system is [12, 23, 25]. The process
of bringing two Majorana modes together is called fusion. Graphically, we denote the fusion
experiment as the red box in Fig. 4(b). The fusion experiment implements the measurement in
the computational basis and is the last step in a quantum computation.

The reverse process is called splitting and is depicted as the blue box in Fig. 4(b). If one starts
with the vacuum state |0〉 when the Majorana zero modes are overlapping, the Majorana states
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Fig. 4: (a) Bringing two Majorana zero modes in close proximity (called fusion) such that their
distance d is of the decay length ξ, the energy difference ∝ exp(−d/ξ) between the state |0〉 and
|1〉 breaks the parity protection. By measuring whether or not the system is in the ground state,
a projective measurement in the computational basis states |0〉 and |1〉 is performed. Similarly,
we can split the Majorana zero modes that are initialized in the ground state |0〉 and produce
a parity protected state. (b) The fusion outcome (red box) of Majorana zero modes that have
been initialized to the vacuum (by splitting, blue box) is well-defined. (c) If the Majorana zero
modes have been interchanged (braided), the fusion outcomes α, β fluctuate.

can be separated from each other such that the initial state |0〉 becomes degenerate with |1〉 and
parity protection is achieved. It is clear that if one fuses the zero modes again immediately after
the splitting, the outcome of the fusion experiment is the state |0〉 with certainty, see Fig. 4(b).
On the other hand, if the pairing is changed such that at the fusion different Majorana zero
modes are paired up as in the splitting, the result is unclear, see Fig. 4(c).

As we are now thinking about different ways of pairing the Majorana zero modes to pro-
duce Dirac fermion that can be either empty or occupied, it is useful to introduce the notation
|(γ1, γ2)j〉. It denotes whether the state formed by γ1 and γ2 is occupied (j = 1) or empty
(j = 0). With this new notation, we can write for the logical state

|0̄〉 =
∣∣(γ1, γ2)0 (γ3, γ4)0

〉
, |1̄〉 =

∣∣(γ1, γ2)1 (γ3, γ4)1
〉
. (25)

The fusion experiment in Fig. 4(c) produces the outcome α, β ∈ {0, 1} with probability

P (α, β) =
∣∣〈(γ1, γ3)α (γ2, γ4)β

∣∣(γ1, γ2)0 (γ3, γ4)0
〉∣∣2 . (26)

Due to the conservation of the total parity P , the only possible outcomes are α = β = 0 and
α = β = 1. We will calculate the probabilities in the next section. However, we have to
first introduce the part of Fig. 4(c) in between the splitting and the fusion of the Majorana zero
modes. The exchange of the zero modes is called braiding.

4 Braiding

Exchange statistics is introduced in the basic physics courses as the action of permutations of
the symmetric group SN with N ! elements on the wavefunction of N identical particles. There
are two possibilities: either the wavefunction remains invariant (‘bosons’) or the wavefunc-
tion acquires a minus sign (‘fermions’) under the exchange of two particles. On a mathematical
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Fig. 5: (a) Braiding operators commute if their index i and j are more than 2 apart. The reason
is that Bi and Bj do not have any strand in common so either one can be executed first. (b)
The Yang-Baxter equation BjBj+1Bj = Bj+1BjBj+1 provides a nontrivial relation between
the generators Bj and Bj+1. That the two braids are topologically equivalent can be seen as
follows: in both braids the dark strand can be considered to lie in the very back and connects
the initial position j + 2 to the final position j. Similarly, the bright strand lies in front and
connects j to j + 2. The middle strand starts at j + 1 and ends at the same place. The braids
are equivalent as they can be deformed into each other by sliding the middle strand j + 1 in
between the two other strands from the left to the right.

level, the origin of this distinction lies in the fact that the Hamiltonian of identical particles com-
mutes with an arbitrary element of the symmetric group SN . Thus, it is possible to classify the
eigenstates of the Hamiltonian in terms of irreducible representations of the permutation group.
There are only two one-dimensional representations: the trivial representation (corresponding
to bosons) and the sign representation (corresponding to fermions). Any representation whose
dimension is larger than one leads to a degeneracy, which is called exchange degeneracy as
it originates simply from the fact that particles are indistinguishable.6 In fact, the spin-statistic
theorem can be proven in the context of relativistic field theory in 3+1 dimensions, which states
that particles with integer spin are bosons whereas particles with half-integer spin are fermions.

It has been pointed out that the physical process of exchanging two particles is important. In
fact, the exchange of two identical particles has to be viewed as a (slow) process that occurs in
space-time [26]. In 2 + 1 dimensions, the relevant group is the braid group BN of N strands as
trajectories in space-time for exchanging two particles clock- or counterclockwise are topolog-
ical distinct. The braid group BN consists of N strands. The generators of the group Bj denote
the braiding strand j and j+1 in the counterclockwise direction (in Fig. 3(b), B1 braids strand 1
and 2 counterclockwise). The inverse operation braids the strands clockwise. Two elements of
the group are equivalent if the corresponding braids can be smoothly deformed into each other
by keeping their ends fixed. Note that different from the symmetric group Bj �= B−1

j . The braid
group of N strands is generated by B1, . . . , BN−1 where the generators fulfill the following two

6 The statistics of identical particles which transforms according to higher dimension representations of the per-
mutation groups is called parastatistics. However, even if particles with parastatistics were to exist they would
offer nothing new as a set of Klein transformations could be used to map particles with parastatistics onto bosons
or fermions with a set of internal quantum numbers (like spin, . . . ). Later, we will see that such a mapping is not
possible in 2+1 dimensions and that higher dimensional representations of the braid group are truly different from
the one-dimensional representations.
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relations (Artin [27])

BiBj = BjBi, |i− j| ≥ 2 and BjBj+1Bj = Bj+1BjBj+1; (27)

the latter is also called Yang-Baxter equation, see Fig. 5. Different from the symmetric group
SN the group order is infinity which makes the classification of all irreducible representation
difficult.

In 3 + 1 dimensions, clock- and counterclockwise depends on the observer (coordinate system)
and thus the exchanges Bj and B−1

j are topologically equivalent. As a result, we obtain B2
j =

B−1
j Bj = 1. Under this additional constraint, the braid group BN reduces to the symmetric

group SN . The dependence of the exchange statistic on the dimension of space is as follows:

• 1D: no exchange of particles is possible

• 2D: the exchange is described by the braid group BN

• 3D: we have B2
j = 1 and the symmetric group SN characterizes the exchange (only

bosons and fermions are possible)

We see that 2D is special and we will study some examples of nontrivial exchange statistics in
2 + 1 dimensions in the following.

4.1 Abelian anyons

The one-dimensional (unitary) representations of the braid group are simple to construct. In
general, the action of Bj onto a wavefunction is given by a phase factor ρ(Bj) = eiθj with
θj ∈ [0, 2π). The Yang-Baxter equation demands

ρ(Bj)ρ(Bj+1)ρ(Bj) = ρ(Bj+1)ρ(Bj)ρ(Bj+1) ⇒ e2iθj+iθj+1 = eiθj+2iθj+1 ⇒ θj = θj+1

for any 1D representation. As a result, all the angles are equal and the representation

ρθ(Bj) = eiθ (28)

is characterized by a single angle θ.

Note that for θ = 0, we get the customary result for bosons that interchanging two particles does
nothing to the wavefunction whereas for θ = π interchanging introduces a minus sign which
is the result for fermions. In 2 + 1 dimension, all angles in between 0 and π are allowed and
particles with θ �= 0 or π are called (Abelian) anyons. As an example, we note that quasipar-
ticles in the fractional quantum Hall effect at filling fraction ν = 1

n
with n an odd integer are

anyons with θ = νπ. Even thought the Abelian anyons are interesting from a physical point of
view, they do not offer any resources that can be used for quantum computing as braiding only
introduces simple phase factors.

Particles whose wavefunctions transform according to higher dimensional irreducible represen-
tations of the braid group are called non-Abelian anyons. A necessary ingredient is a ground
state degeneracy (which grows exponentially with the number of particles). The effect of Bj ,
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Fig. 5: (a) Braiding operators commute if their index i and j are more than 2 apart. The reason
is that Bi and Bj do not have any strand in common so either one can be executed first. (b)
The Yang-Baxter equation BjBj+1Bj = Bj+1BjBj+1 provides a nontrivial relation between
the generators Bj and Bj+1. That the two braids are topologically equivalent can be seen as
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level, the origin of this distinction lies in the fact that the Hamiltonian of identical particles com-
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trajectories in space-time for exchanging two particles clock- or counterclockwise are topolog-
ical distinct. The braid group BN consists of N strands. The generators of the group Bj denote
the braiding strand j and j+1 in the counterclockwise direction (in Fig. 3(b), B1 braids strand 1
and 2 counterclockwise). The inverse operation braids the strands clockwise. Two elements of
the group are equivalent if the corresponding braids can be smoothly deformed into each other
by keeping their ends fixed. Note that different from the symmetric group Bj �= B−1

j . The braid
group of N strands is generated by B1, . . . , BN−1 where the generators fulfill the following two

6 The statistics of identical particles which transforms according to higher dimension representations of the per-
mutation groups is called parastatistics. However, even if particles with parastatistics were to exist they would
offer nothing new as a set of Klein transformations could be used to map particles with parastatistics onto bosons
or fermions with a set of internal quantum numbers (like spin, . . . ). Later, we will see that such a mapping is not
possible in 2+1 dimensions and that higher dimensional representations of the braid group are truly different from
the one-dimensional representations.
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relations (Artin [27])

BiBj = BjBi, |i− j| ≥ 2 and BjBj+1Bj = Bj+1BjBj+1; (27)

the latter is also called Yang-Baxter equation, see Fig. 5. Different from the symmetric group
SN the group order is infinity which makes the classification of all irreducible representation
difficult.

In 3 + 1 dimensions, clock- and counterclockwise depends on the observer (coordinate system)
and thus the exchanges Bj and B−1

j are topologically equivalent. As a result, we obtain B2
j =

B−1
j Bj = 1. Under this additional constraint, the braid group BN reduces to the symmetric

group SN . The dependence of the exchange statistic on the dimension of space is as follows:

• 1D: no exchange of particles is possible

• 2D: the exchange is described by the braid group BN

• 3D: we have B2
j = 1 and the symmetric group SN characterizes the exchange (only

bosons and fermions are possible)

We see that 2D is special and we will study some examples of nontrivial exchange statistics in
2 + 1 dimensions in the following.

4.1 Abelian anyons

The one-dimensional (unitary) representations of the braid group are simple to construct. In
general, the action of Bj onto a wavefunction is given by a phase factor ρ(Bj) = eiθj with
θj ∈ [0, 2π). The Yang-Baxter equation demands

ρ(Bj)ρ(Bj+1)ρ(Bj) = ρ(Bj+1)ρ(Bj)ρ(Bj+1) ⇒ e2iθj+iθj+1 = eiθj+2iθj+1 ⇒ θj = θj+1

for any 1D representation. As a result, all the angles are equal and the representation

ρθ(Bj) = eiθ (28)

is characterized by a single angle θ.

Note that for θ = 0, we get the customary result for bosons that interchanging two particles does
nothing to the wavefunction whereas for θ = π interchanging introduces a minus sign which
is the result for fermions. In 2 + 1 dimension, all angles in between 0 and π are allowed and
particles with θ �= 0 or π are called (Abelian) anyons. As an example, we note that quasipar-
ticles in the fractional quantum Hall effect at filling fraction ν = 1

n
with n an odd integer are

anyons with θ = νπ. Even thought the Abelian anyons are interesting from a physical point of
view, they do not offer any resources that can be used for quantum computing as braiding only
introduces simple phase factors.

Particles whose wavefunctions transform according to higher dimensional irreducible represen-
tations of the braid group are called non-Abelian anyons. A necessary ingredient is a ground
state degeneracy (which grows exponentially with the number of particles). The effect of Bj ,
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the counterclockwise exchange of two particles j and j + 1, is then represented by a unitary
matrix ρ(Bj) on the ground state manifold. As different unitary matrices do not commute, the
representation is non-Abelian which is the reason for their name.

The usefulness of non-Abelian anyons for topological quantum computation relies on the fact
that the degeneracy of the ground state manifold is protected and the gates implemented by the
exchange of particles are exact (up to an unimportant global phase) [12]. A specific species of
non-Abelian anyons is called universal for quantum computation, if, for any given gate, a braid
can be found which approximates the gate with arbitrary accuracy.

4.2 Ising anyons

We have seen that Majorana zero modes in topological superconductors lead to a degenerate
ground state of size 2N−1 that grows exponentially with the number of zero modes. It is thus a
natural question to ask if the process of braiding the zero modes leads to a nontrivial operator
ργ(Bj) on the ground state manifold. It can be shown, see Appendix, that braiding of Majorana
zero modes in topological superconductors is described by the unitary representation [28–32]

ργ(Bj) = exp
(
−π

4
γjγj+1

)
=

1√
2
(1− γjγj+1) (29)

of the braid group. The representation ργ is also called Ising anyons. The clockwise exchange
of the strands j and j + 1 is implemented by ργ(B

−1
j ) = ργ(Bj)

† = ρ†γ(Bj) = exp
(
π
4
γjγj+1

)
.

Under the action of ργ(Bj), the Majorana zero modes are mapped onto each other with

γ′
j = ρ†γ(Bj)γjργ(Bj) = −γj+1, γ′

j+1 = ρ†γ(Bj)γj+1ργ(Bj) = γj (30)

while the other modes remain unaffected. That this is the correct expression is reinforced by
the fact that the (local) parity

P ′
j = ρ†γ(Bj)Pjργ(Bj) = −iγ′

jγ
′
j+1 = −iγjγj+1 = Pj (31)

is conserved [33].

To check that ργ is a representation of the braid group, we have to check ργ(Bi)ργ(Bj) =
ργ(Bj)ργ(Bi), |i − j| ≥ 2, and the Yang-Baxter equation, see Eq. (27). The first relation
follows easily as ργ(Bi) and ρ(Bj) commute due to the fact that they act on different Majorana
zero modes and consist of an even number of Majorana operators. The Yang-Baxter equation
can be directly evaluated

ργ(Bj)ργ(Bj+1)ργ(Bj) =
1

23/2
(1− γjγj+1)(1− γj+1γj+2)(1− γjγj+1)

= − 1√
2
(γjγj+1 + γj+1γj+2) (32)

and similarly

ργ(Bj+1)ργ(Bj)ργ(Bj+1) = − 1√
2
(γjγj+1 + γj+1γj+2) ; (33)

as a result, the unitary gate performed by braiding Majorana zero modes only depends on the
braid and not on the concrete paths taken. In particular, both ways depicted in Fig. 5(b) of
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moving the Majorana zero modes around each other produces the same operation on the ground
state manifold.

Thus, braiding can be used to perform topologically protected gates onto the encoded Majorana
qubit states |0̄〉 and |1̄〉. Indeed for N = 4, the interchange of Majorana zero modes implements
the operations

ργ(B1) = ργ(B3) = exp
(
−i

π

4
σ̄z
)
, ργ(B2) = exp

(
−i

π

4
σ̄x

)
(34)

that correspond to rotations by 90◦ on the Bloch sphere. We have now all the ingredients to
calculate the probability P (α, β) of Eq. (26), see Fig. 4(c). Performing the braid B2 acts as
ργ(B2) = 2−1/2(1 − iσ̄x) on the ground state manifold. In particular, the initial state |0̄〉 =∣∣(γ1, γ2)0 (γ3, γ4)0

〉
gets transformed into

ργ(B2)|0̄〉 =
1√
2
(|0̄〉 − i|1̄〉) = 1√

2
(|00〉 − i|11〉) . (35)

The probability P (α, β) for the outcomes α = β ∈ {0, 1} after the braid are given by

P (0, 0) =
∣∣〈00|ργ(B2)|0̄〉

∣∣2 = 1

2
, P (1, 1) =

∣∣〈11|ργ(B2)|0̄〉
∣∣2 = 1

2
. (36)

As the result with P (α, α) = 50% for both α = 0 and α = 1 relies on the way Majorana zero
modes braid, the fusion experiment in Fig. 4(c) has been proposed recently as a first test of the
non-Abelian nature of Majorana zero modes [34].

Even though these operations are protected, braiding of Ising anyons is not enough to per-
form arbitrary unitary operations on the ground state manifold. The single qubit rotations are
not complete as only rotations by (multiples of) 90◦ around the coordinate axes x, y, z can be
implemented. In particular, a rotation by 45◦ is missing (called π

8
-phase or T-gate) and an en-

tangling gate needs to be added [12,35]. In concrete realizations, entanglement can be obtained
by a joint parity measurement of two qubits [20, 23]. In fact, it is enough if the T-gate is imple-
mented with a fidelity of 90% as a distillation protocol using the exact Clifford gates called the
Magic state distillation can be employed to purify the state [35].

4.3 Fibonacci anyons

Even though the Ising anyons provided by the Majorana modes have the nice property that
they allow for noise-insensitive operations on a parity-protected qubit by braiding, the group of
operations that can be obtained in this way is not enough for universal quantum computation.
However, luckily, there exist other anyons, in particular Fibonacci anyons that allow for a uni-
versal set of operations by braiding [4,12]. That Majorana zero modes do not offer universality
is connected to the fact that the Hilbert space can be locally assigned to Majorana modes: any
pair of Majorana zero modes can either be filled or empty. For Fibonacci anyons the relation
between the anyons and the Hilbert space of the ground state thus has to be more complicated
to overcome this issue.

We denote Fibonacci anyons with the letter τ . A pair of Fibonacci anyons has two possible
fusion outcomes: it can either fuse to the vacuum 0 or to a Fibonacci anyon τ . In particular,
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the counterclockwise exchange of two particles j and j + 1, is then represented by a unitary
matrix ρ(Bj) on the ground state manifold. As different unitary matrices do not commute, the
representation is non-Abelian which is the reason for their name.

The usefulness of non-Abelian anyons for topological quantum computation relies on the fact
that the degeneracy of the ground state manifold is protected and the gates implemented by the
exchange of particles are exact (up to an unimportant global phase) [12]. A specific species of
non-Abelian anyons is called universal for quantum computation, if, for any given gate, a braid
can be found which approximates the gate with arbitrary accuracy.

4.2 Ising anyons

We have seen that Majorana zero modes in topological superconductors lead to a degenerate
ground state of size 2N−1 that grows exponentially with the number of zero modes. It is thus a
natural question to ask if the process of braiding the zero modes leads to a nontrivial operator
ργ(Bj) on the ground state manifold. It can be shown, see Appendix, that braiding of Majorana
zero modes in topological superconductors is described by the unitary representation [28–32]

ργ(Bj) = exp
(
−π

4
γjγj+1

)
=

1√
2
(1− γjγj+1) (29)

of the braid group. The representation ργ is also called Ising anyons. The clockwise exchange
of the strands j and j + 1 is implemented by ργ(B

−1
j ) = ργ(Bj)

† = ρ†γ(Bj) = exp
(
π
4
γjγj+1

)
.

Under the action of ργ(Bj), the Majorana zero modes are mapped onto each other with

γ′
j = ρ†γ(Bj)γjργ(Bj) = −γj+1, γ′

j+1 = ρ†γ(Bj)γj+1ργ(Bj) = γj (30)

while the other modes remain unaffected. That this is the correct expression is reinforced by
the fact that the (local) parity

P ′
j = ρ†γ(Bj)Pjργ(Bj) = −iγ′

jγ
′
j+1 = −iγjγj+1 = Pj (31)

is conserved [33].

To check that ργ is a representation of the braid group, we have to check ργ(Bi)ργ(Bj) =
ργ(Bj)ργ(Bi), |i − j| ≥ 2, and the Yang-Baxter equation, see Eq. (27). The first relation
follows easily as ργ(Bi) and ρ(Bj) commute due to the fact that they act on different Majorana
zero modes and consist of an even number of Majorana operators. The Yang-Baxter equation
can be directly evaluated

ργ(Bj)ργ(Bj+1)ργ(Bj) =
1

23/2
(1− γjγj+1)(1− γj+1γj+2)(1− γjγj+1)

= − 1√
2
(γjγj+1 + γj+1γj+2) (32)

and similarly

ργ(Bj+1)ργ(Bj)ργ(Bj+1) = − 1√
2
(γjγj+1 + γj+1γj+2) ; (33)

as a result, the unitary gate performed by braiding Majorana zero modes only depends on the
braid and not on the concrete paths taken. In particular, both ways depicted in Fig. 5(b) of
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moving the Majorana zero modes around each other produces the same operation on the ground
state manifold.

Thus, braiding can be used to perform topologically protected gates onto the encoded Majorana
qubit states |0̄〉 and |1̄〉. Indeed for N = 4, the interchange of Majorana zero modes implements
the operations

ργ(B1) = ργ(B3) = exp
(
−i

π

4
σ̄z
)
, ργ(B2) = exp

(
−i

π

4
σ̄x

)
(34)

that correspond to rotations by 90◦ on the Bloch sphere. We have now all the ingredients to
calculate the probability P (α, β) of Eq. (26), see Fig. 4(c). Performing the braid B2 acts as
ργ(B2) = 2−1/2(1 − iσ̄x) on the ground state manifold. In particular, the initial state |0̄〉 =∣∣(γ1, γ2)0 (γ3, γ4)0

〉
gets transformed into

ργ(B2)|0̄〉 =
1√
2
(|0̄〉 − i|1̄〉) = 1√

2
(|00〉 − i|11〉) . (35)

The probability P (α, β) for the outcomes α = β ∈ {0, 1} after the braid are given by

P (0, 0) =
∣∣〈00|ργ(B2)|0̄〉

∣∣2 = 1

2
, P (1, 1) =

∣∣〈11|ργ(B2)|0̄〉
∣∣2 = 1

2
. (36)

As the result with P (α, α) = 50% for both α = 0 and α = 1 relies on the way Majorana zero
modes braid, the fusion experiment in Fig. 4(c) has been proposed recently as a first test of the
non-Abelian nature of Majorana zero modes [34].

Even though these operations are protected, braiding of Ising anyons is not enough to per-
form arbitrary unitary operations on the ground state manifold. The single qubit rotations are
not complete as only rotations by (multiples of) 90◦ around the coordinate axes x, y, z can be
implemented. In particular, a rotation by 45◦ is missing (called π

8
-phase or T-gate) and an en-

tangling gate needs to be added [12,35]. In concrete realizations, entanglement can be obtained
by a joint parity measurement of two qubits [20, 23]. In fact, it is enough if the T-gate is imple-
mented with a fidelity of 90% as a distillation protocol using the exact Clifford gates called the
Magic state distillation can be employed to purify the state [35].

4.3 Fibonacci anyons

Even though the Ising anyons provided by the Majorana modes have the nice property that
they allow for noise-insensitive operations on a parity-protected qubit by braiding, the group of
operations that can be obtained in this way is not enough for universal quantum computation.
However, luckily, there exist other anyons, in particular Fibonacci anyons that allow for a uni-
versal set of operations by braiding [4,12]. That Majorana zero modes do not offer universality
is connected to the fact that the Hilbert space can be locally assigned to Majorana modes: any
pair of Majorana zero modes can either be filled or empty. For Fibonacci anyons the relation
between the anyons and the Hilbert space of the ground state thus has to be more complicated
to overcome this issue.

We denote Fibonacci anyons with the letter τ . A pair of Fibonacci anyons has two possible
fusion outcomes: it can either fuse to the vacuum 0 or to a Fibonacci anyon τ . In particular,
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|i〉 = |fj−1, fj, fj+1〉 ρτ (Bj)|i〉 =
∑

f ′
j
cf ′

j
|fj−1, f

′
j, fj+1〉

|0, τ, τ〉 ω−1|0, τ, τ〉
|τ, τ, 0〉 ω−1|τ, τ, 0〉
|0, τ, 0〉 ω−2|0, τ, 0〉
|τ, 0, τ〉 φ−1ω2|τ, 0, τ〉+ φ−1/2ω|τ, τ, τ〉
|τ, τ, τ〉 φ−1/2ω|τ, 0, τ〉 − φ−1|τ, τ, τ〉

Table 1: Result of the elementary braid Bj of Fibonacci anyons on the basis formed by the
fusion outcomes. Note that the effect of braiding the strands j and j + 1 is local in the sense
that it only changes the fusion outcome fj . The parameters are the phase ω = −q = −e2πi/5

and the golden ratio φ = (1 +
√
5)/2 = q + q̄ + 1.

we have that |(τ1, τ2)0〉, |(τ1, τ2)τ 〉 forms a basis of the two-dimensional ground state manifold
of two Fibonacci anyons. However, akin to the Ising anyons, there is a superselection rule
forbidding us to use these two states as a qubit. The ‘Fibonacci qubit’ thus has to be formed
from a subspace of three Fibonacci anyons τ1, τ2, τ3 with the possible fusion outcomes7

|0̄〉 = |((τ1, τ2)0, τ3)τ 〉, |nc〉 = |((τ1, τ2)τ , τ3)0〉, |1̄〉 = |((τ1, τ2)τ , τ3)τ 〉 . (37)

Note that the first and the last state are in the same superselection sector (as they fuse to τ ) and
thus can be used as a genuine Fibonacci qubit. The state of the qubit is then determined by the
fusion outcome of the first two Fibonacci anyons while the fusion with the last Fibonacci anyon
is constraint to be τ . The third state with total fusion outcome 0 is then a noncomputational (nc)
state.

For the Hilbert space of the degenerate ground state of the N -Fibonacci anyons τ1, . . . , τN , we
introduce the following notation

|0, τ, f2, . . . , fN〉 = |(...((τ1, τ2)f2 , τ3)f3 , . . . )fN 〉, fj ∈ {0, τ}, (38)

where we added the fusion outcomes 0 and τ of the zeroth and first Fibonacci anyons for future
convenience. A particular state is then labelled by writing the fusion outcome fj in between
strand j and j + 1. In order to determine the dimension of the ground state, we have to find
the number of states of the form in Eq. (38). The fusion outcomes f0 = 0, f1, . . . , fN are only
constraint by the fact that the fusion of the vacuum fj = 0 (at step j) with a Fibonacci anyon
necessarily gives a Fibonacci anyon as fusion outcome and thus fj+1 = τ . Thus, we need to
count the number of states |0, τ, f1, . . . , fN〉 without two 0s in a row. Denoting by Zj (Oj) the
number of states with fj = 0 (fj = 1), we have to solve the recurrence relations

Zj+1 = Oj, Oj+1 = Oj + Zj, O0 = 0, Z0 = 1 (39)

with the result Zj+1 = Oj = Fj with Fj the j-th Fibonacci number. Note that this relation is
the reason why the anyons are called Fibonacci anyons.

7 Note that the fusion of the vacuum 0 with τ can only give τ .
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The unitary representation ρτ (Bj) of braiding the Fibonacci anyons τj and τj+1 can be expressed
as a local relation of the fusion outcomes fj−1, fj, fj+1, see Table 1 and [36, 37].8 It can be
directly checked that ρτ is unitary. To check that it is in fact a representation, we have to prove
Eq. (27). As before, the first relation in (27) follows from the fact that ρτ (Bj) only depends
on fj−1, fj, fj+1 and only changes the value of fj . As a result, ρ(Bi) trivially commutes with
ρ(Bj) for |i− j| ≥ 2.

In the last step, we have to test whether ρτ satisfies the Yang-Baxter equation. As for the Ising
anyons, we do this directly by calculating UV U and V UV with U = ρτ (Bj) and V = ρτ (Bj+1)
separately and subsequently verify that UV U = V UV . The Yang-Baxter equation acts on the
three strand j, j+1, j+2. In a first step, we determine the representation of ρτ (Bj) and ρ(Bj+1)
in the Hilbert space |fj−1, fj, fj+1, fj+2〉. Note that we suppress the labels of the other fusion
outcomes as they remain unchanged. Moreover, we see from Table 1 that U and V cannot
change the value of fj−1 and fj+2 (superselection) and thus we can verify the relation for each
value of a = fj−1 and b = fj+2 separately.

With the rules of Table 1, we find [Uab is the matrix ρ(Bj) in the subspace with fixed a and b]

U00 = V00 = (ω−1); U0τ =

(
ω−2 0

0 ω−1

)
, V0τ =

(
φ−1ω2 φ−1/2ω

φ−1/2ω −φ−1

)
; (40)

Uτ0 = V0τ , Vτ0 = U0τ ; Uττ =




φ−1ω2 0 φ−1/2ω

0 ω−1 0

φ−1/2ω 0 −φ−1


 , Vττ =



ω−1 0 0

0 φ−1ω2 φ−1/2ω

0 φ−1/2ω −φ−1


 .

Here, we have ordered the basisstates as follows: {|0, τ, τ, 0〉}00, {|0, τ, 0, τ〉, |0, τ, τ, τ〉}0τ ,
{|τ, 0, τ, 0〉, |τ, τ, τ, 0〉}τ0, and {|τ, 0, τ, τ〉, |τ, τ, 0, τ〉, |τ, τ, τ, τ〉}ττ . It is now an easy exercise
in matrix multiplication to verify UV U = V UV and thus to show that ρτ is a unitary represen-
tation of the braid group.

We obtain more insights in the operations performed by braiding by choosing j = 1, f0 = 0 and
looking at the states |((τ1, τ2)a, τ3)b〉 of the three Fibonacci anyons in Eq. (38). Performing B1

by brading the first two anyons (corresponding to the matrices U0b), the states simply acquire
the phases ω−2 = e−4πi/5 (if a = 0) and ω−1 = e3πi/5 (if a = τ ) depending only on their
fusion outcome a irrespective of the value of b.9 On the other hand, braiding the anyons τ2
and τ3 with B2 (corresponding to V0b) is not diagonal in this basis as the two anyons do not
have a well-defined fusion outcome; in the alternative basis |(τ1, (τ2, τ3)a′)b〉 the operation B2

would be the simple phase factors ω−1, ω−2 depending on a′ as before. It is easy to check that
V0τ = F−1U0τF with the transformation matrix

F = F−1 =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, (41)

which corresponds to the basis transformation

|(τ1, (τ2, τ3)τ )0〉 = |((τ1, τ2)τ , τ3)0〉, (42)

|(τ1, (τ2, τ3)0)τ 〉 = φ−1|((τ1, τ2)0, τ3)τ 〉+ φ−1/2|((τ1, τ2)τ , τ3)τ 〉
|(τ1, (τ2, τ3)τ )τ 〉 = φ−1/2|((τ1, τ2)0, τ3)τ 〉 − φ−1|((τ1, τ2)τ , τ3)τ 〉 (43)

8 Note that the references denote our 0, τ by ∗, p.
9 The corresponding phases are known as elements of the R-matrix.
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|i〉 = |fj−1, fj, fj+1〉 ρτ (Bj)|i〉 =
∑

f ′
j
cf ′

j
|fj−1, f

′
j, fj+1〉

|0, τ, τ〉 ω−1|0, τ, τ〉
|τ, τ, 0〉 ω−1|τ, τ, 0〉
|0, τ, 0〉 ω−2|0, τ, 0〉
|τ, 0, τ〉 φ−1ω2|τ, 0, τ〉+ φ−1/2ω|τ, τ, τ〉
|τ, τ, τ〉 φ−1/2ω|τ, 0, τ〉 − φ−1|τ, τ, τ〉

Table 1: Result of the elementary braid Bj of Fibonacci anyons on the basis formed by the
fusion outcomes. Note that the effect of braiding the strands j and j + 1 is local in the sense
that it only changes the fusion outcome fj . The parameters are the phase ω = −q = −e2πi/5

and the golden ratio φ = (1 +
√
5)/2 = q + q̄ + 1.

we have that |(τ1, τ2)0〉, |(τ1, τ2)τ 〉 forms a basis of the two-dimensional ground state manifold
of two Fibonacci anyons. However, akin to the Ising anyons, there is a superselection rule
forbidding us to use these two states as a qubit. The ‘Fibonacci qubit’ thus has to be formed
from a subspace of three Fibonacci anyons τ1, τ2, τ3 with the possible fusion outcomes7

|0̄〉 = |((τ1, τ2)0, τ3)τ 〉, |nc〉 = |((τ1, τ2)τ , τ3)0〉, |1̄〉 = |((τ1, τ2)τ , τ3)τ 〉 . (37)

Note that the first and the last state are in the same superselection sector (as they fuse to τ ) and
thus can be used as a genuine Fibonacci qubit. The state of the qubit is then determined by the
fusion outcome of the first two Fibonacci anyons while the fusion with the last Fibonacci anyon
is constraint to be τ . The third state with total fusion outcome 0 is then a noncomputational (nc)
state.

For the Hilbert space of the degenerate ground state of the N -Fibonacci anyons τ1, . . . , τN , we
introduce the following notation

|0, τ, f2, . . . , fN〉 = |(...((τ1, τ2)f2 , τ3)f3 , . . . )fN 〉, fj ∈ {0, τ}, (38)

where we added the fusion outcomes 0 and τ of the zeroth and first Fibonacci anyons for future
convenience. A particular state is then labelled by writing the fusion outcome fj in between
strand j and j + 1. In order to determine the dimension of the ground state, we have to find
the number of states of the form in Eq. (38). The fusion outcomes f0 = 0, f1, . . . , fN are only
constraint by the fact that the fusion of the vacuum fj = 0 (at step j) with a Fibonacci anyon
necessarily gives a Fibonacci anyon as fusion outcome and thus fj+1 = τ . Thus, we need to
count the number of states |0, τ, f1, . . . , fN〉 without two 0s in a row. Denoting by Zj (Oj) the
number of states with fj = 0 (fj = 1), we have to solve the recurrence relations

Zj+1 = Oj, Oj+1 = Oj + Zj, O0 = 0, Z0 = 1 (39)

with the result Zj+1 = Oj = Fj with Fj the j-th Fibonacci number. Note that this relation is
the reason why the anyons are called Fibonacci anyons.

7 Note that the fusion of the vacuum 0 with τ can only give τ .
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The unitary representation ρτ (Bj) of braiding the Fibonacci anyons τj and τj+1 can be expressed
as a local relation of the fusion outcomes fj−1, fj, fj+1, see Table 1 and [36, 37].8 It can be
directly checked that ρτ is unitary. To check that it is in fact a representation, we have to prove
Eq. (27). As before, the first relation in (27) follows from the fact that ρτ (Bj) only depends
on fj−1, fj, fj+1 and only changes the value of fj . As a result, ρ(Bi) trivially commutes with
ρ(Bj) for |i− j| ≥ 2.

In the last step, we have to test whether ρτ satisfies the Yang-Baxter equation. As for the Ising
anyons, we do this directly by calculating UV U and V UV with U = ρτ (Bj) and V = ρτ (Bj+1)
separately and subsequently verify that UV U = V UV . The Yang-Baxter equation acts on the
three strand j, j+1, j+2. In a first step, we determine the representation of ρτ (Bj) and ρ(Bj+1)
in the Hilbert space |fj−1, fj, fj+1, fj+2〉. Note that we suppress the labels of the other fusion
outcomes as they remain unchanged. Moreover, we see from Table 1 that U and V cannot
change the value of fj−1 and fj+2 (superselection) and thus we can verify the relation for each
value of a = fj−1 and b = fj+2 separately.

With the rules of Table 1, we find [Uab is the matrix ρ(Bj) in the subspace with fixed a and b]

U00 = V00 = (ω−1); U0τ =

(
ω−2 0

0 ω−1

)
, V0τ =

(
φ−1ω2 φ−1/2ω

φ−1/2ω −φ−1

)
; (40)

Uτ0 = V0τ , Vτ0 = U0τ ; Uττ =




φ−1ω2 0 φ−1/2ω

0 ω−1 0

φ−1/2ω 0 −φ−1


 , Vττ =



ω−1 0 0

0 φ−1ω2 φ−1/2ω

0 φ−1/2ω −φ−1


 .

Here, we have ordered the basisstates as follows: {|0, τ, τ, 0〉}00, {|0, τ, 0, τ〉, |0, τ, τ, τ〉}0τ ,
{|τ, 0, τ, 0〉, |τ, τ, τ, 0〉}τ0, and {|τ, 0, τ, τ〉, |τ, τ, 0, τ〉, |τ, τ, τ, τ〉}ττ . It is now an easy exercise
in matrix multiplication to verify UV U = V UV and thus to show that ρτ is a unitary represen-
tation of the braid group.

We obtain more insights in the operations performed by braiding by choosing j = 1, f0 = 0 and
looking at the states |((τ1, τ2)a, τ3)b〉 of the three Fibonacci anyons in Eq. (38). Performing B1

by brading the first two anyons (corresponding to the matrices U0b), the states simply acquire
the phases ω−2 = e−4πi/5 (if a = 0) and ω−1 = e3πi/5 (if a = τ ) depending only on their
fusion outcome a irrespective of the value of b.9 On the other hand, braiding the anyons τ2
and τ3 with B2 (corresponding to V0b) is not diagonal in this basis as the two anyons do not
have a well-defined fusion outcome; in the alternative basis |(τ1, (τ2, τ3)a′)b〉 the operation B2

would be the simple phase factors ω−1, ω−2 depending on a′ as before. It is easy to check that
V0τ = F−1U0τF with the transformation matrix

F = F−1 =

(
φ−1 φ−1/2

φ−1/2 −φ−1

)
, (41)

which corresponds to the basis transformation

|(τ1, (τ2, τ3)τ )0〉 = |((τ1, τ2)τ , τ3)0〉, (42)

|(τ1, (τ2, τ3)0)τ 〉 = φ−1|((τ1, τ2)0, τ3)τ 〉+ φ−1/2|((τ1, τ2)τ , τ3)τ 〉
|(τ1, (τ2, τ3)τ )τ 〉 = φ−1/2|((τ1, τ2)0, τ3)τ 〉 − φ−1|((τ1, τ2)τ , τ3)τ 〉 (43)

8 Note that the references denote our 0, τ by ∗, p.
9 The corresponding phases are known as elements of the R-matrix.
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Fig. 6: (a) The braid B2B
2
1B2 moves the combined object (τ1, τ2)a (dark) around the anyon τ3

(light). If the fusion outcome is the vaccum (a = 0), the state of the system remains unchanged.
On the other hand, if the fusion outcome is an anyon (a = τ ), the result is equivalent to (U0τ )

2

obtained by simply moving an elementary anyon around the light braid. (b) The braid where
the red anyon is ‘weaved’ around the black anyons is approximately equivalent to B4

1 with an
error of 1%. (c) The approximate braid of (b) can be used to implement a two gate (a controlled
unitary gate) on 6 anyons (the black anyons form the target and the red anyons the control qubit).
The state of the control qubit is encoded in the fusion outcome of the two leftmost red braids.
If the fusion outcome is the vaccum (the control qubit is in state |0̄〉), the result of the braid is
the identity operation. If the fusion outcome is an anyon (the control qubit is in state |1̄〉), the
net result is U4 = (U0τ )

4 according to (b).

also known as the F -move.

A single Fibonacci qubit is realized by three Fibonacci anyons τ1, τ2, τ3 in the state |0, τ, f, τ〉.
The states with f ∈ {0, τ} form the logical qubit |0̄〉, |1̄〉. From the calculation in Eq. (40)
we know that the gate U0τ with the phases e−πi/10±7πi/10 is performed while braiding the first
two anyons. Up to the irrelevant (Abelian) factor e−πi/10, the braid corresponds to a rotation
by 7

5
π ≡ 252◦ around the z-axis of the Bloch sphere. Similarly, braiding anyons τ2 and τ3

yields the gate V0τ in a protected fashion. This gate is another rotation by 252◦ around an axis
which corresponds to the basis transformation given by F . In terms of the Bloch sphere, the
rotation V0τ is a rotation around the axis v =

(
2φ−3/2, 0, φ−2 − φ−1

)T . Braiding the anyons
τ1, τ2, τ3, arbitrary products of U0τ and V0τ can be implemented and all single qubit gates can
be performed in a protected manner.

To understand the idea of Ref. [38] of how to implement two qubit gates, we first have to
appreciate another crucial property of anyon braiding: braiding the fusion product (τ1, τ2)a as a
composite object results in the same net effect as braiding the elementary object a. As a simple
example, let us consider the states |0, τ, a, b〉 = |((τ1, τ2)a, τ3)b〉 as before. As seen in Fig. 6(a),
the braid B = B2B

2
1B2 moves the composite object (τ1, τ2)a around τ3 and is represented by
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W = ρτ (B). From Eq. (40), we obtain after a straightforward calculation the result10

Wab =




1, a = 0, b = τ,

ω−4, a = τ, b = 0,

ω−2, a = τ, b = τ.

(44)

We observe that as expected moving two anyons which fuse to the vaccum (a = 0) around
another anyon does not change the state of the system. However, when the fusion outcome is
another anyon (a = τ ), the result is (U0τ )

2.

The following procedure allows to obtain a controlled two-qubit gate by braiding: first, we find
a ‘weave’, i.e., a braid where only a single anyon is moved around two static anyons that is
equivalent to a braid which only involves the static anyons. It can be checked that the weave of
the third anyon shown in Fig. 6(b) is equivalent to B4

1 of the first two anyons up to an error that
is smaller than a percent. Having found such a weave by brute force search, a controlled gate
can be obtained with the idea of the composite object explained above, see Fig. 6(c). As before,
we encode two qubits in the states |ā, b̄〉 = |((τ1, τ2)a, τ3)τ 〉 ⊗ |((τ4, τ5)b, τ6)τ 〉 of six Fibonacci
anyons.11 We use |b̄〉 (formed by anyons τ4, τ5, τ6 in red) as the control qubit and |ā〉 (formed by
anyons τ1, τ2, τ3 in black) as the target. As the state of the control qubit is given by the fusion
outcome b of τ4, τ5 moving the two anyons together around the anyons of the target qubit does
nothing as long as b = 0 (in this case, they are equivalent to the vacuum that braids trivially). In
order to obtain a controlled gate that does not change the state of |b̄〉, we let the pair of anyons
τ4, τ5 perform the weave found above. In this case, the control anyons (up to a small error)
remain unaffected and, provided that b = τ , the operation U4 = (U0τ )

4 = diag(e2πi/5, e−4πi/5)
is performed on the target. As a result, the braid of Fig. 6(c) acting on two qubits entangles them
by a controlled-U4 gate. Together with the universal set of single qubit gates found before, all
gates can be performed by braiding Fibonacci anyons and the anyons are universal for quantum
computation. More information on Fibonacci anyons can be found, e.g., in Refs. [7, 12,39,40].

5 Conclusion

We have shown how non-Abelian anyons can be used for topological quantum computers. The
computation is performed by the wordlines of the anyons forming knots in space-time. The
outcome of the computation is the fusion outcomes at the last step of the computation. The
computation is topologically protected in the sense that the gates performed do not depend on
the concrete trajectories of the anyons but only on the overall topology of the braid.

The discussion so far has been only concerned with zero temperature. At any finite temperature
there is a finite fraction ∝ exp(−M̄/kBT ) of thermal anyons present in the system (M̄ is the gap
protecting the topological phase). Those anyons braid in an unwanted, uncontrollable fashion
around the anyons forming the qubit. As a result, the computation is dephased and fails. If

10 It follows from V0τ (U0τ )
2V0τ = diag(1, ω−2) and V00(U00)

2V00 = ω−4.
11 In terms of our states |f0, f1, . . . 〉 where fj denotes the fusion outcome of all the anyons to the left, we have
to add another passive anyon, which fuses with τ to the vaccuum, in between the three anyons forming qubit a
and the three anyons forming qubit b. As a result, we have the encoding |ā, b̄〉 = |0, τ, a, τ, 0, τ, b, τ〉. Without the
additional fusion outcome 0 the value b would not denote the fusion outcome of the two anyons to the left of it.
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which corresponds to the basis transformation given by F . In terms of the Bloch sphere, the
rotation V0τ is a rotation around the axis v =

(
2φ−3/2, 0, φ−2 − φ−1

)T . Braiding the anyons
τ1, τ2, τ3, arbitrary products of U0τ and V0τ can be implemented and all single qubit gates can
be performed in a protected manner.

To understand the idea of Ref. [38] of how to implement two qubit gates, we first have to
appreciate another crucial property of anyon braiding: braiding the fusion product (τ1, τ2)a as a
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1, a = 0, b = τ,

ω−4, a = τ, b = 0,
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We observe that as expected moving two anyons which fuse to the vaccum (a = 0) around
another anyon does not change the state of the system. However, when the fusion outcome is
another anyon (a = τ ), the result is (U0τ )
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a ‘weave’, i.e., a braid where only a single anyon is moved around two static anyons that is
equivalent to a braid which only involves the static anyons. It can be checked that the weave of
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1 of the first two anyons up to an error that
is smaller than a percent. Having found such a weave by brute force search, a controlled gate
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nothing as long as b = 0 (in this case, they are equivalent to the vacuum that braids trivially). In
order to obtain a controlled gate that does not change the state of |b̄〉, we let the pair of anyons
τ4, τ5 perform the weave found above. In this case, the control anyons (up to a small error)
remain unaffected and, provided that b = τ , the operation U4 = (U0τ )
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is performed on the target. As a result, the braid of Fig. 6(c) acting on two qubits entangles them
by a controlled-U4 gate. Together with the universal set of single qubit gates found before, all
gates can be performed by braiding Fibonacci anyons and the anyons are universal for quantum
computation. More information on Fibonacci anyons can be found, e.g., in Refs. [7, 12,39,40].
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We have shown how non-Abelian anyons can be used for topological quantum computers. The
computation is performed by the wordlines of the anyons forming knots in space-time. The
outcome of the computation is the fusion outcomes at the last step of the computation. The
computation is topologically protected in the sense that the gates performed do not depend on
the concrete trajectories of the anyons but only on the overall topology of the braid.

The discussion so far has been only concerned with zero temperature. At any finite temperature
there is a finite fraction ∝ exp(−M̄/kBT ) of thermal anyons present in the system (M̄ is the gap
protecting the topological phase). Those anyons braid in an unwanted, uncontrollable fashion
around the anyons forming the qubit. As a result, the computation is dephased and fails. If

10 It follows from V0τ (U0τ )
2V0τ = diag(1, ω−2) and V00(U00)
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and the three anyons forming qubit b. As a result, we have the encoding |ā, b̄〉 = |0, τ, a, τ, 0, τ, b, τ〉. Without the
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B2.20 Fabian Hassler

toplogical quantum computation is so fragile with respect to temperature, why did we bother
to discuss the ideas at length? The answer to this question has many facets. First and most
importantly, non-Abelian anyons are an interesting new form of quantum matter. The study of
the potential ways in which (quasi-)particles may braid depending on the dimension of space
is an interesting and important question of basic physics research even without applications to
quantum computation.

Regarding the potential for quantum computation, the argument given above simply means that
we have to employ error correction at some level. Non-Abelian anyons have inspired error
correction for a long time and have lead to the concept of topological codes [5]. In particular,
even if there is no passive system which features Fibonacci anyons at zero temperature, we can
imagine keeping a system actively in a topological state with non-Abelian anyons by constantly
performing syndrome measurements [41, 42].

Regarding the parity-protected quantum computation with Majorana zero modes; even though
the protocol strictly only works at zero temperatures, we may expect the Majorana qubit to
have a rather long lifetime at finite temperature. Moreover, it has recently been shown that the
non-Abelian nature of the Majorana zero modes allows for dedicated error protection protocols
relying on their non-Abelian nature [43–46]. The study of systems where the elementary exci-
tations are particles with exotic exchange statistics is still a very active field with many surprises
to come. Presently, there is a big experimental push to realize Ising-anyons in the form of Ma-
jorana zero modes in superconductor-semiconductor heterostructures, see Ref. [47]. However,
so far, no compelling evidence of particles with non-Abelian exchange statistics has ever been
observed.

I want to thank Lisa Arndt and Alex Ziesen for carefully reading the manuscript and proposing
changes that helped to considerably increase the readability of the text.

Appendix

Non-Abelian Berry phase and braiding

In this appendix, we want to derive the unitary operation that is performed when exchanging
two Majorana zero modes. We discuss this in a system consisting of 4 Majorana zero modes
which are aligned in a Y-junction [32, 48]. We call the Majorana modes at the three ends of the
Y-junction γ1, γ2, γ3. The Majorana mode in the middle is denoted by γ0. The Hamiltonian of
the system assumes the form

H = i
3∑

j=1

εjγ0γj = iγ0(ε · γ) (45)

with εj three parameters which gives the coupling strength of the two Majorana modes on each
leg of the junction. Slowly tuning these couplings in a controlled fashion makes it possible to
interchange Majorana modes and thus we can observe the non-Abelian statistics. In particular,
we would like to study the situation in Fig. 7.

We start at time (a) with ε3 = ε̄ and ε1 = ε2 = 0. Then we increase ε1 to ε̄ and afterwards
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γ1

γ3
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𝒪𝒪31 𝒪𝒪12 𝒪𝒪23

Fig. 7: Steps to interchange the blue and red Majorana zero mode that are initially located at
position 1 and 2. The first move from (a) to (b), moves the blue Majorana zero mode from 1 to
3. In the first step (small circle below), the coupling between γ0 and γ1 is increased which leads
to the delocalization of the blue Majorana zero mode as a superposition of γ1, γ0, γ3. In the
second step, the coupling between γ0 and γ3 is reduces which moves the blue Majorana mode
to position 3. In the step from (b) to (c), the red Majorana mode is moved from position 2 to
position 1. In the last step, the blue Majorana mode is moved from 3 to 2.

decrease ε3 to 0 such that at time (b) we have the blue Majorana zero mode moved to the
bottom (from position 1 to position 3). To finish the exchange, we do the same procedure from
position 2 to 1 and finally from position 3 to 2.

Non-Abelian Berry phase

The Berry phase is a geometric phase which arises when a parameter of the Hamiltonian is
changed slowly and we want to observe the change in the ground state wavefunction. In the
case where the ground state is degenerate, the change in the parameter might induce transi-
tions between the different degenerate states and we have a non-Abelian Berry phase which is
generated by the non-Abelian gauge field

Ak
ab = i〈ψa(ε)|∂εk |ψb(ε)〉; (46)

here, ψa(ε) denote the different degenerate ground state wavefunctions for the Hamiltonian with
parameters ε.

Changing the parameter along a contour ε(s), the ground states are transformed according to
the unitary matrix

U = P exp

(
i

∫
A · dε

)
(47)

where P denotes the path ordering.

A basis independent way to obtain the evolution of the ground state due to Kato is the following
[49]: given the projector P (ε) onto the ground state manifold (which depends on the parameters
ε), we define the Kato Hamiltonian

Kk = i[P (ε), ∂εkP (ε)]. (48)
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toplogical quantum computation is so fragile with respect to temperature, why did we bother
to discuss the ideas at length? The answer to this question has many facets. First and most
importantly, non-Abelian anyons are an interesting new form of quantum matter. The study of
the potential ways in which (quasi-)particles may braid depending on the dimension of space
is an interesting and important question of basic physics research even without applications to
quantum computation.

Regarding the potential for quantum computation, the argument given above simply means that
we have to employ error correction at some level. Non-Abelian anyons have inspired error
correction for a long time and have lead to the concept of topological codes [5]. In particular,
even if there is no passive system which features Fibonacci anyons at zero temperature, we can
imagine keeping a system actively in a topological state with non-Abelian anyons by constantly
performing syndrome measurements [41, 42].

Regarding the parity-protected quantum computation with Majorana zero modes; even though
the protocol strictly only works at zero temperatures, we may expect the Majorana qubit to
have a rather long lifetime at finite temperature. Moreover, it has recently been shown that the
non-Abelian nature of the Majorana zero modes allows for dedicated error protection protocols
relying on their non-Abelian nature [43–46]. The study of systems where the elementary exci-
tations are particles with exotic exchange statistics is still a very active field with many surprises
to come. Presently, there is a big experimental push to realize Ising-anyons in the form of Ma-
jorana zero modes in superconductor-semiconductor heterostructures, see Ref. [47]. However,
so far, no compelling evidence of particles with non-Abelian exchange statistics has ever been
observed.

I want to thank Lisa Arndt and Alex Ziesen for carefully reading the manuscript and proposing
changes that helped to considerably increase the readability of the text.

Appendix

Non-Abelian Berry phase and braiding

In this appendix, we want to derive the unitary operation that is performed when exchanging
two Majorana zero modes. We discuss this in a system consisting of 4 Majorana zero modes
which are aligned in a Y-junction [32, 48]. We call the Majorana modes at the three ends of the
Y-junction γ1, γ2, γ3. The Majorana mode in the middle is denoted by γ0. The Hamiltonian of
the system assumes the form

H = i
3∑

j=1

εjγ0γj = iγ0(ε · γ) (45)

with εj three parameters which gives the coupling strength of the two Majorana modes on each
leg of the junction. Slowly tuning these couplings in a controlled fashion makes it possible to
interchange Majorana modes and thus we can observe the non-Abelian statistics. In particular,
we would like to study the situation in Fig. 7.

We start at time (a) with ε3 = ε̄ and ε1 = ε2 = 0. Then we increase ε1 to ε̄ and afterwards
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(a) (b) (c) (d)

γ1

γ3

γ2γ0

𝒪𝒪31 𝒪𝒪12 𝒪𝒪23

Fig. 7: Steps to interchange the blue and red Majorana zero mode that are initially located at
position 1 and 2. The first move from (a) to (b), moves the blue Majorana zero mode from 1 to
3. In the first step (small circle below), the coupling between γ0 and γ1 is increased which leads
to the delocalization of the blue Majorana zero mode as a superposition of γ1, γ0, γ3. In the
second step, the coupling between γ0 and γ3 is reduces which moves the blue Majorana mode
to position 3. In the step from (b) to (c), the red Majorana mode is moved from position 2 to
position 1. In the last step, the blue Majorana mode is moved from 3 to 2.

decrease ε3 to 0 such that at time (b) we have the blue Majorana zero mode moved to the
bottom (from position 1 to position 3). To finish the exchange, we do the same procedure from
position 2 to 1 and finally from position 3 to 2.

Non-Abelian Berry phase

The Berry phase is a geometric phase which arises when a parameter of the Hamiltonian is
changed slowly and we want to observe the change in the ground state wavefunction. In the
case where the ground state is degenerate, the change in the parameter might induce transi-
tions between the different degenerate states and we have a non-Abelian Berry phase which is
generated by the non-Abelian gauge field

Ak
ab = i〈ψa(ε)|∂εk |ψb(ε)〉; (46)

here, ψa(ε) denote the different degenerate ground state wavefunctions for the Hamiltonian with
parameters ε.

Changing the parameter along a contour ε(s), the ground states are transformed according to
the unitary matrix

U = P exp

(
i

∫
A · dε

)
(47)

where P denotes the path ordering.

A basis independent way to obtain the evolution of the ground state due to Kato is the following
[49]: given the projector P (ε) onto the ground state manifold (which depends on the parameters
ε), we define the Kato Hamiltonian

Kk = i[P (ε), ∂εkP (ε)]. (48)
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with which the unitary evolution in Eq. (47) can be written as

UK = P exp

(
i

∫
K · dε

)
. (49)

It can be shown that UK = U for any closed contour [50].

Calculating the non-Abelian Berry phase

The Hamiltonian H has the eigenenergies ±ε (ε = |ε|) where both of them are doubly degen-
erate. For the Berry phase, we need to project onto the ground state sector on which H = −ε.
The projector is given by

P (ε) =
1

2ε
(ε−H) =

1

2ε
[ε− iγ0(ε · γ)] (50)

which leads to
∂εkP (ε) =

iγ0
2ε3

∑
j �=k

(εkεjγj − ε2jγk). (51)

Now it is straightforward to calculate the non-Abelian gauge field

Kk =
i

4ε4

∑
i

∑
j �=k

εi

(
εkεj

2(δij−1)γiγj︷ ︸︸ ︷
[γ0γi, γ0γj]−ε2j

2(δik−1)γiγk︷ ︸︸ ︷
[γ0γi, γ0γk]

)

=
i

2ε4

[∑
j �=k

ε2j
∑
i �=k

εiγiγk − εk
∑
i �=j

∑
j �=k

εiεjγiγj

)

=
i

2ε4

[
(ε2 − ε2k)(ε · γ − εkγk)γk + ε2k(ε · γ − εkγk)γk

]

=
i

2ε2
(ε · γ − εkγk)γk. (52)

The result when changing a single parameter reads

i

∫ εstop

εstart

dεk K
k =

= −
∑

j �=k εjγj (indep. of εk)︷ ︸︸ ︷
(εkγk − ε · γ) γk ×

∫ εstop

εstart

dεk
2ε2︸ ︷︷ ︸

= 1
2ε⊥

arctan(εk/ε⊥)
∣∣εstop
εstart

(53)

with ε⊥ =
(∑

j �=k ε
2
j

)1/2

.

A braid is constructed from elementary moves, see Fig. 7. We exemplify the calculation of
O31. Starting with ε3 = ε̄ and ε1 = ε2 = 0, we first turn on ε1 from 0 to ε̄ which yields
(k = 1, εstart = 0, εstop = ε̄)

Ua = exp

(
−ε̄γ3γ1 ×

1

2ε̄

π

4

)
= exp

(π
8
γ1γ3

)
.
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In the second step, we start with ε1 = ε3 = ε̄ and ε2 = 0 and reduce ε3 down to 0. This step
yields a non-Abelian Berry phase (k = 3, εstart = ε̄, εstop = 0)

Ub = exp

(
−ε̄γ1γ3 ×− 1

2ε̄

π

4

)
= exp

(π
8
γ1γ3

)
.

So all together, we have the transformation

O31 = UbUa = exp
(π
4
γ1γ3

)
=

1√
2
(1 + γ1γ3) (54)

from (a) to (b) that moves the Majorana zero mode from position 1 to 3. The whole operation
of exchanging the particle 1 and 2 is given by

ργ(B1) = O23O12O31 =
1

23/2
(1+γ3γ2)(1+γ2γ1)(1+γ1γ3) =

1√
2
(1−γ1γ2) = e−

π
4
γ1γ2 . (55)

The braiding operation ρ(B1) transforms the Majorana zero modes as

γ1 �→ ργ(B1)γ1ργ(B1)
† = γ2, γ2 �→ ργ(B1)γ2ργ(B1)

† = −γ1. (56)

It is a natural question to ask which of the two modes γ1 or γ2 gets a minus sign. It turns out that
in our setting of Fig. 7, γ2 obtains a minus sign (it is transformed to −γ1) as it is only moved
once in the second step (O12). On the other hand, γ1 is moved twice, in the first step (O31) and
in the last step (O32). Indeed, in a single step, we have

O31γ1O†
31 = −γ3 (57)

and thus γ1 is moved to −γ3. As a result, we would obtain the conjugate representation
ργ(B1) = e

π
4
γ1γ2 , that is often employed in the literature, if the geometry in Fig. 7 would

look like a

Y

rather than a Y.
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with which the unitary evolution in Eq. (47) can be written as

UK = P exp

(
i

∫
K · dε

)
. (49)

It can be shown that UK = U for any closed contour [50].

Calculating the non-Abelian Berry phase

The Hamiltonian H has the eigenenergies ±ε (ε = |ε|) where both of them are doubly degen-
erate. For the Berry phase, we need to project onto the ground state sector on which H = −ε.
The projector is given by

P (ε) =
1

2ε
(ε−H) =

1

2ε
[ε− iγ0(ε · γ)] (50)

which leads to
∂εkP (ε) =

iγ0
2ε3

∑
j �=k

(εkεjγj − ε2jγk). (51)

Now it is straightforward to calculate the non-Abelian gauge field

Kk =
i

4ε4

∑
i

∑
j �=k

εi

(
εkεj

2(δij−1)γiγj︷ ︸︸ ︷
[γ0γi, γ0γj]−ε2j

2(δik−1)γiγk︷ ︸︸ ︷
[γ0γi, γ0γk]

)

=
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2ε4
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j �=k

ε2j
∑
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εiγiγk − εk
∑
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∑
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εiεjγiγj

)

=
i

2ε4

[
(ε2 − ε2k)(ε · γ − εkγk)γk + ε2k(ε · γ − εkγk)γk

]

=
i

2ε2
(ε · γ − εkγk)γk. (52)

The result when changing a single parameter reads

i

∫ εstop

εstart

dεk K
k =

= −
∑

j �=k εjγj (indep. of εk)︷ ︸︸ ︷
(εkγk − ε · γ) γk ×

∫ εstop

εstart

dεk
2ε2︸ ︷︷ ︸

= 1
2ε⊥

arctan(εk/ε⊥)
∣∣εstop
εstart

(53)

with ε⊥ =
(∑

j �=k ε
2
j

)1/2

.

A braid is constructed from elementary moves, see Fig. 7. We exemplify the calculation of
O31. Starting with ε3 = ε̄ and ε1 = ε2 = 0, we first turn on ε1 from 0 to ε̄ which yields
(k = 1, εstart = 0, εstop = ε̄)

Ua = exp

(
−ε̄γ3γ1 ×

1

2ε̄

π

4

)
= exp

(π
8
γ1γ3

)
.
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In the second step, we start with ε1 = ε3 = ε̄ and ε2 = 0 and reduce ε3 down to 0. This step
yields a non-Abelian Berry phase (k = 3, εstart = ε̄, εstop = 0)

Ub = exp

(
−ε̄γ1γ3 ×− 1

2ε̄

π

4

)
= exp

(π
8
γ1γ3

)
.

So all together, we have the transformation

O31 = UbUa = exp
(π
4
γ1γ3

)
=

1√
2
(1 + γ1γ3) (54)

from (a) to (b) that moves the Majorana zero mode from position 1 to 3. The whole operation
of exchanging the particle 1 and 2 is given by

ργ(B1) = O23O12O31 =
1

23/2
(1+γ3γ2)(1+γ2γ1)(1+γ1γ3) =

1√
2
(1−γ1γ2) = e−

π
4
γ1γ2 . (55)

The braiding operation ρ(B1) transforms the Majorana zero modes as

γ1 �→ ργ(B1)γ1ργ(B1)
† = γ2, γ2 �→ ργ(B1)γ2ργ(B1)

† = −γ1. (56)

It is a natural question to ask which of the two modes γ1 or γ2 gets a minus sign. It turns out that
in our setting of Fig. 7, γ2 obtains a minus sign (it is transformed to −γ1) as it is only moved
once in the second step (O12). On the other hand, γ1 is moved twice, in the first step (O31) and
in the last step (O32). Indeed, in a single step, we have

O31γ1O†
31 = −γ3 (57)

and thus γ1 is moved to −γ3. As a result, we would obtain the conjugate representation
ργ(B1) = e

π
4
γ1γ2 , that is often employed in the literature, if the geometry in Fig. 7 would

look like a

Y

rather than a Y.
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2013).

[21] Z.-C. Gu and X.-G. Wen, Tensor-entanglement-filtering renormalization approach and
symmetry protected topological order, Phys. Rev. B 80, 155131 (2009).

[22] F. Pollmann, E. Berg, A. M. Turner, and M. Oshikawa, Symmetry protection of topological
order in one-dimensional quantum spin systems, Phys. Rev. B 85, 075125 (2012).

[23] F. Hassler, A. R. Akhmerov, and C. W. J. Beenakker, Top-transmon: Hybrid supercon-
ducting qubit for parity-protected quantum computation, New J. Phys. 13, 095004 (2011).

[24] A. Kitaev, Anyons in an exactly solved model and beyond, Ann. Phys. (N. Y.) 321, 2
(2006).

[25] A. Stern, Anyons and the quantum Hall effect—a pedagogical review, Ann. Phys. (N. Y.)
323, 204 (2008).

[26] F. Wilczek, Magnetic flux, angular momentum, and statistics, Phys. Rev. Lett. 48, 1144
(1982).

[27] E. Artin, Theory of braids, Ann. Math. 48, 101 (1947).

[28] N. Read and D. Green, Paired states of fermions in two dimensions with breaking of
parity and time-reversal symmetries, and the fractional quantum Hall effect, Phys. Rev. B
61, 10267 (2000).

[29] D. A. Ivanov, Non-Abelian statistics of half-quantum vortices in p-wave superconductors,
Phys. Rev. Lett. 86, 268 (2001).

[30] J. Alicea, Y. Oreg, G. Refael, F. von Oppen, and M. P. A. Fisher, Non-Abelian statistics
and topological quantum computation in 1D wire networks, Nat. Phys. 7, 412 (2011).

[31] D. J. Clarke, J. D. Sau, and S. Tewari, Majorana fermion exchange in quasi-one-
dimensional networks, Phys. Rev. B 84, 035120 (2011).

[32] B. van Heck, A. R. Akhmerov, F. Hassler, M. Burrello, and C. W. J. Beenakker, Coulomb-
assisted braiding of Majorana fermions in a Josephson junction array, New J. Phys. 14,
035019 (2012).

[33] B. I. Halperin, Y. Oreg, A. Stern, G. Refael, J. Alicea, and F. von Oppen, Adiabatic ma-
nipulations of Majorana fermions in a three-dimensional network of quantum wires, Phys.
Rev. B 85, 144501 (2012).

[34] D. Aasen, M. Hell, R. V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T. S.
Jespersen, J. A. Folk, C. M. Marcus, K. Flensberg, and J. Alicea, Milestones toward
Majorana-based quantum computing, Phys. Rev. X 6, 031016 (2016).



B2.24 Fabian Hassler

References

[1] R. Hanbury Brown and R. Q. Twiss, A test of a new type of stellar interferometer on Sirius,
Nature 178, 1046 (1956).

[2] E. Brannen and H. I. S. Ferguson, The question of correlation between photons in coherent
light rays, Nature 178, 481 (1956).

[3] I. Silva and O. Freire, The concept of the photon in question, Hist. Stud. Nat. Sci. 43, 453
(2013).

[4] M. H. Freedman, M. Larsen, and Z. Whang, A modular functor which is universal for
quantum computation, Commun. Math. Phys. 227, 605 (2002).

[5] A. Yu. Kitaev, Fault-tolerant quantum computation by anyons, Ann. Phys. (N. Y.) 303, 2
(2003).

[6] P. A. M. Dirac, Quantised singularities in the electromagnetic field, Proc. R. Soc. A 133,
60 (1931).

[7] J. Preskill, Lecture notes: Quantum computation, chapter 9 (2004).

[8] J. Alicea, New directions in the pursuit of Majorana fermions in solid state systems, Rep.
Prog. Phys. 75, 076501 (2012).

[9] M. Leijnse and K. Flensberg, Introduction to topological superconductivity and Majorana
fermions, Semicond. Sci. Technol. 27, 124003 (2012).

[10] C. W. J. Beenakker, Search for Majorana fermions in superconductors, Annu. Rev. Con.
Mat. Phys. 4, 113 (2013).

[11] J. K. Pachos, Introduction to topological quantum computation (Cambridge University
Press, Cambridge, 2012).

[12] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. Das Sarma, Non-Abelian anyons
and topological quantum computation, Rev. Mod. Phys. 80, 1083 (2008).

[13] A. Stern and N. H. Lindner, Topological quantum computation—from basic concepts to
first experiments, Science 339, 1179 (2013).

[14] S. Das Sarma, M. Freedman, and C. Nayak, Majorana zero modes and topological quan-
tum computation, npj Quantum Inf. 1, 15001 (2015).

[15] R. Jackiw and C. Rebbi, Solitons with fermion number 1/2, Phys. Rev. D 13, 3398 (1976).

[16] A. Yu. Kitaev, Unpaired Majorana fermions in quantum wires, Phys.-Usp. 44 (suppl.), 131
(2001).

[17] R. P. Feynman, R. B. Leighton, and M. Sands, Feynman lectures on physics: Quantum
mechanics, vol. 3 (Addison-Wesley, Reading, 1965).

[18] B. M. Terhal and D. P. DiVincenzo, Classical simulation of noninteracting-fermion quan-
tum circuits, Phys. Rev. A 65, 032325 (2002).

Topological Quantum Computers B2.25

[19] C. W. J. Beenakker, D. P. DiVincenzo, C. Emary, and M. Kindermann, Charge detection
enables free-electron quantum computation, Phys. Rev. Lett. 93, 020501 (2004).

[20] F. Hassler, Majorana qubits, in Quantum Information Processing. Lecture Notes of the 44th
IFF Spring School, edited by D. P. DiVincenzo (Verlag des Forschungszentrums Jülich,
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1 Introduction

Control is a key component in turning science into technology [1], [2]. Broadly and colloquially
speaking, control looks at providing the user / experimenter with external parameters to steer
a given dynamical system to her liking 1 rather than simply observing its internal dynamics.
Control is in this sense ubiquitous to modern technology. In this colloquial sense, quantum
control is transferring that idea to quantum systems and thus contains both hard- and software
of many kinds.

The ubiquity of control has given rise to the field of control theory. This is a field of applied
mathematics that looks at how to choose said external parameters in order to drive the dynamical
system to one’s liking. It has spawned ideas of open-loop control, i.e., the pre-determination
of controls given the laws of nature (that were a key ingredient to, e.g., the Apollo program)
as well as closed-loop-control, interleaving of observation and adjustment as we know it in
our daily lives from thermostats. This type of optimal control theory takes the hardware setup
as a given, however ideally, these are developed in tandem. The mathematical procedures of
open-loop-control typically involve optimizing a cost function, hence the name optimal control.

The application of optimal control is not an entirely new idea. Pioneering applications were
primarily chemistry, such as the laser control of chemical reactions and magnetic resonance.
By now, quantum optimal control is also applied to a large spectrum of modern quantum
technologies (Quantum 2.0) [2]. This implies a certain tradition of fragmentation - quantum
optimal control researchers tend to be in departments of mathematics, chemistry, computer
science, and physics and follow their specific idiosyncrasies [1]. Modern efforts have gone
very far in overcoming this fragmentation which is fruitful in learning from each other and
respecting the different goals – quantum control of complex reactions does for example deal
with large Hilbert spaces whereas control in quantum computing aims at sufficiently low errors
in order to meet error correction thresholds.

In this series of lectures, we would like to introduce the audience to quantum optimal control.
The first lecture will cover basic ideas and principles of optimal control with the goal of
demystifying its jargon. The second lecture will describe computational tools (for computations
both on paper and in a computer) for its implementation as well as their conceptual background.
The third chapter will go through a series of popular examples from different applications of
quantum technology.

These are lectures notes. Other than a textbook, it makes a significant difference to attend the
lectures it goes with rather than use it to self-study. Other than a review, it is not complete but
rather serves to introduce clarify the concepts of the field. This also means that the choice of
references is certainly not complete, rather, it is the subjective choice of what the authors find
most suitable and got inspired by.

1 where female attributions are the default, male is considered included
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2 Elementary optimal control

We start with classical examples of control, which lay a lot of foundations for quantum systems.

2.1 Optimal control of a classical harmonic oscillator

In order to understand the basic concept and structure of quantum optimal control, let us start
with a simple classical example: control of the harmonic oscillator.

The equation of motion of a harmonic oscillator driven by force F (t) = mf(t) where m is the
mass and eigenfrequency Ω is given by

ẍ+ Ω2x(t) = f(t).

Its general solution is parameterized through the Green’s function

G(τ) =
θ(τ)

Ω
sin (Ωτ)

(where θ is the Heaviside function) as

x(t) = x(0) cosΩt+
ẋ(0)

Ω
sinΩt+

∫ t

0

dt′
sinΩ (t− t′)

Ω
f (t′)

Readers not familiar with Green’s functions can easily verify that this expression does indeed
solve the equation of motion of the driven oscillator.

From this we get the velocity

ẋ(t) = ẋ(0) cosΩt− Ωx(0) sinΩt+

∫ t

0

dt′ cosΩ(t− t′)f (t′)

Thus, imposing target values x(T ) and ẋ(T ) we find the conditions

x(T )− x(0) cosΩT − ẋ(0)

Ω
sinΩt =

∫ T

0

dt′
sinΩ (T − t′)

Ω
f (t′)

ẋ(T )− ẋ (0) cosΩT + Ωx(0) sinΩt =

∫ T

0

dt′ cosΩ(T − t′)f(t′).

These equations allow a few observations that have analogies all over quantum control: Firstly,
the control f(t) is needed to push the system away from its natural dynamics (the terms on the
left) – it is redirecting the natural drift of the system. Secondly, there are two constraints for
a function given through an integral – so we can expect many solutions. As an example, let’s
look at the case that we move a particle by a fixed distance x(0) = 0 and x(T ) = X from rest
to rest ẋ(T ) = ẋ(0) = 0. We thus need to satisfy

∫ T

0

dt ′ sin [Ω (t− t′)] f (t′) = ΩX

∫ T

0

dt′ cos [Ω(t− t′)] f (t′) = 0

An introduction into optimal control for quantum technologies B4.5

and we can easily show that this fixes low Fourier components of f (t′) but leaves higher ones
open.

The situation changes, if we impose, e.g., an energetic constraint to the control. This typically
leads to constraints of the form

∫ T

0

dt f 2(t) =

∫ ∞

−∞
dωf(ω)f ∗(ω) ≤ A

where A is the imposed maximum and we have used symmetry properties of the Fourier transform
of real-valued functions. Thus, the sum of Fourier components needs to be bounded and if the
constraint is too close, there may not even be any solution. This is an example showing that
constraints clearly influence the number of accessible solutions and their potential performance,
which is commonly seen in practice.

2.2 Optimal control for a classical system

The previous section hinged on having a closed-form Green’s function solution of the equation
of motion, which is not always available. This follows chapter 2.3 of Bryson and Ho [3].

Suppose we have a dynamical system that can be controlled by a control parameter u that enters
a dynamic equation for the state variable x in the form

ẋ = f [x(t), u(t), t] 0 ≤ t ≤ T (1)

with a given x(0). Both x and u can be single variables or vectors of variables. We wish to
optimize a cost function at the end of the process J [x(T ), T ] . We recall classical Lagrangian
mechanics and introduce a Lagrange multiplier function λ and can thus state based on the
constrained calculus of variations that we need to find a stationary point of

J̄ = J [x(T ), T ] +

∫ T

0

dt λT (t) (f [x(t), u(t), t]− ẋ)

where we have allowed for the complex of coupled equations and thus vector-valued Lagrange
multipliers.

The introduction of the Lagrange multiplier allows for the optimization of J , while satisfying
the equation of motion (1) at specified times. As such, this means λ has to be time-dependent
as well.

We introduce the associated Hamilton’s function (which has a similar mathematical origin in the
calculus of variations as the Hamiltonians of mechanics yet a very different physical motivation)

H [x(t), u(t), λ(t), t] = λT (t)f [x(t), u(t), t] (2)

and rewrite our constrained cost function by integrating the last term by parts

J̄ = J [x(T ), T ] + λT (T )x(T )− λT (0)x(0) +

∫ T

0

dt
{
H [x(t), u(t), λ(t), t] + λ̇Tx(t)

}
.



B4.4 Frank K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler, and D. Sugny1

2 Elementary optimal control

We start with classical examples of control, which lay a lot of foundations for quantum systems.

2.1 Optimal control of a classical harmonic oscillator

In order to understand the basic concept and structure of quantum optimal control, let us start
with a simple classical example: control of the harmonic oscillator.

The equation of motion of a harmonic oscillator driven by force F (t) = mf(t) where m is the
mass and eigenfrequency Ω is given by
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as well.

We introduce the associated Hamilton’s function (which has a similar mathematical origin in the
calculus of variations as the Hamiltonians of mechanics yet a very different physical motivation)

H [x(t), u(t), λ(t), t] = λT (t)f [x(t), u(t), t] (2)

and rewrite our constrained cost function by integrating the last term by parts

J̄ = J [x(T ), T ] + λT (T )x(T )− λT (0)x(0) +

∫ T

0

dt
{
H [x(t), u(t), λ(t), t] + λ̇Tx(t)

}
.
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Now let’s consider the variation in J̄ based on variations in u(t) recalling that the times as well
as the initial state variable are given. We find

δJ̄ =

(
∂J

∂x
− λT

)
δx

∣∣∣∣
t=T

+ λT δx
∣∣
t=0

+

∫ T

0

dt

[(
∂H

∂x
+ λ̇T

)
δx+

∂H

∂u
δu

]
.

Note that in general we choose the variation at the beginning to be δx(0) = 0, since we know
the exact initial state of the dynamics.

Now the variations of x and u are not independent, they are linked by the equation of motion.
Were we not to work with the Lagrange multiplier, we would need to tediously solve the
equation of motion for different control functions and then work out how these variations are
related. Fortunately, the Lagrange multiplier method allows us to circumvent that problem. Our
goal is for δJ̄ to vanish to first order. Choosing a specific Lagrange multiplier to realize this,
we finally arrive at

λ̇T = −∂H

∂x
= −λT ∂f

∂x
λT (tf ) =

∂J

∂x(tf )
. (3)

These are the Euler-Lagrange equations pertaining to the system. That being satisfied, we are
left with the total variation

δJ̄ = λT (0)δx(0)︸ ︷︷ ︸
=0

+

∫ T

0

dt
∂H

∂u
δu

For an extremum to be reached under any variation of the control, we need

∂H

∂u
= λT ∂f

∂u
= 0 0 ≤ t ≤ T. (4)

We have shown the ingredients to what can be formalized as the Pontryiagin Maximum Principle
(PMP). More pragmatically, these equations give us a recipe on how to solve the thus formulated
optimal control problem by a coupled gradient search: From a suitable initial guess for u(t)

1. Solve the equation of motion eq. (1) to find x(t) using the initial value x(0) that is part of
the control problem

2. Find the Lagrange multiplier by solving eq. (3). Note that there is a definite value given
at the end time T , i.e., we have a final value problem – that is solved like an initial value
problem but propagating backwards in time. This back-propagation is typical when we
consider this cost functional.

3. With these, compute the effective gradient in eq. (4) and update the values of u following
the direction of the gradient. Adjust the step size as needed.

Iterating these three steps will get us to a local solution, depending on the initial conditions, if
the control landscape admits one.

An introduction into optimal control for quantum technologies B4.7

2.2.1 Example: Driven harmonic oscillator

Let us get back to formulating these steps for the optimal control problem of the driven harmonic
oscillator described above in section 2.1. We identify the control as the dimensionless force
u ≡ f and write the equation of motion as a coupled system

dx

dt
= ẋ

dẋ

dt
= −Ω2x+ u

x(0) = 0 ẋ(0) = 0

In order to have a differentiable performance index that forces the particle to end at a at time T

and in rest we can write
J = Ω2 (x− a)2 + ẋ2. (5)

This leads us to Hamilton’s function following the prescription of 2

H = λ1ẋ+ λ2

(
u− Ω2x

)
.

So the Euler-Lagrange equations 3 describing the Lagrange Multiplier

λ̇1 = λ2Ω
2 λ̇2 = −λ1 (6)

which remarkably describes a free harmonic oscillator. It is such interpretations that lead to the
Lagrange multiplier to be called the adjoint system. The final conditions from eq. (3) are

λ1(T ) = 2Ω2(x(T )− a) λ2(T ) = 2ẋ(T ) (7)

which are of course both zero if the final conditions are met (thus, for the optimal solution, the
adjoint system vanishes at T ). The gradient flow for the control is given by eq. (4)

∂H

∂u
= λ2.

Again, iterating these equations will give us a suitable control.

We could guess as a first control that u0(t) = Ω2a (which is the force needed to keep the particle
at rest at the final position, so at least a motivated guess) thus leading to the equation of motion

ẍ0 + Ω2(x0 − a) = 0

with the solution x0(t) = a (1− cosΩt) and thus ẋ0 = aΩ sinΩT. This clearly does not solve
the control problem, we have from eq. (5) J = Ω2a2. In fact, the final conditions eq. 7 for the
adjoint system are λ1(T ) = −2Ω2a cosΩT and λ2(T ) = 2aΩ sinΩT leading us, by solving eq.
(6)

λ1 = −2Ω2a cosΩT cos [Ω (t− T )] + 2aΩ2 sinΩT sin [Ω (t− T )]

= −2aΩ2 cosΩt
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In order to have a differentiable performance index that forces the particle to end at a at time T

and in rest we can write
J = Ω2 (x− a)2 + ẋ2. (5)
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and λ2 = −2 sinΩt . This means that the gradient suggests introducing a resonant drive – as
we have seen from the exact solution above.

For further treatment of the classical Harmonic oscillator, see [4].

2.3 Gradient-based optimal quantum control with the GRAPE algorithm

These principles can be transferred to the control of quantum systems in a straightforward way.
This is easily illustrated with the GRadient Ascent Pulse Engineering (GRAPE) algorithm [5].

2.3.1 State-to-state control

We start with a simple state preparation problem. Suppose WLOG that our system is described
by a Hamiltonian

Ĥ(t) = Ĥ0 +
n∑

i=1

ui(t)Ĥi.

We call the time-independent part of the Hamiltonian Ĥ0 the drift , the fields ui are the controls
and Ĥi are the control Hamiltonians. In atomic physics, say, Ĥ0 describes the energy level
structure of the atom, ui are laser or microwave fields and Ĥi are dipole operators describing
the different field modes including polarization. Our task is now to start at an initial state |ψ0〉 at
time t = 0 and find controls such that we reach state |ψ1〉 at time t = T. As in quantum physics
the global phase is meaningless, this corresponds to maximizing the overlap J = |〈ψ1|ψ(T )〉|2.
The dynamics of our system is, of course, subject to the Schrödinger equation

i�∂t|ψ(t)〉 = Ĥ(t)|ψ(t)〉.

Mathematically we got ourselves a system of the exact same structure as the previous one. We
give its derivation in the form of Ref. [5].

Many practical generators for ui such as standard arbitrary wave form generators (AWGs or
Arbs) used in superconducting qubits represent2 the pulse in a piecewise constant fashion , so
it is natural 3 to represent the ui(t) in that same way: We chop the total time into N intervals of
length δt = T/N and write

ui(t) = ui(j) for (j − 1)δt ≤ t < jδt.

This allows us to write down the formal solution of the Schrödinger equation as

Û(T ) = ÛN ÛN−1 · · · Û2Û1

2 but not necessarily output, as the output is typically smoothed and filtered
3 although not always optimal, see below
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with

Ûk = exp

(
− i

�
δt

(
Ĥo +

∑
i

ui(j)Ĥi

))
(8)

which we can introduce into the performance index as

J =
∣∣∣
〈
ψ1|Û(T )ψ0

〉∣∣∣
2

=
∣∣∣
〈
ψ1|ÛN · · · Û1ψ0

〉∣∣∣
2

.

We are at liberty to move some of the factors into the adjoint state, giving us

J =
∣∣∣
〈
U †
m+1 · · ·U

†
Nψ1|Ûm · · · Û1ψ0

〉∣∣∣
2

or J = |〈λm|ρm〉|2 with |ρm〉 = Ûm · · · Û1|ψ0〉 |λm〉 = ÛN · · · Ûm+1|ψ1〉. Here, the partially
propagated state |ρm(t)〉 is overlapped with the partially back-propagated adjoint state |λm(t)〉 –
both states are overlapped at time tm. We thus sweep the time at which we calculate the overlap
based on the actual pulse that we apply. Now the final ingredient we need is the derivative of an
exponential proven in Theorem 4.5 of [6] (see also [7])

d

dt

∣∣∣∣
t=0

eX+tY = eX
{
Y − [X, Y ]

2!
+

[X, [X, Y ]]

3!
− . . .

}
(9)

Both of these together allow us to determine all the gradients needed to compute an update at
any time step as shown in the left column of figure 1.

We can rewrite this as
d

dt

∣∣∣∣
t=0

eX+tY = eX
∫ 1

0

dτ eτXY e−τX

by simple power counting. This allows us to analytically compute the derivative of the propagator
across one time step by identifying X̂ = Ĥ(t) (the Hamiltonian including the current values of
the control) and Ŷ = Ĥi , one of the control Hamiltonians. In order to simplify the right-hand
side, we define Ûk(j) = Û j

k (taking the exponential here simply means to stretch time and study
the integral on the right

∫ 1

0

dτ Ûk(j)ĤiÛ
†
k(j)

=

∫
dτ

(
1− iτδtĤ − τ 2δ2t Ĥ

2 + . . .
)
Ĥi

(
1 + iτδtĤ − τ 2δ2t Ĥ

2 + . . .
)

=

∫
dτ

(
Ĥi − iτδt

[
Ĥ, Ĥi

]
+ . . .

)

� Ĥi

where we assume that the time steps chosen are so small that the integral over the commutator
can be neglected4. A self-contained derivation is presented later in 2.5.4. Restoring all the units
leads us to the closed gradient formula

∂J

∂ui(j)
= −iδt

〈
λj

∣∣∣Ĥi

∣∣∣ ρj
〉

(10)

4 we will later, under the Magnus expansion, study related steps more carefully
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Ûk = exp

(
− i

�
δt

(
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4 we will later, under the Magnus expansion, study related steps more carefully
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meaning that we can expect, with an appropriate value of ε compute a gradient-based update

ui(j) �→ ui(j) + ε
∂J

∂ui(j)
(11)

This allows us to extremalize J hence to find controls that best approximate the final state with
the following algorithm. Starting from an initial guess for the controls:

1. Compute the propagated initial state |ρm〉 = Ûm · · · Û1|ψ0〉 for all m ≤ N by iterative
matrix multiplication.

2. Compute the back-propagated final state |λm〉 = ÛN · · · Ûm+1|ψ1〉 by iterative matrix
multiplication

3. Compute the gradient of the performance index and update the controls following eqs.
(10), (11)

4. Iterate until the value of J is satisfactory or the updates are below a threshold

There are a lot of practical improvements that were found beyond this which we will describe
below.

One must not underestimate the importance of this analytical derivation of a gradient. Whenever
a gradient is available, it greatly improves the convergence of a search specifically when going
from a rough initial guess that can often be obtained by solving an approximate version of the
problem at hand to a solution that has the very high precision generally demanded by quantum
technologies. If a gradient is available, its analytical and exact derivation is also paramount
– numerical gradients are very hard to control numerically as they involve a small difference
between two potentially large numbers. In pioneering, pre-GRAPE work [8] this was rather
obvious – even with large computational effort, only few parameters could be optimized.

2.3.2 An alternative, direct derivation

An alternative derivation of the variational approach to quantum optimal control is as follows:

Let us again look at the state transfer task. We shall construct a functional, J , to be maximized,
and utilize Lagrange multipliers to enforce both the intial condition and the equation of motion.
We shall parameterize our control fields, u (t) using a vector of scalar real parameters �α.

Our aim is to maximize the overlap of the goal state |ψgoal〉 and the state at final time T , |ψ (T )〉,

Jgoal = |〈ψ (T ) | ψgoal〉|2 . (12)

We need to impose an initial condition, utilizing a Lagrange multiplier λinit
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Jinit = λinit
(
|〈ψ (0) | ψinit〉|2 − 1

)
. (13)

Next, we must guarantee the Schrödinger equation, (i�∂t −H (ᾱ, t)) |ψ (t)〉 = 0 is upheld at
all times. To do that, at each point in time, t, we must multiply the equation of motion by the
Lagrange multiplier 〈χ (t)|, and we must add the contributions for all points in time:

Je.o.m =

∫ T

o

〈χ (t) | i�∂t −H (ᾱ, t) |ψ (t)〉 (14)

Note that in Je.o.m, 〈χ (t)| can be interpreted as a conjugate state, propagating backwards in
time, as the term can be rewritten as 〈(−i�∂t −H (ᾱ, t))χ (t) | ψ (t) 〉.

The functional to be minimized is then

J = Jinit + Je.o.m + Jgoal (15)

We then proceed in the standard variational approach, taking the gradient of this functional with
respect to ᾱ and requiring

∂ᾱJ = 0. (16)

2.3.3 Synthesis of unitary gates

We will now go to the topic of finding controls that best approximate a quantum gate. This
can be viewed as a generalization of the state preparation problem to rotating a full basis of the
Hilbert space into a desired new basis. This first begs the question of how to find an appropriate
performance index. It can be accomplished by starting with a distance measure between the
desired and the actual final unitary

∥∥∥Ûtarget − Û(T )
∥∥∥. The most common choice is based on the

2-norm
∥∥∥Ûtarget − Û(T )

∥∥∥
2

2
= Tr

[(
Û †
target − Û †(T )

)(
Ûtarget − Û(T )

)]

= Tr
[
Û †
targetÛtarget + Û †(T )Û(T )− Û †

targetÛ(T )− Û †(T )Ûtarget

]

= 2
(
d− ReTrÛ †

targetÛ(T )
)

where d is the underlying Hilbert space dimension. Thus, we see that minimizing the error
corresponds to maximizing the overlap ReTrÛ †

targetÛ(T ) .

Now the real part looks suspicious – if we have the gate right up to a global phase, Û(T ) =

eiφÛtarget this overlap indicates a non-perfect result. In fact, numerical experimentation shows
that this would be a serious drawback. We can trace this error back to the original distance
measure. The high-brow step to take now would be to elevate the description to full quantum
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matrix multiplication.

2. Compute the back-propagated final state |λm〉 = ÛN · · · Ûm+1|ψ1〉 by iterative matrix
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Jinit = λinit
(
|〈ψ (0) | ψinit〉|2 − 1

)
. (13)
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∫ T

o
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The functional to be minimized is then

J = Jinit + Je.o.m + Jgoal (15)

We then proceed in the standard variational approach, taking the gradient of this functional with
respect to ᾱ and requiring

∂ᾱJ = 0. (16)

2.3.3 Synthesis of unitary gates

We will now go to the topic of finding controls that best approximate a quantum gate. This
can be viewed as a generalization of the state preparation problem to rotating a full basis of the
Hilbert space into a desired new basis. This first begs the question of how to find an appropriate
performance index. It can be accomplished by starting with a distance measure between the
desired and the actual final unitary

∥∥∥Ûtarget − Û(T )
∥∥∥. The most common choice is based on the

2-norm
∥∥∥Ûtarget − Û(T )

∥∥∥
2

2
= Tr

[(
Û †
target − Û †(T )

)(
Ûtarget − Û(T )
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= Tr
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Û †
targetÛtarget + Û †(T )Û(T )− Û †

targetÛ(T )− Û †(T )Ûtarget

]

= 2
(
d− ReTrÛ †

targetÛ(T )
)

where d is the underlying Hilbert space dimension. Thus, we see that minimizing the error
corresponds to maximizing the overlap ReTrÛ †

targetÛ(T ) .

Now the real part looks suspicious – if we have the gate right up to a global phase, Û(T ) =

eiφÛtarget this overlap indicates a non-perfect result. In fact, numerical experimentation shows
that this would be a serious drawback. We can trace this error back to the original distance
measure. The high-brow step to take now would be to elevate the description to full quantum
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channels. Pragmatically, we move from real part to absolute square and thus the most common
performance index for gates is

J =
∣∣∣Tr

(
Û †
targetÛ(T )

)∣∣∣
2

.

This quantity can be interpreted in a somewhat operational fashion: First apply the gate you
have, then undo the gate you want. If everything goes right you have but a global phase –
the same one on all vectors of the standard basis. If not, you measure the deviation from
unity for the complete standard basis. There are other possible choices (and good reasons to
think about them), which we will discuss later. With this quantity, we can proceed in a way
similar to state transfer, only that now we of course start at the unit matrix. We again use
piecewise constant controls and define both the intermediate propagator and the intermediate
back-propagated target

X̂j = Ûj · · · Û1 P̂j = Û †
j+1 · · · Û

†
N Ûtarget

allowing us to rewrite J =
∣∣∣TrP̂ †

j X̂j

∣∣∣
2

for all values of j . We can now apply the same identities
as before and find

∂J

∂ui(j)
=

∂

∂ui(j)

(
TrP̂ †

j X̂j

)(
TrP̂ †

j X̂j

)∗

= 2Re

[(
∂

∂ui(j)
TrP̂ †

j X̂j

)(
TrP̂ †

j X̂j

)]

= −2iδtRe
[(

TrP̂ †
j ĤiX̂j

)(
TrP̂ †

j X̂j

)]
.

With this analytical gradient, the GRAPE algorithm can be applied as above.

2.4 The Krotov algorithms

The Krotov algorithm [9–12] has been formulated before the GRAPE algorithm. Some of its
presentations are historically based on applications in chemistry and emphasizes constraints
more than its core. Looking back on how GRAPE is applied, we are blessed with an analytical
gradient formula which in each iteration allows us to calculate the gradient of the cost function(al)
with respect to all controls at all times and then by walking against it look for improved controls.
Notably, the gradient is always computed at a point in parameter space given by the controls
computed in the previous iteration.

There are two different algorithms which carry the name “Krotov” – a fact which can be quite
confusing, even for experts in the field.

The first Krotov, prides itself with its monotonic convergence, which is achieved by propagating
the forward state using the old control field, while the backward-propagating state makes use of
the new field. A detailed description, with Python implementation, can be found in [13].
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The second Krotov can be considered a greedy version of GRAPE, and is described in detail
in [14]: In this version of the Krotov algorithm, all previously computed knowledge is used,
i.e., once an entry to the gradient is computed, it is applied right away and the next element of
the gradient is computed with that correction already applied. This approach of not leaving any
information behind in general lowers the number of iterations needed to reach convergence and
it comes with proven monotonic convergence. On the other hand, each iteration step takes more
time.

The various update strategies are visualized in figure 1.

Benchmarking of the various optimal control algorithms is a topic of ongoing research.

2.5 Modern numerical issues

2.5.1 Control landscapes

A gradient search with an analytical gradient as outlined is the best way to find a local extremum
of an optimization landscape . If the optimization landscape has multiple local minima, it can
get stuck in a local minimum and needs to be enhanced.

In a seminal series of papers, Rabitz has shown (see e.g., [15]) that there is indeed only one
extremum in the control landscape and that it is global. This theorem is a correct derivation of
its assumptions – one of which is the absence of constraints in pulse amplitude and temporal
resolution. In practice, these constraints exist and multiple local extrema exist – the more
constrained the optimization, the more local extrema. Specifically in situations close to the
quantum speed limit (see below), with low control resolution (Ref [16] looks at a single bit of
amplitude resolution and required genetic algorithms to converge) or with complex many-body
dynamics and only few controls, these call for more advanced methods.

If one has a good intuition about the optimal pulse say, by solving a model that is very close
to the desired model or by rescaling a solution that works at a longer gate duration, one can
often stay close to the global extremum and otherwise requires a gradient search. If that is not
the case, one needs to first start with a more global search method covering a large parameter
space. Known systems for such gradient-free approaches are GROUP [17], genetic algorithms
( [16, 18]), they are part of CRAB (see section 3.2) and simulated annealing [19].

2.5.2 Fidelities

We would like to come back to the choice of fidelity based on the 2-norm described above. It
has been argued that the most appropriate way to characterize quantum processes is the use of
the diamond norm [20]. It can be expressed for a quantum operation E compared to an ideal
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The first Krotov, prides itself with its monotonic convergence, which is achieved by propagating
the forward state using the old control field, while the backward-propagating state makes use of
the new field. A detailed description, with Python implementation, can be found in [13].
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If one has a good intuition about the optimal pulse say, by solving a model that is very close
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often stay close to the global extremum and otherwise requires a gradient search. If that is not
the case, one needs to first start with a more global search method covering a large parameter
space. Known systems for such gradient-free approaches are GROUP [17], genetic algorithms
( [16, 18]), they are part of CRAB (see section 3.2) and simulated annealing [19].
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We would like to come back to the choice of fidelity based on the 2-norm described above. It
has been argued that the most appropriate way to characterize quantum processes is the use of
the diamond norm [20]. It can be expressed for a quantum operation E compared to an ideal
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Fig. 1: Overview on the update schemes of gradient-based optimal control algorithms in terms
of the set of time slices T (q) = {k(q), k(q), . . . k(q) } for which the control amplitudes are
concurrently updated in each iteration. Subspaces are enumerated by q, gradient-based steps
within each subspace by s, and r is the global step counter. In grape (a) all the M piecewise
constant control amplitudes are updated at every step, so T (1) = {1,2,...M} for the single
iteration q≡1. Sequential update schemes (b) update a single time slice once, in the degenerate
inner-loop s≡1, be- fore moving to the subsequent time slice in the outer loop, q; therefore here
T (q) = {q mod M}. Hybrid versions (c) follow the same lines: for instance, they are devised
such as to update a (sparse or block) subset of p different time slices before moving to the next
(disjoint) set of time slices.
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operation U as

||Uideal − E||� = sup
q

max
ψ

|Tr [Uideal(|ψ〉〈ψ|)− E(|ψ〉〈ψ|)]| (17)

This involves two generalizations of the 2-norm: On the one hand, rather than taking the 2-norm
distance which is equivalent to averaging over all possible input states to the operation, we are
taking the maximum over |ψ〉, i.e., we choose the input state that maximizes the distance. On
the other hand, rather than directly using the unitary operation, we enhance the Hilbert space
by adding another space of dimension q on which the identity operation is performed. The
diamond norm is then the supremum over q.The latter may sound rather academic, but it is not
if, e.g., the initial state is entangled between the original and the auxiliary system.

For the purposes of quantum optimal control, the diamond norm is rather impractical – it is hard
to compute (as it contains a supremum) and it can be non-differentiable (as it contains taking a
maximum over states, the state at which it has reached can jump in state space). What does this
mean for the applicability of quantum optimal control in the context of fault tolerance?

There are two answers to this question. On the one hand, one can at least find performance
indices that emphasize the worst case more strongly while being differentiable. A straightforward
option is [21]

Jq = max
α∈[0,2π)

∥∥∥Ûtarget − eiαÛ(T )
∥∥∥
2q

2q

= max
α∈[0,2π)

Tr
[(

Û †
target − e−iαÛ †(T )

)(
Ûtarget − eiαÛ(T )

)]q

which can be implemented in a straightforward fashion yet does not have a known extension
that avoids optimizing the global phase.

On the other hand, it is pragmatically not very crucial to go through these steps as long as the
algorithm converges properly: Our goal is to get the error as close to zero as possible and,
as these norms can be continuously mapped onto each other, one pragmatically searches for
controls that reduce the error in the 2-norm to an extremely low value which guarantees that
even in the desired norm the error is low enough – using the paradigm to control and verify with
two different measures.

2.5.3 Increasing precision of GRAPE

The GRAPE algorithm above defines a straightforward gradient algorithm for optimal control.
There are a few known measures to speed up its convergence.

One measure is the improvement of the use of the gradient by moving to a quasi-Newton
method, the Broyden, Fletcher, Goldfard, and Shanno (BFGS) method [22]. Newton’s method,
as the reader may have learned in an elementary introduction to numerical mathematics, rely on
approximating the function whose zero we desire to find by its tangent – in our case, we desire
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Ûtarget − eiαÛ(T )
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to find the zero of the gradient, i.e., we need to approximate the functions up to its second
derivative. As we are optimizing a scalar that depends on many parameters – all the controls
taken at all the times of interest – the matrix of second derivatives is a high-dimensional object.
In order to approximate the zero of the gradient, one would have to invert that matrix, which
is numerically hard and would likely negate the potential computational advantage. The BFGS
method instead relies on directly approximating the inverse Hessian

2.5.4 The gradient of a matrix exponential

Expanding on the discussion surrounding eq. (8), (9), any gradient-driven optimal control
optimization, such as GRAPE or Krotov, which treats the control fields as piecewise constant,
will describe the coherent propagator of time slice m as

Um = exp

(
− i

�
δtH (ᾱ, tm)

)
(18)

where ᾱ parameterizes the control functions u (t). We are searching for the value of ᾱ which
will minimize the infidelity. At step j of the optimization, to compute the gradient of the goal
function with respect to ᾱ, we must compute ∂ᾱUm (ᾱ) |ᾱ=ᾱj

. At this point we can rewrite eq.
(18) as in eq. (9),

Um = exp

(
− i

�
δt

(
Hm,j + εᾱH̃m,j

))

where εᾱ is small and we seek ∂εᾱUm (εᾱ) |εᾱ=0̄. Following [23, 24], and their summary in
Appendix A of [14], we denote the eigenvalues and eigenvectors of Hj by ek and |ek〉, respectively,
then using the spectral theorem

〈el| ∂ε̄ᾱUm |ek〉 =




− i
�δt

〈
el

∣∣∣ H̃m,j

∣∣∣ek
〉
exp

(
− i

�δtel
)

if el = ek

− i
�δt

〈
el

∣∣∣ H̃m,j

∣∣∣ek
〉 exp

(
− i

�δtel
)
− exp

(
− i

�δtek
)

− i
�δt (el − em)

if el �= ek

one may invoke the spectral theorem in a standard way and calculate matrix functions via the
eigendecomposition.

To simplify notation, we shall look at ∂x eA+xB , with A,B being an arbitrary pair of Hermitian
(non-commuting) matrices and x ∈ R. As previously {|el〉} as the orthonormal eigenvectors to
the eigenvalues {el} of A . We then obtain the following straightforward, if somewhat lengthy,
derivation:
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D =
〈
el
∣∣ ∂x eA+xB|ek
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x=0〈
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∣∣∣∣∣ ∂x
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1

n!

(
A+ xB

)n|ek
〉∣∣∣

x=0

〈
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∣∣∣∣∣
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n=0

1

n!
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(
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B
(
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)n−q|ek

〉∣∣∣
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〉
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k
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1
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l en−q

k

This provides the answer for in the case where el = ek. For el �= ek a bit more work is needed:

D = 〈el| B|ek〉
∞∑
n=0

1

n!
en−1
k

n∑
q=1

(
el
ek

)q−1

〈el| B|ek〉
∞∑
n=0

1

n!
en−1
k

(el/ek)
n − 1

(el/ek)− 1

〈el| B|ek〉
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n=0

1

n!

enl − enk
el − ek

〈el| B|ek〉
eel − eek

el − ek

Note that we have explicitly made use of the orthogonality of eigenvectors to different eigenvalues
in normal matrices.

3 Applied optimal quantum control

While quantum optimal control is a well-developed field and has been very successful in atomic
and molecular systems, its track record in solid-state quantum technologies is somewhat less
developed. The reason has to do with the accuracy of the models, i.e., the precision at which
we know every ingredient of the Hamiltonian. First of all, a quantum-technological device
(specifically, but not exclusively, in the solid state) has human-made components which contain
some fabrication uncertainty. This affects the drift Hamiltonian – even if its eigenvalues can
be accurately determined using spectroscopy, it is much more involved to find its eigenvectors.
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δtH (ᾱ, tm)

)
(18)
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Note that we have explicitly made use of the orthogonality of eigenvectors to different eigenvalues
in normal matrices.

3 Applied optimal quantum control

While quantum optimal control is a well-developed field and has been very successful in atomic
and molecular systems, its track record in solid-state quantum technologies is somewhat less
developed. The reason has to do with the accuracy of the models, i.e., the precision at which
we know every ingredient of the Hamiltonian. First of all, a quantum-technological device
(specifically, but not exclusively, in the solid state) has human-made components which contain
some fabrication uncertainty. This affects the drift Hamiltonian – even if its eigenvalues can
be accurately determined using spectroscopy, it is much more involved to find its eigenvectors.



B4.18 Frank K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler, and D. Sugny1

These naturally also affect the matrix elements of the control Hamiltonians. On top of that,
some solid-state quantum devices need to be extremely well isolated from their environments
including high-temperature black-body radiation. This means, that an applied control signal
will get distorted on its way to the sample in a way that can be measured only to a limited
degree, see fig. 2 for a summary. While one can improve hardware and characterization to meet
these challenges, it is hard to get this to the precision required by, say, fault-tolerant quantum
computing. Thus, other approaches are called for.
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Fig. 2: Typical sources of inaccuracy in quantum control for superconducting qubits including
the transmission from the generator to the sample and inaccuracy of the Hamiltonian model.
Right: Typical error sensitivity for a gate between superconducting qubits.

3.1 Closing the loop for pulse calibration

One possible approach to handle uncertainties would be to use a robust control methodology
inspired by magnetic resonance in ensembles. While this method can be useful, it slightly
misses the point: It still requires a good estimate for the uncertainty and then it improves
performance across the relevant parameter interval. Here, the situation is different, we do not
have a parameter distribution but a single set of parameters – we just cannot find it or even the
relevant model a priori.

One way to still find good pulses are hybrid control methods such as Adaptive Hybrid Optimal
Control (AdHOC, [25]), Optimized Randomized Benchmarking for Immediate Tuneup (ORBIT,
[26]), and Adaptive Control via Randomized Optimization Nearly Yielding Maximization
(ACRONYM, [27]). The idea of these methods is rather similar: After an initial design phase
that may or may not contain traditional optimal control, a set of pulses is constructed based on
models that are believed to approximate the actual system but its parameterization is left open
to some corrections. These corrections are then determined in a closed loop – the fidelity is
measured and the pulses are updated based on these fidelity measurements.

In the example of AdHOC, the pulse measurement is based on randomized benchmarking
(described below) and the optimization that determines the corrections is based on the Nelder-
Mead simplex algorithm, which is available in most numerical mathematics toolboxes. What
is crucial is that this is a gradient-free algorithm in order to avoid issues with taking gradients
of measurement data. Is that as a simplex algorithm, the search for a pulse described by n
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parameters needs to be initialized using n+1 initial guesses. This raises the important question
how the number n can be kept as small as possible (but not smaller, see below) by finding an
efficient parameterization.

This is not an easy problem. So far, we have always assumed that the pulses are parameterized
in piecewise constant fashion and have argued that this is naturally compatible with arbitrary
wave form generators. However, this parameterization does not naturally lend itself to reduction
of the number of parameters – simple, sparse controls in quantum physics are typically sine and
cosine functions with smooth, Gaussian-derived envelopes. On the other hand, the piecewise
constant parameterization was instrumental in deriving the gradient formula in an analytical
way and cannot be easily removed.

3.2 CRAB

Albeit originally developed from a different motivation, the optimization of many-body dynamics,
the Chopped RAndom Basis (CRAB)5 algorithms serves that purpose, [28]. It introduced the
concept of simple and sparse pulse parameterizations, i.e., finding a pulse parameterization that
is not necessarily piecewise constant but rather can be written as

H (ᾱ, t) = H0 +
C∑

k=1

ck (ᾱ, t)Hk , (19)

where the functions ck can e.g., be harmonic functions characterized by amplitude, frequency
and phase or a sequence of Gaussians

ck (ᾱ, t) =
m∑
j=1

Ak,j exp
(
−(t− τk,j)

2/σ2
k,j

)
. (20)

In complex systems that were the initial motivation for CRAB, one has very little prior knowledge
about a suitable basis and it is at best chosen random, hence the name. CRAB utilizes a gradient-

5 pronounced with a rolling ’r’ and a voiced ’b’
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measured and the pulses are updated based on these fidelity measurements.
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parameters needs to be initialized using n+1 initial guesses. This raises the important question
how the number n can be kept as small as possible (but not smaller, see below) by finding an
efficient parameterization.

This is not an easy problem. So far, we have always assumed that the pulses are parameterized
in piecewise constant fashion and have argued that this is naturally compatible with arbitrary
wave form generators. However, this parameterization does not naturally lend itself to reduction
of the number of parameters – simple, sparse controls in quantum physics are typically sine and
cosine functions with smooth, Gaussian-derived envelopes. On the other hand, the piecewise
constant parameterization was instrumental in deriving the gradient formula in an analytical
way and cannot be easily removed.

3.2 CRAB

Albeit originally developed from a different motivation, the optimization of many-body dynamics,
the Chopped RAndom Basis (CRAB)5 algorithms serves that purpose, [28]. It introduced the
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about a suitable basis and it is at best chosen random, hence the name. CRAB utilizes a gradient-

5 pronounced with a rolling ’r’ and a voiced ’b’



B4.20 Frank K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler, and D. Sugny1

free search, specifically Nelder-Mead (although other algorithms could be used), similarly to
what we have already described for AdHOC6 .

The fact CRAB is model-free, with the gradient-free search treating the quantity to be optimized
as a black box, provides a distinct advantage in situations a precise model is unknown or when
the model is know, but the gradient cannot be computed due to numerical complexity or other
reasons. This makes CRAB appropriate for closed-loop experimental calibration of control
fields in system ranging from nitrogen vacancy centers in nano-diamonds [29] and cancer
treatment formulations [30], to DMRG-based simulations [31]. Further, CRAB enjoys huge
success in studying quantum phase transitions, preparing large Schrödinger cat states, sensing
and many more.

A variant of CRAB, known as dCRAB [32], deals with a situation where the control parameterization
has a higher dimensionality than can be optimized by Nelder-Mead, by iteratively optimizing
different subsets (or low-dimension projections) of the high-dimension full parameter space.

3.3 GOAT

Gradient Optimization of Analytic conTrols (GOAT) is a recently [33] proposed optimal control
algorithm which does not derive from the variational formulation of optimal control, defined
earlier. Rather, GOAT finds the equations of motion for the gradient of the goal function with
respect to the control parameters, integrating as you would the Schrödinger equation (as piece-
wise-constant approximation, or using standard ODE tools such as Runge-Kutta optimizers).

For our purpose, the goal function to minimize is defined as the projective SU distance (infidelity)
between the desired gate, Ugoal, and the implemented gate, U (T ), [34] (also [35])

g (ᾱ) := 1− 1
dim(U)

∣∣∣Tr
(
U †

goalU (T )
)∣∣∣ , (21)

where U (t) is the time ordered (T) evolution operator

U (ᾱ, T ) = T exp

(∫ T

0

− i

�
H (ᾱ, t) dt

)
. (22)

GOAT’s ability to use any control ansatz makes it feasible to find drive shapes described by a
small number of parameters, suitable for closed-loop calibration.

A gradient-based optimal control algorithm requires two ingredients: an efficient computation
of ∂ᾱg (ᾱ) and a gradient-based search method over parameter space. GOAT presents a novel
method for the former, while using any standard algorithm for the latter, such as BFGS.

Consider the gradient of the goal function eq. (21) with respect to ᾱ,

∂ᾱg (ᾱ) = −Re
(
g∗

|g|
1

dim (U)
Tr

(
U †

goal∂ᾱU (ᾱ, T )
))

. (23)

6 note that CRAB was proposed before AdHOC
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Neither U (ᾱ, T ) nor ∂ᾱU (ᾱ, T ) can be described by closed form expressions. U evolves under
the equation of motion ∂tU (ᾱ, t) = − i

�H (ᾱ, t)U (ᾱ, t). By taking the derivative of the U

equation of motion with respect to ᾱ and swapping derivation order, we arrive at a coupled
system of equations of motion for the propagator and its gradient,

∂t

(
U

∂ᾱU

)
= − i

�

(
H 0

∂ᾱH H

)(
U

∂ᾱU

)
. (24)

As ᾱ is a vector, ∂ᾱU represents multiple equations of motion, one for each component of ᾱ.
∂ᾱH is computed using the chain rule.

GOAT optimization proceeds as follows: Starting at some initial ᾱ (random or educated guess),
initiate a gradient driven search (e.g., L-BFGS [22]) to minimize eq. (21). The search algorithm
iterates, requesting evaluation of eqs. (21,23) at various values of ᾱ, and will terminate when
the requested infidelity is reached or it fails to improve g further. Evaluation of g (ᾱ), ∂ᾱg (ᾱ)
requires the values of U (ᾱ, T ) and ∂ᾱU (ᾱ, T ). These are computed by numerical forward
integration of eq. (24), by any mechanism for integration of ordinary differential equations that
is accurate and efficient for time-dependent Hamiltonians, such as adaptive Runge-Kutta. Initial
conditions are U (t = 0) = I and ∂ᾱU (t = 0) = 0. Note that no back propagation is required.

Experimental constraints can be easily accommodated in GOAT by mapping the optimization
from an unconstrained space to a constrained subspace, and computing the gradient of the goal
function using the chain rule. For example, ᾱ components may be constrained by applying
bounding functions, e.g., αk −→ 1

2
(vmax − vmin) sin (ᾱk)+

1
2
(vmax + vmin) which imposes αk ∈

[vmin . . . vmax]. Amplitude constraints and a smooth start and finish of the control pulse can be
enforced by passing the controls through a window function which constrains them to a time-
dependent envelope. Gradients for ∂ᾱH flow via the chain rule.

3.4 Evaluating fidelity with randomized benchmarking.

The closed-loop approaches mentioned above crucially rely on a measurement of success.
While in state-transfer problems, e.g., creating an ordered state quickly or steering a chemical
reaction, there may be generic tools to determine this success with a given experimental appar-
atus. In the case of a quantum gate, this is not so simple. While classic textbooks like first label
quantum process tomography, this has a number of drawbacks, and is now replaced by more
efficient methods.

3.4.1 The trouble with tomography

To understand this, let’s first take a look at quantum state tomography [36]. This is, in a nutshell,
the reconstruction of a quantum state (characterized by its density matrix) by performing a
complete set of observable measurements. Next to some practical drawbacks having to do
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))

. (23)

6 note that CRAB was proposed before AdHOC
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�H (ᾱ, t)U (ᾱ, t). By taking the derivative of the U
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with guaranteeing a positive density matrix [37], this is also impractical: A typical quantum
device can be read out with a single machine – an electric or optical measurement. Formally
this corresponds to measuring in one basis (we will assume that we are dealing with qubits,
so recording the expectation value completely characterizes the output distribution). In order
to measure a complete set of operators, one has to first perform a basis change in the shape of
performing a coherent operation. As this operation itself is prone to error, this will falsify the
result. Together with the intrinsic imperfection of the readout device this constitutes measurement
error.

From state tomography, it is another step to process tomography, i.e., the reconstruction of a
quantum channel – linear map from input to output density matrices – from measured. Formally,
one can using the Choi-Jamiolkowski isomorphism [36] map the process matrix of the channel
onto the density matrix of a state and treat the problem of process tomography as one of state
tomography. Practically, process tomography involves to now measure complete sets of both
initial and final states that undergo the channel. Similar to measurement, also state preparation is
usually possible only in one distinct basis – if state preparation is performed by measurement it
is the measurement basis, if state preparation is performed via thermalization or optical pumping
it is the drift Hamiltonian’s eigenbasis – and it is imperfect – both of these give rise to state
preparation errors. Thus, in total, the quantum channel that one would like to characterize is
masked by state preparation and measurement (SPAM) errors.

Fig. 4: SPAM errors in process tomography: The state that can be prepared and measured needs
to be transferred into the basis that has to be prepared and measured, introducing additional
errors obfuscating the channel.

On top of that, full process tomography is also forbiddingly labourious. The state of a d

dimensional quantum system is characterized by a d2 entries in a densitry matrix that, accounting
for hermiticity and norm boil down to d2 − d+ 1 real numbers. This has to be squared again to
describe a quantum channel, leading to O (d4) numbers – which then are recombined to compute
a single fidelity. In an n - Qubit system, we have d = 2n making full tomography forbiddingly
data intensive. On top of that, we would like to ensure complete positivity of the measured
channel, which gives rise to inequality constraints that are practically hard to meet specifically
when the map is close to unitary. Now there are several methods such as compressed sensing and
Monte Carlo sampling [38, 39] that reduce that problem, but with SPAM still included, there
is strong motivation to look for an independent method to evaluate fidelity in an experiment.
Here, randomized benchmarking and its descendants (RB+) have appeared as a quasi-standard.
A comprehensive review of RB+ has currently not been published. We are going to mention
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key papers on the way and otherwise refer to the work of J. Emerson.

3.4.2 Randomization of quantum channels

Let’s first lay the foundation of how we describe a quantum channel [36]: A linear map hat
takes any valid density matrix onto another valid density matrix, i.e., with

ρ �→ E [ρ]

we demand that if ρ is hermitian, positively semidefinite, and has a normalized trace, so is E [ρ].
This is satisfied by the Kraus representation

E [ρ] =
∑
k

Âkρ̂Â
†
k

∑
k

Â†
kÂk = I.

The (non-unique) Kraus operators Ak characterize the channel. It can be easily shown that the
Kraus representation leads to a valid channel and it takes a bit more attention to show that the
validity of the channel also requires the Kraus representation.

Now to estimate the average fidelity over a channel relative to a desired unitary Û we apply the
channel to a pure initial state, then undo the ideal channel, compute the overlap with the pure
state and average over all pure inputs

F =

∫
dψ

〈
ψ
∣∣U †E [|ψ〉〈ψ|U ]

∣∣ψ〉

where the integral runs over a suitable uniform distribution of all states called the Haar measure.
We now aim at replacing the average in this formula by another randomization procedure [40].
We now decompose the real operation into an ideal operation followed by an error channel and
Kraus-decompose the error channel

E = Λ ◦ U Λ =
∑
k

AkρA
†
k.

Plugging this into the expression for the average gets us

F =

∫
dψ

〈
ψ
∣∣U †Λ

[
U |ψ〉〈ψ|U †]U ∣∣ψ〉 .

We can read this expression as implementing the motion-reversal transformation U † ·U with an
error Λ occuring in the middle.

Now instead of going for F directly, let us average the fidelity over all unitaries that can enter
the motion-reversal map – assuming tacitly that we have the same Λ at all times. We now
compute a at first glance very different average – we keep a single initial state ρ = |ψ〉〈ψ| and
instead average over all unitaries

E =

∫
dU Tr

[
ρU †Λ

(
UρU †)U]

.
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Kraus representation leads to a valid channel and it takes a bit more attention to show that the
validity of the channel also requires the Kraus representation.

Now to estimate the average fidelity over a channel relative to a desired unitary Û we apply the
channel to a pure initial state, then undo the ideal channel, compute the overlap with the pure
state and average over all pure inputs

F =

∫
dψ

〈
ψ
∣∣U †E [|ψ〉〈ψ|U ]

∣∣ψ〉

where the integral runs over a suitable uniform distribution of all states called the Haar measure.
We now aim at replacing the average in this formula by another randomization procedure [40].
We now decompose the real operation into an ideal operation followed by an error channel and
Kraus-decompose the error channel

E = Λ ◦ U Λ =
∑
k

AkρA
†
k.

Plugging this into the expression for the average gets us

F =

∫
dψ

〈
ψ
∣∣U †Λ

[
U |ψ〉〈ψ|U †]U ∣∣ψ〉 .

We can read this expression as implementing the motion-reversal transformation U † ·U with an
error Λ occuring in the middle.

Now instead of going for F directly, let us average the fidelity over all unitaries that can enter
the motion-reversal map – assuming tacitly that we have the same Λ at all times. We now
compute a at first glance very different average – we keep a single initial state ρ = |ψ〉〈ψ| and
instead average over all unitaries

E =

∫
dU Tr

[
ρU †Λ

(
UρU †)U]

.
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Now we exchange the order of integration and change the order under the trace and write this
as

E = Tr

(
ρ

[∫
dU UΛU †

]
ρ

)

We can now read this exchanged expression at face value – in the center is noise averaged over
all unitaries

Λave =

∫
dU UΛU †.

Building on the operations of unitary maps as generalized rotations, this is called a twirled
channel. It can be mathematically shown what is physically rather obvious – this channel must
be highly symmetric, it cannot prefer any basis over the other. The only channel compatible
with this is the depolarizing channel

Λave [ρ] = pρ+
1− p

d
I

which has a single error probability p. With this the error averaged over all unitaries equals the
fidelity of the twirled channel computed for a single input state

E = Tr (ρΛaveρ) = F.

where the last equality requires some more involved math to show that this is also the same
as the average fidelity of a unitary averaged over all states. The fact that a single input state
is enough – we have delegated the need for averaging from all states to twirling the channel –
addresses the problem of SPAM errors.

Now what is needed is an efficient way to implement Λave. We need to replace the integral over
all unitaries by a sum over random elements that converges to this integral. This brings in the
concept of a unitary 2-design: a set that correctly reproduces the full unitary set in polynomials
of degree 2 . It can be shown [41, 42] (in a rather pedestrian way) that the Clifford group is
sufficient. The Clifford group [36] is formally defined as the normalizer of the Pauli group.
For n qubits, this Pauli Pn = {σn} group consists of all direct products of Pauli matrices
σn = ⊗n

j=1σij , ij ∈ {0, 1, 2, 3} so the corresponding Clifford group is the set of all unitaries
that map all n-qubit Pauli matrices onto Pauli matrices

Cn =
{
U ∈ SU (2n) : ∀σn ∈ Pn ∃σm∈Pm : σm = UσnU

†} .
For a single qubit, this group is generatd by all quarter-turns around the Bloch sphere. The
Clifford group is a discrete group and quantum algorithms consisting of only Clifford gates can
be efficiently classically simulated . These together lead to the remarkably simple protocol of
randomized benchmarking.

3.4.3 Randomized Benchmarking

Let’s pull all of these ingredients together into a handy protocol:
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1. Repeat for a few representative sequences

(a) Draw a random set of Clifford gates

(b) Compute the resulting operation and its inverse. Add the inverse to the end of the
sequence

(c) Repeat the following to establish an estimate for the final probability for survival of
the initial state

i. initialize the system in a convenient state

ii. run the sequence

iii. measure if the outcome is the same state or not

(d) Average to estimate the survival probability for the given sequence

2. Average to estimate the survival probability averaged of the Clifford groups. As a function
of sequence length, the result will have the form

p(n) = p0 + λn.

Here, λ is the average Clifford gate fidelity and can be determined by fitting, whereas p0
is the SPAM error.

It turns out practically and can be reasoned analytically that the need for averaging is acceptable,
artifacts of ensemble sizes vanish quickly [43].

In this basic version of RB, there are a lot of assumptions that can be questioned. The theory
of randomized benchmarking has been extended to adapt most of the demands resulting from
weakening these assumptions. We cannot do the vast literature full justice here but mention a
few highlights.

First of all, standard RB finds the fidelity averaged over the whole Clifford group. If one
instead desires to characterize a single Clifford gate, the technique of interleaved randomized
benchmarking (IRB) [44] can be applied. There, one first performs regular RB. Then, one takes
the sequences used for RB and interleaves the desired Clifford gate between any two of the
gates from the sequence. The inverse to the resulting sequence needs to be re-computed. The
comparison between the interleaved and the regular frequencies gives the average fidelity of
that special Clifford gate.

In a similar vein, issues like leakage out of the computational subspace, gate-dependent error
and others can be taken into account [43], leading to the modern concept of cycle benchmarking.
Including non-Clifford gates, however, can only be done at the cost of significant overhead, as
the inverting operation is hard to compute as well as hard to invert - it is an arbitrarily quantum
gate encompassing the whole system and not part of the Clifford group. A combination of RB
with Monte Carlo sampling can be applied to still keep parts of the benefits of IRB [39].
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Fig. 5: Quantum channels for randomized benchmarking. Top: Randomized Benchmarking
consists of a sequence of random (perfect) Clifford Ci and Errors Λ inverted by the last Clifford
gate Cy+1. Bottom: Interleaved randomized Benchmarking interleaves a particular Clifford gate
V into this sequence.

That being said, in many practical architectures, the only non-Clifford gate is the T-gate, a π/4

z-axis rotation which can be done in software to high precision, so it is not crucial to calibrate
it with optimal control. Also, as the two-qubit CNOT gate is a Clifford gate, one cannot claim
that natively and without error correction Cliford gates are easier than non-Clifford.

3.5 Approximating time evolutions with the Magnus expansion

Control calculations involve solving the time-dependent Schrödinger equation. While this
can be done analytically in, e.g., rotating wave situations or approximations, this can quickly
become hard – even for a system as simple as a harmonically driven two-state-system this
is a daunting task [45]. If we would like to proceed analytically with optimal control as far
as possible, computing the final gate analytically is a key ingredient to which the Magnus
expansion is an important ingredient. Numerically, techniques for coupled ordinary differential
equations like Runge-Kutta can be used as well as split-operator techniques. For analytical
calculations, one can use the Dyson series familiar from regular advanced quantum mechanics
as systematic perturbation theory. In many cases, it is however more effective to use the Magnus
expansion, an asymptotic expansion that used the number of nested commutators as a small
parameter. It is exact but usually truncated at low order. Our treatment mostly follows [46].

The problem at hand is to start from a Hamiltonian that has a (hopefully) large but solvable
component and a perturbation Ĥ = Ĥ0(t) + V̂ (t). A clever choice of this division is key
and there is no need for the former to be time-independent. We can transfer to the interaction
picture with respect to Ĥ0 . The resulting transformed perturbation V̂ I(t) will then acquire
additional time-dependence, often in the form of large oscillating terms. The objective is now
to approximately calculate the time evolution

Û I(t) = T exp

(
− i

�

∫ t

0

dτ V̂ I (τ)

)
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where T is the usual time ordering operator. The Dyson expansion of this term starts as

Û I (t) = 1− i

�

∫ t

0

dτ V̂ I (τ)− 1

�2

∫ t

0

dτ

∫ τ

0

dτ ′ V̂ I(τ)V̂ I (τ ′) + . . .

which we can expect to converge quickly if the perturbation combined with oscillations are so
small that the integration over (potentially) long times does not hinder convergence. If this is
not the case, one could resort to self-energy techniques as they are known in quantum field
theory. For these time-dependent systems, the Magnus expansion is a related route. It provides
an expansion

Û I (t) = e−i
∑∞

n=0 H̄n(t) (25)

thus truncating this series happens in the exponent and maintains unitarity and is compatible
with going to long times. Its lowest orders can be understood as follows: We start with the
average Hamiltonian

H̄0(t) =

∫ t

0

dτ V̂ I(τ)

i.e. the expression that collects the classical part and ignores all commutators. The next order
contains one commutator

H̄1(t) = − i

2

∫ t

0

dτ1 dτ2

[
V̂ I(τ2), V̂

I (τ1)
]

but as it is in the exponent, it collects terms from all orders of the Dyson series (you can convince
yourself by expanding the exponential in eq. (25). The next order of the expansion is

H̄2 (t) = −1

6

∫ t

0

dτ1 dτ2 dτ3

{[
V̂ I (τ3) ,

[
V̂ I (τ2) , V̂

I (τ1)
]]

+
[
V̂ I (τ1) ,

[
V̂ I (τ2) , V̂

I (τ3)
]]}

i.e. it contains two nested commutators . We will only be able to appreciate this expansion
when we apply it, but we can already see that the different orders will inherit different operator
structures from the different commutators and that stacking on more integrals will create ever
more demanding resonance conditions, so higher orders likely oscillate out. That notwithstanding,
the Magnus expansion is asymptotic in nature: Its formal radius of convergence is zero hence
adding higher orders does not always improve the accuracy.

3.6 Real-world limitations

When applying (quantum) optimal control to real-world systems, we have to contend with the
fact that all parameters under our control have practical limitations: power, frequency, timing,
etc. are all constrained by the capabilities of the equipment through which we apply said control.
Moreover, any feedback scheme (such as Ad-HOC), must account for experimental noise,
uncertainties in the experimental system (both gaps in system characterization, and "random
walk"-like drifts of experimental parameters) and imperfections in both control and readout.
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component and a perturbation Ĥ = Ĥ0(t) + V̂ (t). A clever choice of this division is key
and there is no need for the former to be time-independent. We can transfer to the interaction
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These issues above are complex and have to be dealt with simultaneously in real-word scenarios.
There is no known textbook solution to these problems, and they are subject to ongoing research.
We shall therefore limit ourselves to a very brief review of some of the approaches currently
available:

Constraints on applicable controls: Two approaches can be taken: Either the space of possible
controls can be defined such all points in the search space are valid, appplicable, controls, or the
optimization space is defined more liberally, and we penalize controls which fail to conform.

For the first approach, limiting the control subspace, a partial solution is to choose and fix
some parameters, such as control field frequency, ahead of time. This is the solution suggested
by the CRAB optimal control algorithm [28]. A more general approach is to use bounded
functions, such as cosine or inverse tangent, to transform an unconstrained physical parameter
to a constrained one. For example, the search parameter α may be unconstrained and O (1),
and we transform it to a constrained field amplitude via A := 500MHz × cos (α), which is
subsequently used in the system Hamiltonian.

Sometimes, the approaches above are insufficient as constraints are complex and include multiple
parameters; or perhaps such substitutions are not a good fit to the optimal control problem. In
such cases, we can impose a penalty term which will modify the functional for which we seek
a minimum. For example, if we wish to impose a low-bandwidth solution on the control field
c (t), we may add a penalty term proportional to

∫ T

0
|∂tc (t)|2dt, which will be significant for

highly oscillatory functions and zero for the DC component.

Robust controls: Experiments are often noisy environments, which noise appearing both on
control fields and on the underlying system Hamiltonians. To provide a control scheme which
provides consistently good performance, once must add the robustness requirement of the
optimization requirements. This can be done using "ensemble optimization", where each optimization
step averages over multiple manifestations of the dynamics, each with a different noise realization.
The specific noise manifestations can be either fixed for the duration of the optimization of
varied with each iteration step. The former approach is simpler to implement, but runs the
risk of the optimization solving the problem only to the small subset of noises it encountered.
The latter approach tends to result in more robust controls, but introduces a noisy goal function,
which is harder to optimize reliably. In either case, ensemble optimization tends to be expensive
in terms of computational resources. In some cases, it is possible to replace it with the a penalty
term which is proportional to the absolute value of the gradient of the standard optimization
goal with respect to the noisy variable (i.e. require that the control’s performance will be weakly
dependent on the noisy parameter). In all cases, robust controls often exhibit the "no free lunch"
rule of control theory – robust controls often require more time, more bandwidth, or provide a
worst average-case performance than their non-robust counterparts [47].
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4 Examples

4.1 Optimal control of a qubit

Let’s start with a really elementary analytical example: A single qubit with Hamiltonian Ĥ(t) =

u(t)σ̂x looking at the fastest state transfer possible from |0〉 to eiφ|1〉 . We can parameterize the
state as |ψ〉(t) = (x0 + iy0) |0〉+ (x1 + iy1) |1〉. The Schrödinger equation can be expressed in
these real parameters as

ẋ0 = uy1 ẏ0 = −ux1 ẋ1 = uy0 ẏ1 = −ux0

which are coupled in two sets of two that do not talk to the other components, already telling
us that φ = ±π/2. Keep in mind, however, that u can be time-dependent. Now we clearly
see that the speed of evolutions scales with the control amplitude u so our initial question was
not even well-posed. We need to at least limit the amplitude of the control field. We make this
dimensionless |u| ≤ umax. The optimal solution exhausts that amplitude and, indeed, plugging
in u = umax we find

ẍ0 + u2
maxx0 = 0

the harmonic oscillator equation of motion which leads to the desired solution x0 = 0 after time
tmin = π/2umax . Solutions of this kind are called “bang” solutions. More generally, in strictly
bilinear control problems like this one, the optimal solution jumps between its boundaries
(which in the case of multiple controls can be quite intricate), then called “bang-bang”-control.

It is interesting to study the physical significance of this result. A real system in its laboratory
frame always has an attached drift

Ĥ1(t) =
E

2
σ̂z + u(t)σ̂x

Now if umax � |E| we can expect the previous solution to still hold approximately. If this
condition is violated, the situation is different: The vectors (±umax, y, z)

T define two non-
collinear axes on the Bloch sphere and a given initial state can reach all final states that are on
the circle around that axis including that state. In general, we will need up to three “bangs” to
reach out goal. The limitation of umax may

4.2 Exploring the speed limit with high parameter counts

The quantum speed limit (QSL) is defined as the minimal time that is needed to evolve a system
from a given state ρ0 to another state ρ(t) with a specific fidelity Φ(ρ0,ρ(t)) [48]. This is relevant
e.g., for qubit gate implementations, because it limits the minimal gate time (for unrestricted
controls). When the control bandwidth is restricted, then the dimension of the set of reachable
states DW and the available bandwidth ∆Ω give a lower bound for the evolution time [49]:
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in u = umax we find

ẍ0 + u2
maxx0 = 0

the harmonic oscillator equation of motion which leads to the desired solution x0 = 0 after time
tmin = π/2umax . Solutions of this kind are called “bang” solutions. More generally, in strictly
bilinear control problems like this one, the optimal solution jumps between its boundaries
(which in the case of multiple controls can be quite intricate), then called “bang-bang”-control.

It is interesting to study the physical significance of this result. A real system in its laboratory
frame always has an attached drift

Ĥ1(t) =
E

2
σ̂z + u(t)σ̂x

Now if umax � |E| we can expect the previous solution to still hold approximately. If this
condition is violated, the situation is different: The vectors (±umax, y, z)

T define two non-
collinear axes on the Bloch sphere and a given initial state can reach all final states that are on
the circle around that axis including that state. In general, we will need up to three “bangs” to
reach out goal. The limitation of umax may

4.2 Exploring the speed limit with high parameter counts

The quantum speed limit (QSL) is defined as the minimal time that is needed to evolve a system
from a given state ρ0 to another state ρ(t) with a specific fidelity Φ(ρ0,ρ(t)) [48]. This is relevant
e.g., for qubit gate implementations, because it limits the minimal gate time (for unrestricted
controls). When the control bandwidth is restricted, then the dimension of the set of reachable
states DW and the available bandwidth ∆Ω give a lower bound for the evolution time [49]:
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T ≥ DW

∆Ω

This is a continuous version of the Solovay-Kitaev theorem.

The set of reachable states consists of all states that can be written as

|ψ(t)〉 = U(t0, t)|ψ0〉 (26)

where U(t0, t) is the propagation operator of the system. A system is called completely controllable
if one can choose the control parameters in such a way that the propagation operator is equal to
any specific operator [50].

A method to explore the QSL for a gate is the following [51]: For different given gate times one
optimizes the gate and plots the fidelity Φgoal or the error g(T ) = 1 − Φgoal (see equation (21))
of the optimized gates against the gate times. If a QSL exists, there will be minimal time for
which the error is small. For shorter gate times the error is significantly larger. This time is the
QSL.

The result depends on the chosen optimization method, concretely we show an example:

In fig. 6 and fig. 7 the error g is plotted against gate duration for two different parameterizations.
The system is a CR-gate implementation of a CNOT gate [52].
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Fig. 6: Gate error as a function of gate time. The optimization was done using GRAPE with a
PWC parameterization with 500 pieces. The QSL is around 10ns.

In fig. 6 the QSL is shown for an optimization using GRAPE with a piecewise constant (PWC)
parameterization with 500 pieces and unconstrained controls. One can see that there is a jump
around 10ns which indicates that this is the QSL in this case. Fig. 7 shows the same, but for an
optimization using GOAT with a Fourier decomposition into 167 components. The QSL is here
around 40ns and is reached more slowly.

The difference is related to optimally have the controls interact with redirecting the drift. A key
step to a theory of this phenomenon has been undertaken in [49].
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Fig. 7: Gate error as a function of gate time. The optimization was done using GOAT with a
Fourier decomposition into 167 pieces. The QSL is around 40ns.

4.3 Open systems

In these notes we have mostly concentrated on the optimal control for closed quantum systems.
One can ask related questions for open quantum systems as well. A treatment of this situation
would go way beyond the scope of these lecture notes. Here, the space of potentially reachable
states / of reachable time evolutions is much larger than in the unitary case. The theory of
controllability and reachability is thus more involves, it is for example not at all clear, if the
impact of decoherence can be reduced to zero, i.e., if the subset of unitary time evolutions
is reachable. We would thus like to describe a pragmatic approach and refer the reader to
the literature. For a Lindblad equation, it can be shown that the control fields cannot cancel
dissipation effect and the system is not completely controllable. This is still an open question
in the non-Markovian regime.

As a first rule of thumb, there are situations when the decoherence experienced by the quantum
subsystem has no or very little structure – e.g., in the case of uniform decoherence leading
to a fully depolarizing channel and, at least for the synthesis of gates, for most Markovian
decoherence models. These do not give an open system optimal control algorithm any space
to actually exploit the structure of the decoherence to perform an optimization, rather, we can
expect that the fastest solution of the closed system also is close to an optimal solution for the
open system. Thus, running a closed-system version of optimal control and benchmarking it in
a realistic open system is a good initial approach.

If one suspects that the decoherence mechanism contains exploitable structure, or if one tries
to accomplish a task that actively uses decoherence – such as tasks changing the entropy of
the state, e.g., cooling, it is possible to generalize the aforementioned methods of optimal
control. More specifically, e.g., in OpenGRAPE, one simply replaces the Schrödinger equation
as the dynamical constraint by a suitable description of open systems dynamics, such as a
master equation. One caveat lies in the need for backwards-in-time propagation: Open system
dynamics is asymptotically irreversible, which can make back-propagation unstable. Practically,
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In these notes we have mostly concentrated on the optimal control for closed quantum systems.
One can ask related questions for open quantum systems as well. A treatment of this situation
would go way beyond the scope of these lecture notes. Here, the space of potentially reachable
states / of reachable time evolutions is much larger than in the unitary case. The theory of
controllability and reachability is thus more involves, it is for example not at all clear, if the
impact of decoherence can be reduced to zero, i.e., if the subset of unitary time evolutions
is reachable. We would thus like to describe a pragmatic approach and refer the reader to
the literature. For a Lindblad equation, it can be shown that the control fields cannot cancel
dissipation effect and the system is not completely controllable. This is still an open question
in the non-Markovian regime.

As a first rule of thumb, there are situations when the decoherence experienced by the quantum
subsystem has no or very little structure – e.g., in the case of uniform decoherence leading
to a fully depolarizing channel and, at least for the synthesis of gates, for most Markovian
decoherence models. These do not give an open system optimal control algorithm any space
to actually exploit the structure of the decoherence to perform an optimization, rather, we can
expect that the fastest solution of the closed system also is close to an optimal solution for the
open system. Thus, running a closed-system version of optimal control and benchmarking it in
a realistic open system is a good initial approach.

If one suspects that the decoherence mechanism contains exploitable structure, or if one tries
to accomplish a task that actively uses decoherence – such as tasks changing the entropy of
the state, e.g., cooling, it is possible to generalize the aforementioned methods of optimal
control. More specifically, e.g., in OpenGRAPE, one simply replaces the Schrödinger equation
as the dynamical constraint by a suitable description of open systems dynamics, such as a
master equation. One caveat lies in the need for backwards-in-time propagation: Open system
dynamics is asymptotically irreversible, which can make back-propagation unstable. Practically,
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this can be handled by either focusing on decoherence rates that are not too large or by suitable
initial guesses.

As a well-defined example, let us consider a single qubits perturbed by a two-level fluctuator,
i.e., a second two-state system that is coupled to a heat bath. This is a common situation in
superconducting qubits [53].

We specifically model a qubit coupled to a single TLF by H = HS +HI +HB. HS consists of
the qubit and the coupled two-state system, i.e.

HS = E1(t)σz +∆σx + E2τz + Λσzτz

where σi and τi are the usual Pauli matrices operating in qubit and fluctuator Hilbert space
respectively. E1(t) is time-dependent and serves as an external control. The source of decoherence
is the coupling of the fluctuator to the heat bath, which leads to incoherent transitions between
the fluctuator eigenstates, HI =

∑
i λi(τ

+bi + τ−b†i ), HB =
∑

i �ωib
†
ibi. We introduce an

Ohmic bath spectrum J(ω) =
∑

i λ
2
i δ(ω−ωi) = κωΘ(ω−ωc) containing the couplings λi, the

dimensionless damping κ, and a high-frequency cutoff ωc (which we assume to be the largest
frequency in the system). Now depending on the bath damping constant κthe fluctuator can
flip fast or slow – and in the limit of slow flipping, the qubit sees noise with strong temporal
correlation leading to highly non-Markovian qubit dynamics.

To formally treat this system, we can on the other hand still set up a Markovian master equation
for the augmented system of qubit and fluctuator and only after its solution trace over the
fluctuator to get the effective density matrix of the qubit alone. We formulate the control
approach by rewriting the master equation as ρ̇(t) = −

(
iH(E1(t)) + Γ(E1(t))

)
ρ(t) with

the Hamiltonian commutator superoperator H(E1(t))(·) = [H(E1(t)), ·] and the relaxation
superoperator Γ, both time-dependent via the control E1(t). The formal solution to the master
equation is a linear quantum map operating on a physical initial state according to ρ(t) =

F (t)ρ(0). Thus F itself follows the operator equation of motion

Ḟ = − (iH + Γ)F (27)

with initial condition F (0) = I, as in ref. [54].

Here, multiplication of quantum maps denotes their concatenation. The task is to find control
amplitudes E1(t) with $t ∈ [0, tg]$, $tg$ being a fixed final time, such that the difference
$δF = FU −F (tg)$ between dissipative time evolution $F (tg)$ obeying eqn. (27) and a target
unitary map $FU$ is minimized with respect to the Euclidean distance ||δF ||22 ≡ tr

{
δF †δF

}
.

Clearly, this is the case, when the trace fidelity

φ = Re tr
{
F†
U F(tg)

}
(28)

is maximal. Note, that in an open system, one cannot expect to achieve zero distance to a unitary
evolution FU [54]. The goal is to come as close as possible. On this setting, we find optimal
pulses by gradient search.
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It is interesting to investigate the resulting pulses and performance limits. We see in figure ...
that optimal control pulses allow to reach great gate performance after overcoming a quantum
speed limit. Remarkably, the dependence on gate duration is non-monotonic at least in the
regime of low κ when the two settings of the TLS can be resolved. At some magic times, the
frequency split from the TLS naturally refocuses, constraining the optimization much less than
at other times.

More remarkable, the maximally attainable fidelity also has a non-monotonic dependence on κ.
At hindsight, this can be understood as follows: At low κ there is no randomness of the system,
it is fully reversible. The optimal control algorithm just has to deal with the fact that the setting
of the TLS is unknown, which it perfectly accomplishes. On the other hand, at high κ, the
phenomenon of motional narrowing occurs: Fast motion of the impurity broadens its spectrum
thus reducing its spectral weight at low frequencies.

4.4 DRAG and its derivatives

In general a quantum system will contain additional states outside of a subspace, we want to
operate in. If our control couples also to transitions out of the subspace we will leak population
and degrade the performance of our operation. The Derivative Removal with Adiabatic Gate
(DRAG) method provides a framework to identify these leakages and to modify the control
signals to counteract them.

We will review the basic idea along the procedure shown in [55]. Consider a 3-level-system
that is controlled by a signal u(t) = ux(t) cos(ωdt) + uy(t) sin(ωdt). The first two levels make
up the computational subspace |0〉, |1〉 with transition frequency ω1 that we want to operate in
and |2〉 accounts for the leakage. It is modeled by the Hamiltonian

H/� = ω1 |1〉 〈1|+ (2ω1 +∆) |2〉 〈2|+ u(t)σ̂x
0,1 + λu(t)σ̂x

1,2 (29)

where the Pauli operators are σ̂x
j,k = |k〉 〈j| + |j〉 〈k|, λ describes the coupling of the drive to

the 1-2 transition. We expressed the second transition frequency by the anharmonicity ∆ =

ω2 − 2ω1.

Let’s say we want to implement a simple Rabi pulse by choosing ux(t) = Ω(t) and uy(t) = 0.
This gives rise to unwanted leakage out of the computational subspace with the term λΩ(t)σ̂x

1,2.
The DRAG idea shows how we can counteract this leakage by choosing uy(t) appropriately.

We first express the Hamiltonian in the rotating frame with R = exp(iωd |1〉 〈1| + 2iωd |1〉 〈1|)
following the rule HR = RHR† + i�ṘR† which gives

HR/� = δ1 |1〉 〈1|+ δ2 |2〉 〈2|+
∑
α=x,y

uα

2
(t)σ̂α

0,1 + λ
uα

2
(t)σ̂α

1,2 ,
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superoperator Γ, both time-dependent via the control E1(t). The formal solution to the master
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amplitudes E1(t) with $t ∈ [0, tg]$, $tg$ being a fixed final time, such that the difference
$δF = FU −F (tg)$ between dissipative time evolution $F (tg)$ obeying eqn. (27) and a target
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is maximal. Note, that in an open system, one cannot expect to achieve zero distance to a unitary
evolution FU [54]. The goal is to come as close as possible. On this setting, we find optimal
pulses by gradient search.
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Fig. 8: Top: Gate error versus pulse time tg for optimal Z-gate pulses in the presence of a non-
Markovian environment with dissipation strength κ. A periodic sequence of minima at around
tn = nπ/∆, where n ≥ 1, is obtained. Middle: The gate error of optimized pulses approaches
a limit set by T1 and 2T1, as shown with κ = 0.005. Bottom: Optimized pulses reduce the error
rate by approximately one order of magnitude compared to Rabi pulses for κ = 0.005. Pulses
starting from zero bias and with realistic rise times (penalty) require only a small additional
gate time. In all figures the system parameters are E2 = 0.1∆, Λ = 0.1∆ and T = 0.2∆.
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Fig. 9: Gate error versus TLF rate γ for various temperatures for an optimized pulse with
tg = 5.0/∆. The left inset is a magnification of the low-γ part of the main plot and reveals
the linear behaviour. The right inset shows the maximum of the curves of the main plot versus
temperature. (E2 = 0.1∆ and Λ = 0.1∆)

using the detunings δ1 = ω1−ωd and δ2 = ∆+2δ1 between the drive and transition frequencies.

Applying an adiabatic transformation V (t) by calculating HV = V HV † + i�V̇ V † allows us to
look at the system in a frame where the leakage and the y-component necessary to counteract it
are visible. We take

V (t) = exp

[
−i

ux(t)

2∆
(σ̂y

0,1 + λσ̂y
1,2)

]
,

a transformation that depends on our intended signal ux, and apply it to first order in ux/∆ to
find

HV /� =

(
δ1 −

(λ2 − 4)u2
x

4∆

)
|1〉 〈1|+

(
δ2 +

(λ2 + 2)u2
x

4∆

)
|2〉 〈2|

+
ux

2
σ̂x
0,1 + λ

u2
x

8∆
σ̂x
0,2 +

[
uy

2
+

u̇x

2∆

]
(σ̂y

0,1 + λσ̂y
1,2)

From this expression we can see that our intended drive is unchanged ux/2σ̂
x
0,1 but if we

also choose uy = −u̇x/∆ we cancel the last term that is responsible for driving out of the
computational subspace ∝ λσ̂y

1,2. The transformation also suggest detuning the drive by δ1 =

(λ2 − 4)u2
x/4∆ to avoid stark shifting of the 0-1 transition. This example illustrates the main

working principle of DRAG which can be generalized to account for more than just leakage to
a third level. By modifying V (t), for example adding terms ∝ σ̂y

0,2, or iteratively performing
transformations Vj(t) the intertial terms, the inertial terms i�V̇jV

†
j generate more conditions on

the control signals and its derivatives.
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using the detunings δ1 = ω1−ωd and δ2 = ∆+2δ1 between the drive and transition frequencies.

Applying an adiabatic transformation V (t) by calculating HV = V HV † + i�V̇ V † allows us to
look at the system in a frame where the leakage and the y-component necessary to counteract it
are visible. We take

V (t) = exp

[
−i

ux(t)

2∆
(σ̂y

0,1 + λσ̂y
1,2)

]
,

a transformation that depends on our intended signal ux, and apply it to first order in ux/∆ to
find

HV /� =

(
δ1 −

(λ2 − 4)u2
x

4∆

)
|1〉 〈1|+

(
δ2 +

(λ2 + 2)u2
x

4∆

)
|2〉 〈2|

+
ux

2
σ̂x
0,1 + λ

u2
x

8∆
σ̂x
0,2 +

[
uy

2
+

u̇x

2∆

]
(σ̂y

0,1 + λσ̂y
1,2)

From this expression we can see that our intended drive is unchanged ux/2σ̂
x
0,1 but if we

also choose uy = −u̇x/∆ we cancel the last term that is responsible for driving out of the
computational subspace ∝ λσ̂y

1,2. The transformation also suggest detuning the drive by δ1 =

(λ2 − 4)u2
x/4∆ to avoid stark shifting of the 0-1 transition. This example illustrates the main

working principle of DRAG which can be generalized to account for more than just leakage to
a third level. By modifying V (t), for example adding terms ∝ σ̂y

0,2, or iteratively performing
transformations Vj(t) the intertial terms, the inertial terms i�V̇jV

†
j generate more conditions on

the control signals and its derivatives.
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Fig. 10: (a): Performance of non-optimized DRAG variants as a function of gate time, derived
from an iterative Schrieffer-Wolff expansion to higher orders. Target : σ̂x rotation of a single
qubit described by the lowest three levels of Hamiltonian (29). – (b): Performance of the DRAG
pulses used in (a) for a fixed gate time tg = 4π/∆2 as a function of coupling strength λ to the
leakage level.

The performance of solutions to different orders, obtained via iterative transformations, is
depicted in Fig.10a as a function of pulse length, and in Fig.10b as a function of coupling
strength λ for a fixed gate time tg = 4π/∆2. Higher order solutions are taken from [56]. Note
also that when the |0〉 ↔ |2〉 transition is controlled via an additional corresponding frequency
component, exact solutions to the three-level system exist (cf. chapter 8 in [57]).

Turning to the experimental implementation [58,59] of DRAG pulses: In practice, actual system
parameters differ somewhat from those assumed in theory due to characterization gaps, system
drift, or unknown transfer functions affecting the input field shapes [60]. As a simplification,
we assume the low order terms in DRAG are easier to implement as their shape will be mostly
maintained on entry into the dilution fridge. Even so, many different low-order variants of
DRAG have been found in the literature for third-level leakage [55, 56, 58, 61]. This reduced
functional form can further be optimized theoretically [62] and/or through a closed-loop process
experimentally [25, 26] to account for the effect of higher order terms and experimental uncer-
tainties (preferably using more advanced gradient-free algorithms such as CMA-ES [63]). A
systematic experimental study of the tune-up of the prefactors in front of the functional forms
for the control operators was performed in [64]. In writing up these optimizations and adapting
them, the Magnus expansion, see chapter 3.5 is typically used.

For instance, let us denote the Gaussian pulse implementing a σ̂x gate for the qubit by G(t).
Then the first order solutions described in [55,56,61] are parameterized by the limited functional
basis ux ∝ G, uy ∝ ∂tG and δ ∝ G2, which mimics the limited shaping control that can
exist in experiment. None of the reported solutions are optimal within this functional basis:
For typical example parameters, infidelities may be further reduced from 10−5.28 to 10−6.63 by
slightly adjusting the prefactors of the control fields. For example, [55]’s first order DRAG
solution may be transformed according to ux → (1 + αx)ux and similarly for uy and δ, and
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Fig. 11: A slice of the 3D calibration landscape for DRAG solution up to the first order in the
small parameter to the qubit σx-gate leakage problem. Point A and B denote [55]’s and [61]’s
first-order solutions, respectively. Point C is the optimum for this control function subspace
(here αx = −0.0069), with infidelity of 10−6.63. A successful calibration process will typically
start at a known DRAG solution, i.e. points A or B, and conclude in point C. The inset illustrates
the associated pulse shapes: markers represent the unoptimized shapes (ux: •, uy: �, δ: �)
whereas solid lines depict the corresponding optimal solution (C).

then the constants αx, αy and αδ are optimized. A discussion for why optimization within a
severely restricted functional subspace may often be sufficient is given in [65] and follow-up
publications. A schematic of the optimization task involved in the calibration, as well as the
shape of the associated controls, is shown in Fig.11.

5 Summary and outlook

Optimal control is a mature discipline of theoretical physics and related fields. In experimentation,
it has remarkable success in situations in which physical systems are well characterized. Reaching
out to engineered systems requires a close integration with characterization and benchmarking.

Experimentalists and users of quantum control should have taken home an introduction of
concepts, jargon, and results of the field. Theorists should feel motivated to embrace these
challenges and to fashion their results into tools that can be used efficiently and scalably so
quantum control and quantum technology applications can mutually benefit from their potential.
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component, exact solutions to the three-level system exist (cf. chapter 8 in [57]).

Turning to the experimental implementation [58,59] of DRAG pulses: In practice, actual system
parameters differ somewhat from those assumed in theory due to characterization gaps, system
drift, or unknown transfer functions affecting the input field shapes [60]. As a simplification,
we assume the low order terms in DRAG are easier to implement as their shape will be mostly
maintained on entry into the dilution fridge. Even so, many different low-order variants of
DRAG have been found in the literature for third-level leakage [55, 56, 58, 61]. This reduced
functional form can further be optimized theoretically [62] and/or through a closed-loop process
experimentally [25, 26] to account for the effect of higher order terms and experimental uncer-
tainties (preferably using more advanced gradient-free algorithms such as CMA-ES [63]). A
systematic experimental study of the tune-up of the prefactors in front of the functional forms
for the control operators was performed in [64]. In writing up these optimizations and adapting
them, the Magnus expansion, see chapter 3.5 is typically used.

For instance, let us denote the Gaussian pulse implementing a σ̂x gate for the qubit by G(t).
Then the first order solutions described in [55,56,61] are parameterized by the limited functional
basis ux ∝ G, uy ∝ ∂tG and δ ∝ G2, which mimics the limited shaping control that can
exist in experiment. None of the reported solutions are optimal within this functional basis:
For typical example parameters, infidelities may be further reduced from 10−5.28 to 10−6.63 by
slightly adjusting the prefactors of the control fields. For example, [55]’s first order DRAG
solution may be transformed according to ux → (1 + αx)ux and similarly for uy and δ, and
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Fig. 11: A slice of the 3D calibration landscape for DRAG solution up to the first order in the
small parameter to the qubit σx-gate leakage problem. Point A and B denote [55]’s and [61]’s
first-order solutions, respectively. Point C is the optimum for this control function subspace
(here αx = −0.0069), with infidelity of 10−6.63. A successful calibration process will typically
start at a known DRAG solution, i.e. points A or B, and conclude in point C. The inset illustrates
the associated pulse shapes: markers represent the unoptimized shapes (ux: •, uy: �, δ: �)
whereas solid lines depict the corresponding optimal solution (C).

then the constants αx, αy and αδ are optimized. A discussion for why optimization within a
severely restricted functional subspace may often be sufficient is given in [65] and follow-up
publications. A schematic of the optimization task involved in the calibration, as well as the
shape of the associated controls, is shown in Fig.11.

5 Summary and outlook

Optimal control is a mature discipline of theoretical physics and related fields. In experimentation,
it has remarkable success in situations in which physical systems are well characterized. Reaching
out to engineered systems requires a close integration with characterization and benchmarking.

Experimentalists and users of quantum control should have taken home an introduction of
concepts, jargon, and results of the field. Theorists should feel motivated to embrace these
challenges and to fashion their results into tools that can be used efficiently and scalably so
quantum control and quantum technology applications can mutually benefit from their potential.
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1 Introduction

Quantum computers are heralded as being a game changer in computation and communication
tasks. This is illustrated by Google’s claim of reaching quantum supremacy [AAB+19] and the
many national and international programs (e.g. US, China, UK, Canada, Germany, the Nether-
lands, and the EU-quantum flagship) for quantum technologies as one of the main focal points
for research and development. Besides Google many of the other big tech companies are getting
involved as well, for example IBM, Microsoft, Intel, Amazon, Alibaba, and many others.

Quantum computers are based on the laws of quantum mechanics. These laws describe Nature
at the smallest scale and have some counterintuitive features like superposition, interference,
and entanglement. The superposition principle suggests that a particle (or larger system like
e.g. a molecule) can be in two or more different states at the same time. A famous example by
Schrödinger is that of a cat that is in a superposition of being both alive and dead. Although the
theory is counterintuitive, it has been verified many times in laboratories around the world and
to date it is the most accurate description of Nature we have. A system in superposition can also
interfere with itself. Superposition together with this interference forms the magic of quantum
computing. A qubit is the quantum analog of a classical bit and can be in a superposition of 0
and 1.

Quantum information processing gained a lot of momentum after the breakthrough result in
1994 of Peter Shor [Sho97] who demonstrated that factoring numbers into their prime-factors
can be efficiently solved on a quantum computer, whereas no classical algorithm is known that
solves this problem quickly. The relevance of this result becomes apparent when one realizes
that the security of most of modern cryptography is based on the fact that no fast algorithms
for the factorization problem are known. Shor’s quantum algorithm will thus break all of these
cryptographic protocols, provided that we have a quantum computer that operates on a few
thousand qubits.

Shor’s result gives some indication that quantum computers can solve certain computational
problems more efficiently than classical computers. But it is not true that every computation
can be sped-up exponentially and one can even show that for a broad class of problems no speed-
up whatsoever is possible. Moreover, it is mathematically still possible that only a very limited
speed-up is possible at all! This comes from the fact that we don’t understand computation very
well. It could be that quantum computers can be efficiently simulated on classical computers.
This would imply an efficient classical version of Shor’s algorithm that factors numbers. It could
even be that a much broader class of problems is efficiently computable on a classical computer:
PSPACE. This is the class of problems that can be solved using only a polynomial amount of
space, but potentially run for exponential time. We stress that this seems unlikely but can not
be ruled out with our current (limited) knowledge of the power of (classical) computation. The
running hypothesis is that quantum computers can solve certain problems more efficiently than
classical problems.

Quantum algorithms are hard to construct and developing them requires new ideas and insights
that are completely different from classical algorithm design. The main ingredients are always
the superposition principle coupled with smart use of interference. Since the first algorithms
of Deutsch [Deu85], Deutsch and Jozsa [DJ92], Simon [Sim97], leading up to Shor’s algo-
rithm [Sho97], and Grover’s algorithm [Gro96], quite a few more quantum algorithms have
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lands, and the EU-quantum flagship) for quantum technologies as one of the main focal points
for research and development. Besides Google many of the other big tech companies are getting
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Quantum computers are based on the laws of quantum mechanics. These laws describe Nature
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and entanglement. The superposition principle suggests that a particle (or larger system like
e.g. a molecule) can be in two or more different states at the same time. A famous example by
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theory is counterintuitive, it has been verified many times in laboratories around the world and
to date it is the most accurate description of Nature we have. A system in superposition can also
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computing. A qubit is the quantum analog of a classical bit and can be in a superposition of 0
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can be efficiently solved on a quantum computer, whereas no classical algorithm is known that
solves this problem quickly. The relevance of this result becomes apparent when one realizes
that the security of most of modern cryptography is based on the fact that no fast algorithms
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PSPACE. This is the class of problems that can be solved using only a polynomial amount of
space, but potentially run for exponential time. We stress that this seems unlikely but can not
be ruled out with our current (limited) knowledge of the power of (classical) computation. The
running hypothesis is that quantum computers can solve certain problems more efficiently than
classical problems.

Quantum algorithms are hard to construct and developing them requires new ideas and insights
that are completely different from classical algorithm design. The main ingredients are always
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been developed. See for example the overview paper of Montanaro [Mon16] and the quan-
tum algorithms zoo page [Jor20]. It is more accurate to describe these algorithms in terms
of techniques: For example the quantum Fourier transform, amplitude amplification, quantum
walks, quantum linear system of equations solver (HHL), Span Programs, QAOA etc. These
are general quantum algorithmic techniques (and some are heuristics) akin to the classical situ-
ation where there also exist a handful of general algorithmic techniques, like branch and bound,
search, dynamic programming, deep learning etc.

One often hears the complaint that only very few quantum algorithms have been developed.
This could equally well be said about classical algorithms! Therefore the number of algorithms
is not a meaningful measure. It is all about the techniques and heuristics that are available and
whether they are applicable. The main challenge is to apply them to a specific computational
problem at hand, often requiring additional and problem-specific tricks and ideas.

What problems can be solved more efficiently on a quantum computer than on a classical com-
puter? This is the main driving question in the field. A follow-up question is which problems
admit a quantum advantage if the implementation has to be done on only a few number of noisy
qubits? We will mostly focus on the first question, as it is difficult enough to answer!

In order to get a grip on things we will first have to revisit some ideas from classical computation
and computational complexity theory.

2 Computability and Complexity Theory

Complexity theory deals precisely with the question raised above. Determine the amount of
resources, e.g. time, memory, randomness, bits of communication, in order to perform a certain
computational or communication task. In order to make this precise one first needs a precise
model of computation. This was done in the 1930’s (around the same time that quantum me-
chanics was developed) independently by Post [Pos43], already developed in 1920 but only
first published in 1943, Church [Chu36], and Turing [Tur36]. The notion of computation that is
nowadays used is called a Turing machine and precisely formalizes what a memory cell is and
what a computation step is. See [AB09] for precise definitions. For now just think of a Turing
machine as a program in your favorite programming language and fix that for the rest of these
lectures. You should have a precise idea of what a single computation step is and what a single
memory cell is. If you are in doubt, look up the precise definitions. Another important feature
is that you can identify programs with natural numbers by interpreting the text of your program
as number. So we can talk about the program (or Turing machine) that has number i. Note that
we can also interpret each natural number as a program – if it is not a number that comes from
a valid program then interpret it as the trivial program that does nothing and stops. This means
we can talk about the ith Turing machine (or program).

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is computable if there is a Turing machine
(program) Mf such that for every input x ∈ {0, 1}∗, program Mf with input x (we will write
Mf (x)) will run for a finite number of steps and then output a string y ∈ {0, 1}∗ if and only if
f(x) = y. Note that {0, 1}∗ indicates the set of all finite binary strings.

We will call a set S computable if and only if its characteristic sequence χ : {0, 1}∗ → {0, 1}
is computable. Here χ(x) = 1 ↔ x ∈ S.
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Turing showed that there are functions that are not computable. He showed that determining
whether a program Mi on input x halts after a finite number of steps or goes on forever is not
computable, a problem which is captured by the halting set H , defined as follows.

H = {〈i, x〉 | Mi(x) stops}

Turing [Tur36] showed that there is no Turing machine that computes H . He used a diagonal-
ization argument invented originally by Cantor [Can74] who used it to show that the cardinality
of R is strictly larger than that of Q. The argument goes along the following lines. Suppose, for
a contradiction, that H is computable. Then the following variant will also be computable:

H ′ = {i | Mi(i) stops}

This implies there is a machine that halts on all inputs: Mj0(i) = 1 if Mi(i) stops and 0
otherwise. Then we can construct the following machine Mj1:

Mj1(i) =

{
halts if Mj0(i) = 0

does not halt1 if Mj0(i) = 1

In other words Mj0(i) halts if and only if Mi(i) does not halt. Now for the contradiction, let’s
feed Mj1 its own code j1 as input. We now have that Mj1(j1) halts if and only if Mj1(j1) does
not halt.

2.1 Gödel’s Theorem

Using the same ideas Gödel proved his famous incompleteness Theorem [Göd30] that infor-
mally states that there are theorems that are true but that have no proof. Using the language of
computability introduced here, there is a simple proof of this.

Consider the following mathematical statements: for any i and x, Turing machine Mi(x) stops.
It is easy to see that if Mi(x) stops there is a proof of this: just give the sequence of computation
steps that Mi(x) makes until it halts. So for all such halting i and x we can prove that Mi(x)
stops.

Next consider for i and x the opposite statements: Mi(x) does not halt. The statement is true for
those i and x for which Mi(x) does not hold. Assume that for all those i and x there is a proof
that machine Mi(x) does not halt. Now consider the following algorithm A that can decide for
any i and x whether Mi(x) stops or not. Test all proofs one by one and examine whether they
are a proof of whether Mi(x) halts or not hold. Once such a proof is found stop and output
whether Mi(x) halts or not. This would show that the Halting set is decidable, in contradiction
with what we proved above. We conclude now that it can not be the case that for all i and x for
which Mi(x) does not halt there is a proof. So there must be some i and x such that Mi(x) does
not halt but there is no proof for this.

It is interesting to see that the recent breakthrough results [JNV+20] of Ji, Natarajan, Vidick,
Wright, and Yuen that disprove Connes’ embedding conjecture using quantum information also
hinges on the undecidability of the Halting set.

1 This can be achieved by letting Mj1(i) go into an infinite loop if Mj0(i) = 1



B5.4 Harry Buhrman, Subhasree Patro, Florian Speelman

been developed. See for example the overview paper of Montanaro [Mon16] and the quan-
tum algorithms zoo page [Jor20]. It is more accurate to describe these algorithms in terms
of techniques: For example the quantum Fourier transform, amplitude amplification, quantum
walks, quantum linear system of equations solver (HHL), Span Programs, QAOA etc. These
are general quantum algorithmic techniques (and some are heuristics) akin to the classical situ-
ation where there also exist a handful of general algorithmic techniques, like branch and bound,
search, dynamic programming, deep learning etc.

One often hears the complaint that only very few quantum algorithms have been developed.
This could equally well be said about classical algorithms! Therefore the number of algorithms
is not a meaningful measure. It is all about the techniques and heuristics that are available and
whether they are applicable. The main challenge is to apply them to a specific computational
problem at hand, often requiring additional and problem-specific tricks and ideas.

What problems can be solved more efficiently on a quantum computer than on a classical com-
puter? This is the main driving question in the field. A follow-up question is which problems
admit a quantum advantage if the implementation has to be done on only a few number of noisy
qubits? We will mostly focus on the first question, as it is difficult enough to answer!

In order to get a grip on things we will first have to revisit some ideas from classical computation
and computational complexity theory.

2 Computability and Complexity Theory

Complexity theory deals precisely with the question raised above. Determine the amount of
resources, e.g. time, memory, randomness, bits of communication, in order to perform a certain
computational or communication task. In order to make this precise one first needs a precise
model of computation. This was done in the 1930’s (around the same time that quantum me-
chanics was developed) independently by Post [Pos43], already developed in 1920 but only
first published in 1943, Church [Chu36], and Turing [Tur36]. The notion of computation that is
nowadays used is called a Turing machine and precisely formalizes what a memory cell is and
what a computation step is. See [AB09] for precise definitions. For now just think of a Turing
machine as a program in your favorite programming language and fix that for the rest of these
lectures. You should have a precise idea of what a single computation step is and what a single
memory cell is. If you are in doubt, look up the precise definitions. Another important feature
is that you can identify programs with natural numbers by interpreting the text of your program
as number. So we can talk about the program (or Turing machine) that has number i. Note that
we can also interpret each natural number as a program – if it is not a number that comes from
a valid program then interpret it as the trivial program that does nothing and stops. This means
we can talk about the ith Turing machine (or program).

Definition 1. A function f : {0, 1}∗ → {0, 1}∗ is computable if there is a Turing machine
(program) Mf such that for every input x ∈ {0, 1}∗, program Mf with input x (we will write
Mf (x)) will run for a finite number of steps and then output a string y ∈ {0, 1}∗ if and only if
f(x) = y. Note that {0, 1}∗ indicates the set of all finite binary strings.

We will call a set S computable if and only if its characteristic sequence χ : {0, 1}∗ → {0, 1}
is computable. Here χ(x) = 1 ↔ x ∈ S.

Quantum Software & Applications B5.5

Turing showed that there are functions that are not computable. He showed that determining
whether a program Mi on input x halts after a finite number of steps or goes on forever is not
computable, a problem which is captured by the halting set H , defined as follows.

H = {〈i, x〉 | Mi(x) stops}

Turing [Tur36] showed that there is no Turing machine that computes H . He used a diagonal-
ization argument invented originally by Cantor [Can74] who used it to show that the cardinality
of R is strictly larger than that of Q. The argument goes along the following lines. Suppose, for
a contradiction, that H is computable. Then the following variant will also be computable:

H ′ = {i | Mi(i) stops}

This implies there is a machine that halts on all inputs: Mj0(i) = 1 if Mi(i) stops and 0
otherwise. Then we can construct the following machine Mj1:

Mj1(i) =

{
halts if Mj0(i) = 0

does not halt1 if Mj0(i) = 1

In other words Mj0(i) halts if and only if Mi(i) does not halt. Now for the contradiction, let’s
feed Mj1 its own code j1 as input. We now have that Mj1(j1) halts if and only if Mj1(j1) does
not halt.
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2.2 Time Bounded Complexity Theory

We are in practice not just interested in whether a computational problem is computable. We
also need the computation to finish in a reasonable amount of time. Problems that are in theory
computable but for which no efficient algorithm exists are in practice uncomputable. In the
following we will capture the notion of efficiently computable. We start by defining, for any
reasonable function t : N → N, the class of problems that are computable in time t.

Definition 2. For any nice2 time bound t(n) let DTIME(t(n)) be the class of sets A such that
there is a Turing machine MA, such that:

1. ∀x ∈ {0, 1}∗ : x ∈ A if and only if MA(x) = 1.

2. ∀n ∈ N: the number of steps MA(x) makes on inputs x of length n is bounded by t(n).

For any x ∈ {0, 1}∗, we will write |x| to denote the length of x, that is if x = x1 . . . xn then
|x| = n.

An important result in this area shows that if you allow the computation to use more time,
then more sets and functions become computable. More formally we have the following time
hierarchy theorem.

Theorem 1. DTIME(o( f(n)
log f(n)

) � DTIME(f(n)) for time constructible functions f(n).

The little-o notation o(g(n)) indicates the class of functions g′(n) such that lim
n→∞

g(n)′/g(n) =

0. Theorem 1 for example states that there are sets/problems A computable in time O(n2)
which can not be computed in time O(n). The proof of Theorem 1 is a refinement of the
diagonalization argument above. See [Ž83] for more details. In essence one constructs a set
D ∈ DTIME(f(n)) analogous to the Halting set above:

D = {〈i, x〉 | Mi(〈i, x〉) = 0 and Mi(〈i, x〉) makes ≤ f(|〈i, x〉|)
log f(|〈i, x〉|)

many steps}

It is not hard to see that D ∈ DTIME(f(x)). The log f(|x|) factor is due to the overhead
in time in simulating the ith Turing machine. On the other hand one can show that D �∈
DTIME(o( f(n)

log f(n)
)). For suppose it is, then there is a Turing machine running in time o( f(n)

log f(n)
)),

lets call it Mj0. As before one can now argue that Mj0(〈j0, x〉) = 1 ⇐⇒ Mj0(〈j0, x〉) = 0, a
contradiction.

Next we define the class of problems that can be solved in polynomial time.

Definition 3. P is the class of problems A ⊂ {0, 1}∗ such that there is a c such that A ∈
DTIME(nc).

Strictly speaking P deals with sets but we can also define an analogous class for functions
f : {0, 1}∗ → {0, 1}∗ that can be computed by Turing machines whose running time is bounded
by a polynomial in the length of the input.

2 Formally the function has to be time constructable. Throughout the text we will use very simple functions like
polynomials and exponential functions.
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The class P is also called the class of feasible problems and indeed many of the problems that
are in practice solved on a computer, like for example the shortest path problem used in routing
software in GPS systems, or computing the edit distance when comparing DNA sequences, fall
into this class P.

Complexity theory tries to determine the minimum time bound for which a problem A can be
solved.

Definition 4. The complexity of a problem A is the time bound t(n) such that A ∈ DTIME(t(n))
but A /∈ DTIME(o(t(n)).

In order to determine that the complexity of A is t(n) one needs to establish the following two
parts.

1. Upper bound. A ∈ DTIME(t(n)). This is done by designing an algorithm that establishes
this.

2. Lower bound. A /∈ DTIME(o(t(n)). This is often more difficult and requires a proof that
no algorithm exists that runs in time bound o(t(n)).

Computer scientist have been quite resourceful with item 1 above and many algorithmic tech-
niques have been employed to design algorithms in order to get upper bounds. However, the
area of lower bounds is seriously lagging behind. The best lower bound for an explicitly defined
function [IM02] is 5n− o(n). We note that this result is in the stronger computational model of
Boolean circuits, but omit this technicality in these notes.

Open Problem 1. Establish a superlinear lower bound for an explicitly defined function.

2.3 Edit Distance & Orthogonal Vectors

We now define properly the EDIT DISTANCE and ORTHOGONAL VECTORS problems which
we will study during the lectures in more detail. See also Section 7 for more details.

Definition 5 (The EDIT DISTANCE problem). Given two strings a and b over an alphabet set Σ,
the edit distance between a and b is the minimum number of operations (insertions, deletions,
substitutions) on the symbols required to transform string a to b (or vice versa).

For example if a = BEAGLE and b = BADGE then the edit distance between a and b is 3. It is
possible to change a into b if in a we replace the first E with an A, replace the A with a D, and
delete the L, BEAGLE becomes BADGE. It is not hard to see that 3 is the minimum number of
operations needed.

Interestingly, there is a beautiful algorithm [WF74] that solves the EDIT DISTANCE problem in
time O(n2). It makes use of a programming technique called dynamic programming [CLRS01].
The algorithm exploits recurrence relations that define the EDIT DISTANCE problem and com-
putes these in a clever way. Essentially no faster algorithm is known and it is conjectured that
this is not possible.

Another computational problem that will figure prominently is the ORTHOGONAL VECTORS

problem.
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Definition 6 (ORTHOGONAL VECTORS problem). Given two sets U and V of n vectors, each
over {0, 1}d where d = ω(log n), determine whether there exists a u ∈ U and a v ∈ V such
that 〈u|v〉 = 0 (i.e. Σl∈[d]ulvl = 0).

What is the computational complexity of the ORTHOGONAL VECTORS problem? The trivial,
and best known, algorithm runs in time O(n2d) by testing all pairs of vectors. It is conjectured
that this is essentially optimal, i.e., there is no O(n2−ε) algorithm for d = ω(log n).

2.4 P versus NP

Another problem that has a prominent place in complexity theory is the satisfiability problem:

SAT = {φ(x1, . . . , xn) | ∃α1, . . . , αn ∈ {T, F} : φ(x1 = α1, . . . , xn = αn) = T}

The formula φ on n variables x1, . . . , xn is usually in conjunctive normal form (CNF) which
means that it is written as:

m∧
i=1

∨
j∈Ci

xj

Where Ci ⊂ {1, . . . , 2n}, which is called a clause. We will use the convention that xn+i is the
negation of variable xi. When the cardinality of all the clauses is at most k we will call the
problem k-SAT.

What is the computational complexity of SAT? It is not hard to see that one can try all possible
assignments of T and F to the n variables obtaining a O(2n) algorithm.3 On the other hand no
better lower bound than n is known. Whether there is a faster algorithm for SAT or whether there
is a better lower bound is one of the biggest open problems in theoretical computer science and
mathematics. Is known by the P versus NP problem. Where NP stands for the class of problems
that solutions that can be efficiently checked (i.e. in polynomial time). More formally:

Definition 7. A is in NP if there is a constant c and a set B ∈ P:

x ∈ A ⇐⇒ ∃y ∈ {0, 1}|x|c〈x, y〉 ∈ B

We call y the witness that x ∈ A. For example for φ ∈ SAT, a witness will be a satisfying
assignment α such that φ(x = α) = T .

The question whether P ?
= NP can be shown equivalent [Lev73, Coo71] to whether SAT

?
∈ P .

It is widely believed that P is not equal to NP and hence that there does not exists a polynomial
time algorithm for SAT. But as mentioned above showing even a superlinear lower bound is
elusive.

3 This is not quite precise since evaluating the formula on a specific assignment α costs time linear in the number
of clauses and variables.
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2.5 Strong Exponential Time Hypothesis

Conjectures even stronger than P �= NP have been put forward [IP01]. The Strong Exponential
Time Hypothesis (SETH) informally states that essentially the best algorithm for SAT is the
one that tests all possible 2n assignments and declares the formula satisfiable if and only if it
found a satisfying assignment. This implies that no algorithm that runs significantly faster than
2n exists. We will explore this in Section 4, see Conjectures 1 and 2 for precise statements.

There is a surprising consequence of SETH concerning the complexity of the EDIT DISTANCE

and ORTHOGONAL VECTORS problems. See [Vas18] for more of such consequences.

Theorem 2. [Wil05] SETH implies for any ε > 0 there is no O(n2−ε) time algorithm for
ORTHOGONAL VECTORS.

Proof. Let φ(x1, . . . , xn) be a k-CNF formula with m = O(n) clauses4 C1, . . . Cm. We will
generate two sets of Boolean vectors U and V of dimension d. The size of |U | = |V | = 2n/2. We
split the variables of φ in two groups of equal size. Let α be an assignment to the first group and
β to the second group. Let (uα)j denote the jth entry of vector uα. We set (uα)j = 0 ⇐⇒ α
satisfies Cj(1 ≤ j ≤ m). Likewise we define (vβ)j = 0 ⇐⇒ β satisfies Cj . We define U the
set of all uα and V the set of all vβ . It is not hard to see that assignment α, β satisfies φ iff for
every j, α or β satisfies Cj . This is the case iff for every j (ua)j = 0 or (valpha)j = 0, hence
α, β satisfies φ if and only if 〈uα|vβ〉 = 0.

Note that for φ with n variables and O(n) clauses, the size of the OV-problem is cn2n/2 = N
for some constant c. Now suppose we have an algorithm for ORTHOGONAL VECTORS problem
that runs in time N2−ε for some ε > 0. This means we get an algorithm for SAT that runs in
time O(2n/2 + (n2n/2)2−ε) < O(2n−ε′n) for some ε′ > 0 which contradicts SETH.

A much more intricate argument (see also Section 4 and Section 7.1) shows that similar results
can be obtained for the EDIT DISTANCE problem.

This beautiful connection shows that SETH has great explanatory power in order to establish
(conditional) optimal algorithms for computational problems in P . This field is called Fine-
Grained Complexity. In what follows we will try to set up such a Fine-Grained Complexity
theory for quantum algorithms. This was done first in [BPS19,ACL+19]. We will now turn our
attention to quantum algorithms and quantum query complexity.

3 Quantum Query Complexity

We will use the standard notation introduced in for example the textbook [NC00]. Many of
the quantum algorithms developed, including the best known algorithms of Shor [Sho97] and
Grover [Gro96], can be cast in the black-box or query formalism [BBC+01].

For an excellent treatment on the subject, quantum algorithms, and also some techniques, see
the lecture notes of de Wolf [dW20].

4 We may assume that m = O(n) due to the sparsification Lemma [IPZ01], that we don’t discus here.
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SAT = {φ(x1, . . . , xn) | ∃α1, . . . , αn ∈ {T, F} : φ(x1 = α1, . . . , xn = αn) = T}

The formula φ on n variables x1, . . . , xn is usually in conjunctive normal form (CNF) which
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m∧
i=1

∨
j∈Ci

xj

Where Ci ⊂ {1, . . . , 2n}, which is called a clause. We will use the convention that xn+i is the
negation of variable xi. When the cardinality of all the clauses is at most k we will call the
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The question whether P ?
= NP can be shown equivalent [Lev73, Coo71] to whether SAT

?
∈ P .

It is widely believed that P is not equal to NP and hence that there does not exists a polynomial
time algorithm for SAT. But as mentioned above showing even a superlinear lower bound is
elusive.

3 This is not quite precise since evaluating the formula on a specific assignment α costs time linear in the number
of clauses and variables.
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2.5 Strong Exponential Time Hypothesis

Conjectures even stronger than P �= NP have been put forward [IP01]. The Strong Exponential
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There is a surprising consequence of SETH concerning the complexity of the EDIT DISTANCE

and ORTHOGONAL VECTORS problems. See [Vas18] for more of such consequences.
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can be obtained for the EDIT DISTANCE problem.
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theory for quantum algorithms. This was done first in [BPS19,ACL+19]. We will now turn our
attention to quantum algorithms and quantum query complexity.

3 Quantum Query Complexity

We will use the standard notation introduced in for example the textbook [NC00]. Many of
the quantum algorithms developed, including the best known algorithms of Shor [Sho97] and
Grover [Gro96], can be cast in the black-box or query formalism [BBC+01].
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4 We may assume that m = O(n) due to the sparsification Lemma [IPZ01], that we don’t discus here.
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Quantum algorithms are expressed in the gate-model. A universal set of gates is a fixed set of
1 or 2 qubit gates that can be used to approximate any unitary on n qubits. Such a universal set
could be the Hadamard and Toffoli (CCNOT) gates or CNOT, Hadamard and the phase-gate =
Rπ/4.

A quantum algorithm is a unitary operation U that is implemented with only gates from a
universal set of gates. The quantum algorithm starts with the register |x〉|0m〉, where x is the
input and the second register has m auxiliary qubits. Then the gates are applied to this initial
register resulting in a final state

∑
y∈{0,1}n+m

αy|y〉 and
∑
y

|αy|2 = 1

Next we measure the final state in the computational basis and obtain the output of the quantum
algorithm. Note this could also be a partial measurement when we are interested in fewer than
n bits, or just a single bit. We will observe y with probability |αy|2. Usually we require this
outcome to be correct with probability > 2/3.

The time that the quantum algorithm takes is the number of gates that are used in the quantum
circuit. Questions we would like to answer are: what is the quantum time needed for solving
problems like EDIT DISTANCE and ORTHOGONAL VECTORS? It should not come as a sur-
prise that even less is known for the quantum case than for the classical. We do have a result,
analogous (but weaker) to the classical one, that gives a linear ((1 + ε)n) lower bound for an
explicit problem [BSV19].

In order to obtain matching upper and lower bounds for certain problems we look at a weaker
model of computation, called the black-box or query model. In this model we want to compute
a function f : {0, 1, }N → {0, 1} on a given input x = x0 . . . xN−1 ∈ {0, 1}N . We have access
to x in a random access manner. That is we can ask/query the ith bit of x and obtain the value of
xi. This costs a query. The goal is to compute f using as few queries as possible. Note that we
do not charge for any computation that is needed in order to compute which queries we want to
query.

Formally we define a reversible quantum query as follows:

Ox : |i, b〉 �→ |i, b⊕ xi〉

where b ∈ {0, 1}. In particular |i, 0〉 �→ |i, xi〉. Since we are in the quantum setting an algorithm
is allowed to ask queries in superposition. A T-query algorithm starts in a fixed state, say the
all zeros state |0, . . . , 0〉, and then interleaves fixed unitary transformations U0, U1, . . . , UT with
queries resulting in the final state that can be written as follows:

UTOxUT−1Ox . . . OxU1OxU0|0, . . . , 0〉

After this the state is measured in the computational basis. If we are interested in a single bit
only a single qubit is measured which should result in the value of f(x). For example Grover’s
algorithm can be seen to compute the following OR-function: fOR(x) = 1 ⇐⇒ ∃i : xi = 1.
Grover’s algorithm establishes a sequence of O(

√
N) unitaries5 such that after measuring the

final state we find an i such that xi = 1 (if one exists) with probability > 2/3.

5 In fact in the case of Grover’s algorithm, U0 is the Hadamard transform on all the qubits, and the remaining U’s
are all the same.
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Definition 8. For a function f the quantum query complexity of f , Qε(f) is defined as the
minimum number of queries such that f can be computed with probability 1/2 + ε.

Most of the known quantum algorithms can be cast in this framework. For many functions
f , tight upper and lower bounds are known. For example for the OR-function: Qε(fOR) =
θ(
√
N). In order to obtain the lower bounds several techniques have been developed. Notably

the polynomial method [BBC+01] and the adversary method [Amb00]. In the next part of these
lecture notes we will see how we can connect these query lower bounds to time lower bounds
via a quantum version of the SETH.

4 Revisiting the Exponential Time Hypothesis (definitions)

The material in this section is taken from the paper by Buhrman, Speelman, and Patro [BPS19].
There is a rich diversity of problems that can be solved in polynomial time, some that have sur-
prisingly fast algorithms, such as the computation of Fourier transforms or solving linear pro-
grams, and some for which the worst-case run time has not improved much for many decades.
Of the latter category EDIT DISTANCE is a good example: this is a problem with high practi-
cal relevance, and an O(n2) algorithm using dynamic programming, which is simple enough
to be taught in an undergraduate algorithms course, has been known for many decades. Even
after considerable effort, no algorithm has been found that can solve this problem in fewer than
O(n2/ log2 n) steps [MP80], still a nearly quadratic run time.

Traditionally, the field of complexity theory has studied the time complexity of problems in a
relatively coarse manner – the class P, the problems solvable in polynomial time, is one of the
central objects of study in complexity theory.

Consider CNF-SAT, the problem of whether a formula, input in conjunctive normal form, has
a satisfying assignment. What can complexity theory tell us about how hard it is to solve this
problem? For CNF-SAT, the notion of NP-completeness gives a convincing reason why it is
hard to find a polynomial-time algorithm for this problem: if such an algorithm is found, all
problems in the complexity class NP are also solvable in polynomial time, showing P = NP.

Not only is no polynomial-time algorithm known, but (if the clause-length is arbitrarily large)
no significant speed-up over the brute-force method of trying all 2n assignments is known.
Impagliazzo, Paturi, and, Zane [IP01,IPZ01] studied two ways in which this can be conjectured
to be optimal. The first of which is called the Exponential-Time Hypothesis (ETH).

Conjecture 1 (Exponential-Time Hypothesis). There exists α > 0 such that CNF-SAT on n
variables and m clauses can not be solved in time O(m2αn) by a (classical) Turing machine.

This conjecture can be directly used to give lower bounds for many natural NP-complete prob-
lems, showing that if ETH holds then these problems also require exponential time to solve.
The second conjecture, most importantly for the current work, is the Strong Exponential-Time
Hypothesis (SETH).

Conjecture 2 (Strong Exponential-Time Hypothesis). There does not exist δ > 0 such that
CNF-SAT on n variables and m clauses can be solved in O(m2n(1−δ)) time by a (classical)
Turing machine.
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The strong exponential-time hypothesis also directly implies many interesting exponential lower
bounds within NP, giving structure to problems within the complexity class. A wide range of
problems (even outside of just NP-complete problems) can be shown to require strong exponen-
tial time assuming SETH: for instance, recent work shows that, conditioned on SETH, classical
computers require exponential time for so-called strong simulation of several models of quan-
tum computation [HNS18, MT19].

Surprisingly, the SETH conjecture is not only a very productive tool for studying the hardness
of problems that likely require exponential time, but can also be used to study the difficulty of
solving problems within P, forming a foundation for the field of fine-grained complexity. The
first of such a SETH-based lower bound was given in [Wil05], via a reduction from CNF-SAT
to the ORTHOGONAL VECTORS problem, showing that a truly subquadratic algorithm that can
find a pair of orthogonal vectors among two lists would render SETH false.

The ORTHOGONAL VECTORS problem became one of the central starting points for prov-
ing SETH-based lower bounds, and conditional lower bounds for problems such as comput-
ing the Frechet distance between two curves [Bri14], sequence comparison problems such as
the string alignment problem [AVW14], Longest Common Subsequence and Dynamic Time
Warping [ABV15], can all obtained via a reduction from ORTHOGONAL VECTORS. Also the
EDIT DISTANCE problem [BI15] can be shown to require quadratic time conditional on SETH,
implying that any super-logarithmic improvements over the classic simple dynamic program-
ming algorithm would also imply better algorithms for satisfiability – a barrier which helps
explain why it has been hard to find any new algorithms for this problem.

Besides CNF-SAT, the conjectured hardness of other key problems like 3SUM and APSP
is also commonly used to prove conditional lower bounds for problems in P. See the recent
surveys [Vas15, Vas18] for an overview of the many time lower bounds that can be obtained
when assuming only the hardness of these key problems.

All these results give evidence for the hardness of problems relative to classical computation,
but interestingly SETH does not hold relative to quantum computation. Using Grover’s al-
gorithm [Gro96, BV97], quantum computers are able to solve CNF-SAT (and more general
circuit satisfiability problems) in time 2n/2, a quadratic speedup relative to the limit that SETH
conjectures for classical computation.

Even though this is in violation of the SETH bound, it is not in contradiction to the concept
behind the strong exponential-time hypothesis: the input formula is still being treated as a
black box, and the quantum speedup comes ‘merely’ from the general quadratic improvement
in unstructured search6.

It could therefore be natural to formulate the quantum exponential time hypothesis as identical
to its classical equivalent, but with an included quadratic speedup, as a ‘basic QSETH’. For
some problems, such as ORTHOGONAL VECTORS, this conjecture would already give tight
results, since these problems are themselves amenable to a speedup using Grover’s algorithm.
See for instance the Master’s thesis [Ren19] for an overview of some of the SETH-based lower
bounds that are violated in the quantum setting.

6 For unstructured search this bound is tight [BBBV97, BBHT98]. Bennett, Bernstein, Brassard, and Vazirani
additionally show that with probability 1 relative to a random oracle all of NP cannot be solved by a bounded-error
quantum algorithm in time o(2n/2).)
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On the other hand, since the conditional lower bound for all problems are a quadratic factor
lower than before, such a ‘basic QSETH’ lower bound for EDIT DISTANCE would be merely
linear. Still, the best currently-known quantum algorithm that computes edit distance takes
quadratic time, so we would lose some of the explanatory usefulness of SETH in this translation
to the quantum case.

In this work, we present a way around this limit. Realize that while finding a single marked
element is quadratically faster for a quantum algorithm, there is no quantum speedup for many
other similar problems. For instance, computing whether the number of marked elements is odd
or even can not be done faster when allowing quantum queries to the input, relative to allowing
only classical queries [BBC+01, FGGS98].

Taking the edit distance again as an illustrative example, after careful inspection of the reduc-
tions from CNF-SAT to EDIT DISTANCE [BK15, BI15, AHVWW16], we show that the result
of such a reduction encodes more than merely the existence of an a satisfying assignment. In-
stead, the result of these reductions also encodes whether many satisfying assignments exist
(in a certain pattern), a problem that could be harder for quantum computers than unstructured
search. The ‘basic QSETH’ is not able to account for this distinction, and therefore does not
directly help with explaining why a linear-time quantum algorithm for EDIT DISTANCE has not
been found.

We present a framework of conjectures, that form an analogue of the strong exponential-time
hypothesis: QSETH. In this framework, we account for the complexity of computing various
properties on the set of satisfying assignments, giving conjectured quantum time lower bounds
for variants of the satisfiability problem that range from 2n/2 up to 2n.

5 Defining a Quantum Strong Exponential-Time Hypothesis

Almost all known lower bounds for quantum algorithms are defined in terms of query com-
plexity, which measures the number of times any quantum algorithm must access the input to
solve an instance of a given problem. There are two main methods in the field for proving
lower bounds on quantum query complexity: The first one is the polynomial method, based on
the observation that the (approximate) degree of the unique polynomial representing a func-
tion is a lower bound on the number of queries any bounded-error quantum algorithm needs to
make [BBC+01]. The second main method is the adversary method [Amb00] which analyzes
a hypothetical quantum adversary that runs the algorithm with a superposition of inputs instead
of considering a classical adversary that runs the algorithm with one input and then modifies
the input.

Despite the success of quantum query complexity and the fact that we know tight query lower
bounds for many problems, the model does not take into account the computational efforts re-
quired after querying the input. In particular, it is not possible to use query complexity to prove
any lower bound greater than linear, since any problem is solvable in the query-complexity
model after all bits are queried. In general we expect the time needed to solve most problems
to be much larger than the number of queries required for the computation, but it still seems
rather difficult to formalize methods to provide unconditional quantum time lower bounds for
explicit problems. We overcome these difficulties by providing a framework of conjectures that
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a hypothetical quantum adversary that runs the algorithm with a superposition of inputs instead
of considering a classical adversary that runs the algorithm with one input and then modifies
the input.

Despite the success of quantum query complexity and the fact that we know tight query lower
bounds for many problems, the model does not take into account the computational efforts re-
quired after querying the input. In particular, it is not possible to use query complexity to prove
any lower bound greater than linear, since any problem is solvable in the query-complexity
model after all bits are queried. In general we expect the time needed to solve most problems
to be much larger than the number of queries required for the computation, but it still seems
rather difficult to formalize methods to provide unconditional quantum time lower bounds for
explicit problems. We overcome these difficulties by providing a framework of conjectures that
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can assist in obtaining conditional quantum time lower bounds for many problems in BQP. We
refer to this framework as the QSETH framework.

Variants of the classical SETH. The Strong Exponential-Time Hypothesis (SETH) was first
studied [IP01, IPZ01], who showed that the lack of a O(2n(1−δ)) for a δ > 0 algorithm to solve
CNF-SAT is deeply connected to other open problems in complexity theory. Despite it being
one the most extensively studied problems in the field of (classical) complexity theory, the best
known classical algorithms for solving k-SAT run in 2n−n/O(k)mO(1) time [PPSZ05], while the
best algorithm for the more-general CNF-SAT is 2n−n/O(log∆)mO(1) [CIP06], where m denotes
the number of clauses and ∆ = m/n denotes the clause to variable ratio.

Even though no refutation of SETH has been found yet, it is plausible that the CNF struc-
ture of the input formulas does allow for a speed-up. Therefore, if possible, it is prefer-
able to base lower bounds on the hardness of more general kinds of (satisfiability) problems,
where the input consists of wider classes of circuits. For example, lower bounds based on
NC-SETH, satisfiability with NC-circuits as input,7 have been proven for EDIT DISTANCE,
LONGEST COMMON SUBSEQUENCE and other problems [AHVWW16], in particular all the
problems that fit the framework presented in [BK15].

Additionally, a different direction in which the exponential-time hypothesis can be weakened,
and thereby made more plausible, is requiring the computation of different properties of a for-
mula than whether at least one satisfying assignment exists. For example, hardness of counting
the number of satisfying assignments is captured by #ETH [DHM+14]. Computing existence
is equivalent to computing the OR of the set of satisfying assignments, but it could also con-
ceivably be harder to output, e.g., whether the number of satisfying assignments is odd or even
or whether the number of satisfying assignments is larger than some threshold. In the quantum
case, generalizing the properties to be computed is not only a way to make the hypothesis more
plausible: for many of such tasks it is likely that the quadratic quantum speedup, as given by
Grover’s algorithm, no longer exist.

5.1 The basic QSETH

To build towards our framework, first consider what would be a natural generalization of the
classical SETH.

Conjecture (Basic QSETH). No bounded error quantum algorithm solves CNF-SAT on n
variables and m clauses in O(2

n
2
(1−δ)mO(1)) time, for any δ > 0.

This conjecture is already a possible useful tool in proving conditional quantum lower bounds,
as we present an example of this in Section 6.1.8

We first extend this conjecture with the option to consider wider classes of circuits. Let γ de-
note a class of representations of computational models. Such a representation can for example

7 NC circuits are of polynomial size and polylogarithmic depth consisting of fan-in 2 gates.
8 Additional examples of implications from such a version of QSETH can be found in the recent independent work
of [ACL+19].
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be polynomial-size CNF formulas, polylog-depth circuits NC, polynomial-size branching pro-
grams BP, or the set of all polynomial-size circuits. The complexity of the latter problem is also
often studied in the classical case, capturing the hardness of CircuitSAT.

Conjecture (Basic γ-QSETH). A quantum algorithm cannot, given an input C from the set γ,
decide in time O(2

n
2
(1−δ)) whether there exists an input x ∈ {0, 1}n such that C(x) = 1 for any

δ > 0.

We also define DEPTH2 for the set of all depth-2 circuits consisting of unbounded fan-in,
consisting only of AND and OR gates. This definition is later convenient when considering
wider classes of properties, and it can be easily seen that ‘basic DEPTH2-QSETH’ is precisely
the ‘basic QSETH’ as defined above.

Since both these basic QSETH variants already contain a quadratic speedup relative to the clas-
sical SETH, conditional quantum lower bounds obtained via these assumptions will usually also
be quadratically worse than any corresponding classical lower bounds for the same problems.
For some problems, lower bounds obtained using the basic QSETH, or using γ-QSETH for a
wider class of computation, will be tight. However, for other problems no quadratic quantum
speedup is known.

5.2 Extending QSETH to general properties

We now extend the ‘basic γ-QSETH’ as defined in the previous section, to also include comput-
ing different properties of the set of satisfying assignments. By extending QSETH in this way,
we can potentially circumvent the quadratic gap between quantum and classical lower bounds
for some problems.

Consider a problem in which one is given some circuit representation of a boolean function
f : {0, 1}n → {0, 1} and asked whether a property P : {0, 1}2n → {0, 1} on the truth table of
this function evaluates to 1, that is, given a circuit C the problem is to decide if P(tt(C)) = 1,
where tt(C) denotes the truth table of the boolean function computed by the circuit C. If one
can only access C as a black box then it is clear that the amount of time taken to compute
P(tt(C)) is lower bounded by the number of queries made to the string tt(C). However, if
provided with the description of C, which we denote by desc(C), then one can analyze C to
compute P(tt(C)) possibly much faster.

For example, take the representation to be polynomial-sized CNF formulas and the property
to be OR. Then for polynomial-sized CNF formulas this is precisely the CNF-SAT problem.
Conjecturing quantum hardness of this property would make us retrieve the ‘basic QSETH’ of
the previous section. Do note that we cannot simply conjecture that any property is hard to
compute on CNF formulas: Even though the query complexity of AND on a string of length
2n is Ω(2n) classically and Ω(2n/2) in the quantum case, this property can be easily computed
in polynomial time both classically and quantumly when provided with the description of the
nO(1) sized CNF formula.

To get around this problem, we can increase the complexity of the input representation: If we
consider inputs from DEPTH2, the set of all depth-2 circuits consisting of unbounded fan-in
AND and OR gates, we now have a class that is closed under complementation. For this class,
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can only access C as a black box then it is clear that the amount of time taken to compute
P(tt(C)) is lower bounded by the number of queries made to the string tt(C). However, if
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compute P(tt(C)) possibly much faster.
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Conjecturing quantum hardness of this property would make us retrieve the ‘basic QSETH’ of
the previous section. Do note that we cannot simply conjecture that any property is hard to
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it is a reasonable conjecture that both AND, the question whether the input is a tautology and
all assignments are satisfying, and OR, the normal SAT problem, are hard to compute.

After this step we can look at further properties than AND and OR. For instance, consider the
problem of computing whether there exists an even or an odd number of satisfying assignments.
This task is equivalent to computing the PARITY of the truth table of the input formula. How
much time do we expect a quantum algorithm to need for such a task?

The quadratic speedup for computing the OR is already captured in the model where the quan-
tum computation only tries possible assignments and then performs Grover’s algorithm in a
black box way. If PARITY is also computed in such a way, then we know from query com-
plexity [BBC+01] that there is no speedup, and the algorithm will have to use Ω(2n) steps. Our
QSETH framework will be able to consider more-complicated properties, like PARITY.

Finally, observe that such a correspondence, i.e., between the query complexity of a property
and the time complexity of computing this property on the set of satisfying assignments, cannot
hold for all properties, even when we consider more complicated input classes besides CNF
formulas. For instance, consider a property which is 0 on exactly the strings that are truth tables
of polynomial-sized circuits, and is PARITY of its input on the other strings. Such a property
has high quantum query complexity, but is trivial to compute when given a polynomial-sized
circuit as input. We introduce the notion of compression oblivious below to handle this problem.

Defining QSETH. We formalize the above intuitions in the following way. Let the variable γ
denote a class of representation at least as complex as the set DEPTH2, where DEPTH2 denotes
the set of poly sized depth-2 circuits consisting of only OR and AND gates of unbounded fan-in.
We define a meta-language LP such that LP = {desc(C) | C is an element from the set γ and
P(tt(C)) = 1}. We now define the following terms:

Definition 9 (White-box algorithms). An algorithm A decides the property P in white-box if
A decides the corresponding meta-language LP. That is, given an input string desc(C), A
accepts if and only if P(tt(C)) = 1. We use qTimeWBε(P) to denote the time taken by a
quantum computer to decide the language LP with error probability ε.

Definition 10 (Black-box algorithms). An algorithm A decides the property P in black-box if
the algorithm Af (1n, 1m) accepts if and only if P(tt(f)) = 1. Here, f is the boolean function
computed by the circuit C and m is the upper bound on | desc(C)| which is the size of the
representation9 that describes f , and Af denotes that the algorithm A has oracle access to the
boolean function f . We use qTimeBBε(P) to denote the time taken by a quantum computer to
compute the property P in the black-box setting with error probability ε.

We define the set of compression oblivious properties corresponding to γ as the set of properties
where the time taken to compute this property in the black-box setting is lower bounded by the
quantum query complexity of this property on all strings. Formally,

CO(γ) = {properties P such that qTimeBBε(P |Sγ ) ≥ Ω(Qε(P))},

where Qε(P) denotes the quantum query complexity of the property P in a ε-bounded error
query model and Sγ = {tt(C) — C is an element of the set γ}. For example, the proper-
ties AND and OR are in CO(DEPTH2) because the adversarial set that gives the tight query

9 For instance a CNF/DNF formula, an NC circuit, or a general circuit.
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bound for the property AND (OR) are truth tables of functions that can be represented by nO(1)

sized DNF (CNF) formulas. As Qε(AND|SDEPTH2
) = Qε(AND) and qTimeBBε(AND|SDEPTH2

) ≥
Qε(AND|SDEPTH2

). Therefore, we have AND ∈ CO(DEPTH2). The same result holds for the
property OR as well.

For each class of representation γ we now define the corresponding γ-QSETH, which states
that computing any compression-oblivious property P in the white-box setting is at least as hard
as computing P in the black-box setting. More formally,

Conjecture 3 (γ-QSETH). For every class of representation γ, such as the class of depth-2
circuits DEPTH2 or poly-sized circuits of a more complex class, for all properties P ∈ CO(γ),
we have qTimeWBε(P |γ) ≥ Ω(Qε(P)).

5.3 Observations on the set of compression oblivious properties

As the class γ gets more complex, the corresponding γ-QSETH becomes more credible. The
set of compression oblivious properties is an interesting object of study by itself. First consider
the following facts about sets of compression-oblivious properties relate, relative to different
computational models.

Fact 1. Given two classes of representations A and B, if A ⊆ B then for every property P, we
have P ∈ CO(B) whenever P ∈ CO(A).

Fact 2. Given two classes of representations A and B, if A ⊆ B then A-QSETH implies
B-QSETH.

Proof. For Fact 1. If A ⊆ B then also for the corresponding sets of truth tables it holds
that SA ⊆ SB. If a property P ∈ CO(A), then qTimeBBε(P |SA

) ≥ Ω(Qε)(P) also implies
qTimeBBε(P |SB

) ≥ qTimeBBε(P |SA
) as SB is a superset of SA. Therefore, P ∈ CO(B).

For Fact 2: Whenever some property P ∈ CO(A) is hard to compute for inputs coming from
A, this property is also P ∈ CO(B) by Fact 1. Therefore, it is also hard to compute on an even
wider range of inputs.

Given an explicit property P and a class of representation γ, it would be desirable to uncondi-
tionally prove that the property P is γ-compression oblivious10. This is possible for some simple
properties that have query complexity Θ(

√
N) like OR, corresponding to ordinary satisfiabil-

ity, and AND. Unfortunately, for more complicated properties, like computing the parity of the
number of satisfying assignments, it turns out to be hard to find an unconditional proof that such
a property is compression oblivious. The following theorem shows a barrier to finding such an
unconditional proof: proving that such a property is compression oblivious implies separating
P from PSPACE.

Theorem 3. If there exists a property P such that Qε(P) = ω̃(
√
N) and P is γ-compression

oblivious, and for all ε > 0 we have P ∈ SPACE(N ε), then P �= PSPACE.

10 We call a property P a γ-compression oblivious property if P ∈ CO(γ).
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Proof (sketch). By way of contradiction, assume P = PSPACE. We are given a promise that
the circuit to whom we have black-box access to is in the set γ. Using a simplified version of the
algorithm for the oracle identification problem [AIK+04, Kot14] and assuming P = PSPACE,
we can extract a compressed form of the entire input using only Õ(

√
N) quantum time.

As the property P ∈ SPACE(N ε), using the P = PSPACE assumption again, we can directly
compute P in time O(N ε) for any arbitrarily small ε. Therefore, the total number of (quantum)
steps taken is Õ(

√
N) + O(N ε), which for an ε < 1

2
is in contradiction to the assumption that

P is γ-compression oblivious.

Note that SETH is already a much stronger assumption than P �= PSPACE, therefore this
observation leaves open the interesting possibility of proving that properties are compression
oblivious assuming that the (Q)SETH holds for simpler properties. (For instance, these simpler
properties could include OR and AND, for which it is possible to unconditionally prove that
they are compression oblivious.)

6 QSETH lower bounds for Orthogonal Vectors and Useful
Proofs of Work

Recall that DEPTH2 denotes the set of polynomial-sized depth-2 circuits consisting of only OR
and AND gates of unbounded fan-in. Because of it’s simple structure, the DEPTH2-QSETH
conjecture is therefore closest to the classical SETH, and implies the ‘basic QSETH’ as intro-
duced in Section 5.1:

Corollary 1. If DEPTH2-QSETH is true then there is no bounded error quantum algorithm
that solves CNF-SAT on n variables, m clauses in O(2(1−δ)n/2mO(1)) time, for any δ > 0.

Proof. Consider the property OR: {0, 1}2n → {0, 1}. Using the fact that OR ∈ CO(DEPTH2),
as shown in the previous section, we get qTimeWBε(OR|DEPTH2) ≥ Ω(Qε(OR)) = Ω(2n/2).
Due to the structure of the DNF formulas one can compute the property OR on DNF formulas on
n variables, m clauses in nO(1)mO(1) time. This implies that the hard cases in the set DEPTH2
for the OR property are the CNF formulas. Therefore, qTimeWBε(OR|CNF) ≥ Ω(2n/2) where
the set CNF denotes all the polynomial sized CNF formulas.

In this section we present several immediate consequences of the DEPTH2-QSETH conjec-
ture, including:

1. For some problems, classical SETH-based Ω(T ) time lower bounds carry over to the
quantum case, with DEPTH2-QSETH-based Ω(

√
T ) quantum time lower bounds using

(almost) the same reduction.

2. The Proofs of Useful Work of Ball, Rosen, Sabin and Vasudevan [BRSV17] require
time Õ(n2) to solve on a quantum computer, equal to their classical complexity, under
DEPTH2-QSETH.
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6.1 Quantum time lower bounds based on DEPTH2-QSETH

The statement of DEPTH2-QSETH along with Corollary 1 can give quantum time lower
bounds for some problems for which we know classical lower bounds under SETH (Conjecture
2).

Corollary 2. Let P be a problem with an Ω(T ) time lower bound modulo SETH. Then, P has
an Ω̃(

√
T ) quantum time lower bound conditioned under DEPTH2-QSETH if there exists a

classical reduction from CNF-SAT to the problem P taking O(2
n
2
(1−α)) (for α > 0) time or if

there exists an efficient reduction that can access a single bit of the reduction output.11

As examples we will consider the ORTHOGONAL VECTORS and the EDIT DISTANCE problem.
The ORTHOGONAL VECTORS (OV) problem is defined as follows. Given two sets U and V
of n vectors, each over {0, 1}d where d = ω(log n), determine whether there exists a u ∈
U and a v ∈ V such that Σl∈[d]ulvl = 0. In [Wil05], Williams showed that SETH implies
the non-existence of a sub-quadratic classical algorithm for the OV problem. In the quantum
case the best-known query lower bound is Ω(n2/3), which can be achieved by reducing the
2-TO-1 COLLISION problem to the ORTHOGONAL VECTORS problem; however, the known
quantum time upper bound is Õ(n) [Ren19]. First note that we cannot use Williams’ classical
reduction directly, since a hypothetical quantum algorithm for OV expects quantum access to the
input, and writing down the entire reduction already takes time 2n/2. Instead, observe that the
reduction produces a separate vector for each partial assignment: let t(n) be the time needed
to compute a single element of the output of the reduction, then t(n) = poly(n), which is
logarithmic in the size of the total reduction. Let N = O∗(2n/2) be the size of the output of
the reduction of [Wil05], for some CNF formula with n variables. Any quantum algorithm that
solves OV in time Nα, can solve CNF-SAT in time t(n)O∗(2αn/2) = O∗(2αn/2).12 Assuming
DEPTH2-QSETH, this implies that a quantum algorithm requires time Θ̃(N) to solve OV for
instances of size N .

See the recent results by Aaronson, Chia, Lin, Wang, and Zhang [ACL+19] for more examples
of reductions from (a variant of) QSETH, that also hold for the basic QSETH of our framework.
Additionally, there the authors define the notion of Quantum Fine-grained Reductions more
generally, and present a study of OV that also includes the case of constant dimension.

The next example we consider is the EDIT DISTANCE problem. The EDIT DISTANCE problem
is defined as follows. Given two strings a and b over an alphabet set Σ, the edit distance
between a and b is the minimum number of operations (insertions, deletions, substitutions) on
the symbols required to transform string a to b (or vice versa). A reduction by [BI15] shows
that if the edit distance between two strings of length n can be computed in time O(n2−δ) for
some constant δ > 0, then satisfiability on CNF formulas with n variables and m clauses can be
computed in O(mO(1) ·2(1− δ

2
)n) which would imply that SETH (Conjecture 2) is false. Just like

in the ORTHOGONAL VECTORS case, we observe that the classical reduction from CNF-SAT

11 Note that SETH talks about solving CNF-SAT as opposed to bounded k-SAT problems. One could also define
a quantum hardness conjecture for k-CNF or k-DNF, for an arbitrary constant k, in the same way as the original
SETH. This variant is required for reductions that use the fact that k is constant, which can occur through usage
of the sparsification lemma [IP01]. For examples where this is necessary within fine-grained complexity, see the
Matching Triangles problem mentioned in [AVY15] or reductions like in [CDL+16].
12 We use O∗ to denote asymptotic complexity ignoring polynomial factors.
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Proof (sketch). By way of contradiction, assume P = PSPACE. We are given a promise that
the circuit to whom we have black-box access to is in the set γ. Using a simplified version of the
algorithm for the oracle identification problem [AIK+04, Kot14] and assuming P = PSPACE,
we can extract a compressed form of the entire input using only Õ(

√
N) quantum time.

As the property P ∈ SPACE(N ε), using the P = PSPACE assumption again, we can directly
compute P in time O(N ε) for any arbitrarily small ε. Therefore, the total number of (quantum)
steps taken is Õ(

√
N) + O(N ε), which for an ε < 1

2
is in contradiction to the assumption that

P is γ-compression oblivious.

Note that SETH is already a much stronger assumption than P �= PSPACE, therefore this
observation leaves open the interesting possibility of proving that properties are compression
oblivious assuming that the (Q)SETH holds for simpler properties. (For instance, these simpler
properties could include OR and AND, for which it is possible to unconditionally prove that
they are compression oblivious.)

6 QSETH lower bounds for Orthogonal Vectors and Useful
Proofs of Work

Recall that DEPTH2 denotes the set of polynomial-sized depth-2 circuits consisting of only OR
and AND gates of unbounded fan-in. Because of it’s simple structure, the DEPTH2-QSETH
conjecture is therefore closest to the classical SETH, and implies the ‘basic QSETH’ as intro-
duced in Section 5.1:

Corollary 1. If DEPTH2-QSETH is true then there is no bounded error quantum algorithm
that solves CNF-SAT on n variables, m clauses in O(2(1−δ)n/2mO(1)) time, for any δ > 0.

Proof. Consider the property OR: {0, 1}2n → {0, 1}. Using the fact that OR ∈ CO(DEPTH2),
as shown in the previous section, we get qTimeWBε(OR|DEPTH2) ≥ Ω(Qε(OR)) = Ω(2n/2).
Due to the structure of the DNF formulas one can compute the property OR on DNF formulas on
n variables, m clauses in nO(1)mO(1) time. This implies that the hard cases in the set DEPTH2
for the OR property are the CNF formulas. Therefore, qTimeWBε(OR|CNF) ≥ Ω(2n/2) where
the set CNF denotes all the polynomial sized CNF formulas.

In this section we present several immediate consequences of the DEPTH2-QSETH conjec-
ture, including:

1. For some problems, classical SETH-based Ω(T ) time lower bounds carry over to the
quantum case, with DEPTH2-QSETH-based Ω(

√
T ) quantum time lower bounds using

(almost) the same reduction.

2. The Proofs of Useful Work of Ball, Rosen, Sabin and Vasudevan [BRSV17] require
time Õ(n2) to solve on a quantum computer, equal to their classical complexity, under
DEPTH2-QSETH.
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6.1 Quantum time lower bounds based on DEPTH2-QSETH
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√
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n
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(1−α)) (for α > 0) time or if
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the non-existence of a sub-quadratic classical algorithm for the OV problem. In the quantum
case the best-known query lower bound is Ω(n2/3), which can be achieved by reducing the
2-TO-1 COLLISION problem to the ORTHOGONAL VECTORS problem; however, the known
quantum time upper bound is Õ(n) [Ren19]. First note that we cannot use Williams’ classical
reduction directly, since a hypothetical quantum algorithm for OV expects quantum access to the
input, and writing down the entire reduction already takes time 2n/2. Instead, observe that the
reduction produces a separate vector for each partial assignment: let t(n) be the time needed
to compute a single element of the output of the reduction, then t(n) = poly(n), which is
logarithmic in the size of the total reduction. Let N = O∗(2n/2) be the size of the output of
the reduction of [Wil05], for some CNF formula with n variables. Any quantum algorithm that
solves OV in time Nα, can solve CNF-SAT in time t(n)O∗(2αn/2) = O∗(2αn/2).12 Assuming
DEPTH2-QSETH, this implies that a quantum algorithm requires time Θ̃(N) to solve OV for
instances of size N .

See the recent results by Aaronson, Chia, Lin, Wang, and Zhang [ACL+19] for more examples
of reductions from (a variant of) QSETH, that also hold for the basic QSETH of our framework.
Additionally, there the authors define the notion of Quantum Fine-grained Reductions more
generally, and present a study of OV that also includes the case of constant dimension.

The next example we consider is the EDIT DISTANCE problem. The EDIT DISTANCE problem
is defined as follows. Given two strings a and b over an alphabet set Σ, the edit distance
between a and b is the minimum number of operations (insertions, deletions, substitutions) on
the symbols required to transform string a to b (or vice versa). A reduction by [BI15] shows
that if the edit distance between two strings of length n can be computed in time O(n2−δ) for
some constant δ > 0, then satisfiability on CNF formulas with n variables and m clauses can be
computed in O(mO(1) ·2(1− δ

2
)n) which would imply that SETH (Conjecture 2) is false. Just like

in the ORTHOGONAL VECTORS case, we observe that the classical reduction from CNF-SAT

11 Note that SETH talks about solving CNF-SAT as opposed to bounded k-SAT problems. One could also define
a quantum hardness conjecture for k-CNF or k-DNF, for an arbitrary constant k, in the same way as the original
SETH. This variant is required for reductions that use the fact that k is constant, which can occur through usage
of the sparsification lemma [IP01]. For examples where this is necessary within fine-grained complexity, see the
Matching Triangles problem mentioned in [AVY15] or reductions like in [CDL+16].
12 We use O∗ to denote asymptotic complexity ignoring polynomial factors.
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to EDIT DISTANCE is local, in the sense that accessing a single bit of the exponentially-long
reduction output can be done in polynomial time: Every segment of the strings that are an output
of the reduction, depend only on a single partial satisfying assignment, out of the 2n/2 possible
partial assignments.

This observation directly lets us use the reduction of [BI15] to give a quantum time lower
bound of Ω̃(n) for the EDIT DISTANCE problem, where n here is the length of the inputs
to EDIT DISTANCE, conditioned on DEPTH2-QSETH. However, an unconditional quantum
query lower bound of Ω(n) can also be easily achieved by embedding of a problem with high
query complexity, such as the majority problem, in an edit distance instance.

We witness that with the DEPTH2-QSETH conjecture, the SETH-based fine-grained lower
bounds at best transfer to a square root lower complexity in the quantum case. This is definitely
interesting on its own, but we are aiming for larger quantum lower bounds, which is why we
focus on our more general framework.

6.2 Quantum Proofs of Useful Work

Other applications of DEPTH2-QSETH include providing problems for which Proofs of Use-
ful Work (uPoW) can be presented in the quantum setting. The paper [BRSV17] proposes uPoW
protocols that are based on delegating the evaluation of low-degree polynomials to the prover.
They present a classical uPoW protocol for the ORTHOGONAL VECTORS problem (OV) whose
security proof is based on the assumption that OV needs Ω(n2−o(1)) classical time in the worst
case setting, implying that the evaluation of a polynomial that encodes the instance of OV has
average-case hardness. At the end of this protocol, the verifier is able to compute the number of
orthogonal vectors in a given instance.

Therefore, the same protocol also works to verify the solutions to ⊕OV, where ⊕OV denotes
the parity version of OV, i.e., given two sets U , V of n vectors from {0, 1}d each, output the
parity of number of pairs (u, v) such that u ∈ U , v ∈ V and Σl∈[d]ulvl = 0, where d is taken
to be ω(log n). Assuming DEPTH2-QSETH and assuming PARITY ∈ CO(DEPTH2) we
get that ⊕CNF-SAT takes Ω(2n) quantum time. Due to the reduction13 given in [Wil05], this
protocol then implies a conditional quantum time lower bound of Ω(n2) for the ⊕OV problem.
Therefore, the uPoW protocol by [BRSV17] also requires quantum provers to take time Ω̃(n2).

7 Lower bound for edit distance using NC-QSETH

We now discuss a consequence of the NC-QSETH conjecture: A quantum time lower bound
for the Edit Distance problem. As mentioned in Section 2.3, edit distance is a measure of dis-
similarity between two strings. For input strings of length n, the well known Wagner–Fischer
algorithm (based on dynamic programming) classically computes the edit distance in O(n2)
time. Unfortunately, all the best known classical (and quantum) algorithms to compute the edit
distance are also nearly quadratic. The result by [BI15] proves that these near quadratic clas-

13 Note that here one can use the classical reduction from CNF-SAT to ORTHOGONAL VECTORS that runs in
Õ(2n/2).
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sical time bounds might be tight. Using a simple reduction from OV to Edit Distance, they
show that a sub-quadratic classical algorithm for computing Edit Distance would imply a sub-
quadratic algorithm for OV which would make SETH (refer to Conjecture 2) false. SETH
also implies quadratic lower bounds for many other string comparison problems like Longest
Common Subsequence and Dynamic Time Warping whose trivial algorithms are also based
on dynamic programming [BI15, BK15]. Bouroujeni et al. in [BEG+18] give a sub-quadratic
quantum algorithm for approximating edit distance within a constant factor which was followed
by a better classical algorithm in [CDG+18] by Chakraborty et al. However, no quantum im-
provements over the classical algorithms in the exact case are known. Investigating why this is
the case is an interesting open problem, which can be addressed in two directions. We formulate
the following questions for the example of the Edit Distance problem.

1. Is there a bounded-error quantum algorithm for EDIT DISTANCE that runs in a sub-
quadratic amount of time?

2. Can we use a different reduction to raise the linear lower bound for EDIT DISTANCE that
we achieve under ‘basic QSETH’?

While the first question still remains open, we address the second question in the following sub-
section. Independently from [BPS19], Ambainis et al. [ABI+19] present a quantum query lower
bound of Ω(n1.5−o(1)) for solving Edit Distance when solved using the most natural approach by
reducing Edit Distance to connectivity on a 2D grid. However, it doesn’t rule out the possibility
of other Õ(n1.5−α) quantum algorithms for Edit Distance, for α > 0. In this section, we will
sketch a conditional quantum time lower bound of Ω(n1.5) for the Edit Distance problem using
the NC-QSETH conjecture.

7.1 Reduction from ORTHOGONAL VECTORS to EDIT DISTANCE

For the sake of simplicity we will first give an overview of the reduction from OV to Edit
Distance presented by [BI15]. Recall that OV is defined as follows: Given two sets U and V
of n vectors, each over {0, 1}d where d = ω(log n), determine whether there exists a u ∈ U
and a v ∈ V such that 〈u|v〉 = 0 (i.e. Σi∈[d]uivi = 0). In the reduction, for each vector
u ∈ U and v ∈ V , we construct a vector gadget. Then, the vector gadgets for all u ∈ U are
concatenated together to form the first input sequence a. Similarly, vector gadgets for all v ∈ V
are concatenated together to form the second input sequence b. These gadget sequences a and
b are constructed in such a way that edit distance between a and b is equal to a constant Y if
there are no orthogonal pairs in the list U and V , and, is strictly less than Y if there exists an
orthogonal pair.

We will now briefly describe all the gadgets and provide some intuition behind the construction.
The alphabet set over which the sequence is constructed is Σ = {0, 1, 2, 3, 4, 5, 6}. Let k0 =
1000d, where d is the dimension of the vectors in OV. Each vector gadget will be built up from
coordinate gadgets, that are defined as follows:
Given x ∈ {0, 1},

CG1(x) =

{
2k001112k0 , if x = 0,

2k000012k0 , otherwise.
CG2(x) =

{
2k000112k0 , if x = 0,

2k011112k0 , otherwise.
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to EDIT DISTANCE is local, in the sense that accessing a single bit of the exponentially-long
reduction output can be done in polynomial time: Every segment of the strings that are an output
of the reduction, depend only on a single partial satisfying assignment, out of the 2n/2 possible
partial assignments.

This observation directly lets us use the reduction of [BI15] to give a quantum time lower
bound of Ω̃(n) for the EDIT DISTANCE problem, where n here is the length of the inputs
to EDIT DISTANCE, conditioned on DEPTH2-QSETH. However, an unconditional quantum
query lower bound of Ω(n) can also be easily achieved by embedding of a problem with high
query complexity, such as the majority problem, in an edit distance instance.

We witness that with the DEPTH2-QSETH conjecture, the SETH-based fine-grained lower
bounds at best transfer to a square root lower complexity in the quantum case. This is definitely
interesting on its own, but we are aiming for larger quantum lower bounds, which is why we
focus on our more general framework.

6.2 Quantum Proofs of Useful Work

Other applications of DEPTH2-QSETH include providing problems for which Proofs of Use-
ful Work (uPoW) can be presented in the quantum setting. The paper [BRSV17] proposes uPoW
protocols that are based on delegating the evaluation of low-degree polynomials to the prover.
They present a classical uPoW protocol for the ORTHOGONAL VECTORS problem (OV) whose
security proof is based on the assumption that OV needs Ω(n2−o(1)) classical time in the worst
case setting, implying that the evaluation of a polynomial that encodes the instance of OV has
average-case hardness. At the end of this protocol, the verifier is able to compute the number of
orthogonal vectors in a given instance.

Therefore, the same protocol also works to verify the solutions to ⊕OV, where ⊕OV denotes
the parity version of OV, i.e., given two sets U , V of n vectors from {0, 1}d each, output the
parity of number of pairs (u, v) such that u ∈ U , v ∈ V and Σl∈[d]ulvl = 0, where d is taken
to be ω(log n). Assuming DEPTH2-QSETH and assuming PARITY ∈ CO(DEPTH2) we
get that ⊕CNF-SAT takes Ω(2n) quantum time. Due to the reduction13 given in [Wil05], this
protocol then implies a conditional quantum time lower bound of Ω(n2) for the ⊕OV problem.
Therefore, the uPoW protocol by [BRSV17] also requires quantum provers to take time Ω̃(n2).

7 Lower bound for edit distance using NC-QSETH

We now discuss a consequence of the NC-QSETH conjecture: A quantum time lower bound
for the Edit Distance problem. As mentioned in Section 2.3, edit distance is a measure of dis-
similarity between two strings. For input strings of length n, the well known Wagner–Fischer
algorithm (based on dynamic programming) classically computes the edit distance in O(n2)
time. Unfortunately, all the best known classical (and quantum) algorithms to compute the edit
distance are also nearly quadratic. The result by [BI15] proves that these near quadratic clas-

13 Note that here one can use the classical reduction from CNF-SAT to ORTHOGONAL VECTORS that runs in
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sical time bounds might be tight. Using a simple reduction from OV to Edit Distance, they
show that a sub-quadratic classical algorithm for computing Edit Distance would imply a sub-
quadratic algorithm for OV which would make SETH (refer to Conjecture 2) false. SETH
also implies quadratic lower bounds for many other string comparison problems like Longest
Common Subsequence and Dynamic Time Warping whose trivial algorithms are also based
on dynamic programming [BI15, BK15]. Bouroujeni et al. in [BEG+18] give a sub-quadratic
quantum algorithm for approximating edit distance within a constant factor which was followed
by a better classical algorithm in [CDG+18] by Chakraborty et al. However, no quantum im-
provements over the classical algorithms in the exact case are known. Investigating why this is
the case is an interesting open problem, which can be addressed in two directions. We formulate
the following questions for the example of the Edit Distance problem.

1. Is there a bounded-error quantum algorithm for EDIT DISTANCE that runs in a sub-
quadratic amount of time?

2. Can we use a different reduction to raise the linear lower bound for EDIT DISTANCE that
we achieve under ‘basic QSETH’?

While the first question still remains open, we address the second question in the following sub-
section. Independently from [BPS19], Ambainis et al. [ABI+19] present a quantum query lower
bound of Ω(n1.5−o(1)) for solving Edit Distance when solved using the most natural approach by
reducing Edit Distance to connectivity on a 2D grid. However, it doesn’t rule out the possibility
of other Õ(n1.5−α) quantum algorithms for Edit Distance, for α > 0. In this section, we will
sketch a conditional quantum time lower bound of Ω(n1.5) for the Edit Distance problem using
the NC-QSETH conjecture.

7.1 Reduction from ORTHOGONAL VECTORS to EDIT DISTANCE

For the sake of simplicity we will first give an overview of the reduction from OV to Edit
Distance presented by [BI15]. Recall that OV is defined as follows: Given two sets U and V
of n vectors, each over {0, 1}d where d = ω(log n), determine whether there exists a u ∈ U
and a v ∈ V such that 〈u|v〉 = 0 (i.e. Σi∈[d]uivi = 0). In the reduction, for each vector
u ∈ U and v ∈ V , we construct a vector gadget. Then, the vector gadgets for all u ∈ U are
concatenated together to form the first input sequence a. Similarly, vector gadgets for all v ∈ V
are concatenated together to form the second input sequence b. These gadget sequences a and
b are constructed in such a way that edit distance between a and b is equal to a constant Y if
there are no orthogonal pairs in the list U and V , and, is strictly less than Y if there exists an
orthogonal pair.

We will now briefly describe all the gadgets and provide some intuition behind the construction.
The alphabet set over which the sequence is constructed is Σ = {0, 1, 2, 3, 4, 5, 6}. Let k0 =
1000d, where d is the dimension of the vectors in OV. Each vector gadget will be built up from
coordinate gadgets, that are defined as follows:
Given x ∈ {0, 1},

CG1(x) =

{
2k001112k0 , if x = 0,

2k000012k0 , otherwise.
CG2(x) =

{
2k000112k0 , if x = 0,

2k011112k0 , otherwise.
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The coordinate gadgets are so designed that for any two numbers x1, x2 ∈ {0, 1},

Edit-Dist(CG1(x1), CG2(x2)) =

{
1, if x1 · x2 = 0,

3, if x1 · x2 = 1.

For any two vectors u, v ∈ {0, 1}d, and defining w = 10d−1, the vector gadgets are constructed
as follows:

V G1(u) = 4k1(©i∈[d]CG1(u[i]))3
k1(©i∈[d]CG1(w[i]))4

k1 ,

V G2(v) = 3k1(©i∈[d]CG2(v[i]))3
k1 ,

here © stands for concatenation, k1 = (1000 · d)2 and u[i] denotes the ith coordinate of the
vector u while v[i] denotes the ith coordinate of v. Consequently, this design of the vector
gadgets ensures that,

Edit-Dist(V G1(u), V G2(v)) =

{
Es := 2k1 + k + d, if u · v = 0,

Eu := 2k1 + k + d+ 2, if u · v ≥ 1,

where k = d(4 + 2k0) and u · v = Σi∈[d]uivi.14

Finally, proceed by concatenating the vector gadgets into two sequences. Given the two lists of
vectors U and V consisting of n vectors each over {0, 1}d, define:

P ′
1 = 6|P

′
2|(©u∈U5

TV G1(u)5
T )6|P

′
2|,

P ′
2 = (©n−1

i=1 5
TV G2(f)5

T )(©v∈V 5
TV G2(v)5

T )(©n−1
i=1 5

TV G2(f)5
T ),

where f is 1d and T = Θ(d3). Again, the construction at this final level ensures that there exists
a constant Y = 2P ′

2 + nEu (only dependent on the size of OV), such that,

Edit-Dist(P ′
1, P

′
2) =

{
Y, if there are no orthogonal vectors in U and V ,

≤ Y − 2, if there exists a pair of orthogonal vectors in U, V .

Note that the size of the sequences P ′
1 and P ′

2 are of O(nd3). Any sub-quadratic algorithm
for Edit Distance would imply a sub-quadratic algorithm for OV. In Section 2.5 we discussed
a simple yet elegant reduction from CNF-SAT to OV. Therefore, it is easy to see that there
doesn’t exist a sub-quadratic algorithm for Edit Distance unless SETH is false.

7.2 Observations

Combining the two reductions from CNF-SAT to OV and OV to Edit Distance, we notice
that computing the edit distance between the two final sequences P ′

1 and P ′
2 gives more than

just the existence of a satisfying assignment. Instead, the result of these reductions encodes
whether many satisfying assignments exist (in a certain pattern), a property on the satisfying
assignments that might not be amenable to a speedup using Grover’s algorithm. We call this
property PPedit. The ‘basic QSETH’ is not able to account for this distinction, and therefore

14 Note that, in the proof of the Theorem 2 by [BI15] it is assumed that v ∈ {0, 1}d is any binary vector that starts
with 1. This can be easily achieved by just increasing the dimensions of OV to (d + 1).
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does not directly help with explaining why a linear-time quantum algorithm for Edit Distance
has not been found. Using the more general DEPTH2-QSETH and conjecturing that PPedit

is a DEPTH2-compression oblivious property, we are able to get a better than linear quantum
lower bound for the Edit Distance problem.

The DEPTH2 cicuits (CNF and DNF formulas) have a relatively simple structure, therefore, the
result would be strengthened if the hardness can be based on computing such a property of a
more-complicated class of formulas, such as NC circuits.

With this in mind, we are able to modify the first part of this reduction to mimic the approach
in [AHVWW16] while constructing the final sequences in the same way as in [BI15]. After
careful inspection of the reduction(s) we are able to prove that computing edit distance between
the final sequences, also computes the property PPedit on the satisfying assignments to an NC
circuit. Simultaneously, it is possible to prove a Ω(20.75n) quantum query lower bound for
PPedit in the black-box setting by using the quantum adversary method given by [Amb02].
We then use this query lower bound as a time lower bound in the white-box setting assuming
that NC-QSETH is true and PPedit is NC-compression oblivious. Which then, because of this
combined reduction, gives us a quantum time lower bound of Ω(n1.5) for the Edit Distance
problem.
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The coordinate gadgets are so designed that for any two numbers x1, x2 ∈ {0, 1},

Edit-Dist(CG1(x1), CG2(x2)) =

{
1, if x1 · x2 = 0,

3, if x1 · x2 = 1.

For any two vectors u, v ∈ {0, 1}d, and defining w = 10d−1, the vector gadgets are constructed
as follows:

V G1(u) = 4k1(©i∈[d]CG1(u[i]))3
k1(©i∈[d]CG1(w[i]))4

k1 ,

V G2(v) = 3k1(©i∈[d]CG2(v[i]))3
k1 ,

here © stands for concatenation, k1 = (1000 · d)2 and u[i] denotes the ith coordinate of the
vector u while v[i] denotes the ith coordinate of v. Consequently, this design of the vector
gadgets ensures that,

Edit-Dist(V G1(u), V G2(v)) =

{
Es := 2k1 + k + d, if u · v = 0,

Eu := 2k1 + k + d+ 2, if u · v ≥ 1,

where k = d(4 + 2k0) and u · v = Σi∈[d]uivi.14

Finally, proceed by concatenating the vector gadgets into two sequences. Given the two lists of
vectors U and V consisting of n vectors each over {0, 1}d, define:

P ′
1 = 6|P
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where f is 1d and T = Θ(d3). Again, the construction at this final level ensures that there exists
a constant Y = 2P ′

2 + nEu (only dependent on the size of OV), such that,

Edit-Dist(P ′
1, P

′
2) =

{
Y, if there are no orthogonal vectors in U and V ,

≤ Y − 2, if there exists a pair of orthogonal vectors in U, V .

Note that the size of the sequences P ′
1 and P ′

2 are of O(nd3). Any sub-quadratic algorithm
for Edit Distance would imply a sub-quadratic algorithm for OV. In Section 2.5 we discussed
a simple yet elegant reduction from CNF-SAT to OV. Therefore, it is easy to see that there
doesn’t exist a sub-quadratic algorithm for Edit Distance unless SETH is false.

7.2 Observations

Combining the two reductions from CNF-SAT to OV and OV to Edit Distance, we notice
that computing the edit distance between the two final sequences P ′

1 and P ′
2 gives more than

just the existence of a satisfying assignment. Instead, the result of these reductions encodes
whether many satisfying assignments exist (in a certain pattern), a property on the satisfying
assignments that might not be amenable to a speedup using Grover’s algorithm. We call this
property PPedit. The ‘basic QSETH’ is not able to account for this distinction, and therefore

14 Note that, in the proof of the Theorem 2 by [BI15] it is assumed that v ∈ {0, 1}d is any binary vector that starts
with 1. This can be easily achieved by just increasing the dimensions of OV to (d + 1).
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does not directly help with explaining why a linear-time quantum algorithm for Edit Distance
has not been found. Using the more general DEPTH2-QSETH and conjecturing that PPedit

is a DEPTH2-compression oblivious property, we are able to get a better than linear quantum
lower bound for the Edit Distance problem.

The DEPTH2 cicuits (CNF and DNF formulas) have a relatively simple structure, therefore, the
result would be strengthened if the hardness can be based on computing such a property of a
more-complicated class of formulas, such as NC circuits.

With this in mind, we are able to modify the first part of this reduction to mimic the approach
in [AHVWW16] while constructing the final sequences in the same way as in [BI15]. After
careful inspection of the reduction(s) we are able to prove that computing edit distance between
the final sequences, also computes the property PPedit on the satisfying assignments to an NC
circuit. Simultaneously, it is possible to prove a Ω(20.75n) quantum query lower bound for
PPedit in the black-box setting by using the quantum adversary method given by [Amb02].
We then use this query lower bound as a time lower bound in the white-box setting assuming
that NC-QSETH is true and PPedit is NC-compression oblivious. Which then, because of this
combined reduction, gives us a quantum time lower bound of Ω(n1.5) for the Edit Distance
problem.
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