000884796 001__ 884796
000884796 005__ 20210130005942.0
000884796 0247_ $$2doi$$a10.1002/adfm.202004767
000884796 0247_ $$2ISSN$$a1057-9257
000884796 0247_ $$2ISSN$$a1099-0712
000884796 0247_ $$2ISSN$$a1616-301X
000884796 0247_ $$2ISSN$$a1616-3028
000884796 0247_ $$2Handle$$a2128/26314
000884796 0247_ $$2WOS$$aWOS:000567443000001
000884796 037__ $$aFZJ-2020-03258
000884796 082__ $$a530
000884796 1001_ $$00000-0001-7480-1247$$aBarnett, Julian$$b0
000884796 245__ $$aPhonon‐Enhanced Near‐Field Spectroscopy to Extract the Local Electronic Properties of Buried 2D Electron Systems in Oxide Heterostructures
000884796 260__ $$aWeinheim$$bWiley-VCH$$c2020
000884796 3367_ $$2DRIVER$$aarticle
000884796 3367_ $$2DataCite$$aOutput Types/Journal article
000884796 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606574872_29624
000884796 3367_ $$2BibTeX$$aARTICLE
000884796 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884796 3367_ $$00$$2EndNote$$aJournal Article
000884796 520__ $$aIn the family of functional oxide materials, the interface between LaAlO3 and SrTiO3 (LAO/STO) is an interesting example, as both materials are large‐bandgap insulators in their bulk state but give rise to a confined 2D electron gas (2DEG) when combined through thin‐film deposition. While this 2DEG exhibits remarkable properties, its experimental investigation is mostly limited to destructive or non‐local (i.e. averaging over larger areas) methods until recently. Scanning near‐field optical microscopy is shown to overcome this limitation, detecting buried 2DEGs by using highly confined optical near‐fields. Here, a full spectroscopic approach with phonon‐enhancement and simulations based on the finite dipole model is combined to extract quantitative electronic properties of the interfacial LAO/STO 2DEG. This threefold improvement compared to previous work will enable the quantitative nanoscale, non‐destructive, sub‐surface analysis of complex oxide thin films and interfaces, as well as similar heterostructures.
000884796 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000884796 588__ $$aDataset connected to CrossRef
000884796 7001_ $$0P:(DE-HGF)0$$aRose, Marc‐André$$b1
000884796 7001_ $$00000-0002-0664-8698$$aUlrich, Georg$$b2
000884796 7001_ $$00000-0003-4036-2252$$aLewin, Martin$$b3
000884796 7001_ $$00000-0002-6575-6621$$aKästner, Bernd$$b4
000884796 7001_ $$0P:(DE-HGF)0$$aHoehl, Arne$$b5
000884796 7001_ $$0P:(DE-Juel1)130620$$aDittmann, Regina$$b6
000884796 7001_ $$0P:(DE-Juel1)130677$$aGunkel, Felix$$b7
000884796 7001_ $$00000-0002-0628-3043$$aTaubner, Thomas$$b8$$eCorresponding author
000884796 773__ $$0PERI:(DE-600)2039420-2$$a10.1002/adfm.202004767$$gp. 2004767 -$$n46$$p2004767$$tAdvanced functional materials$$v30$$x1616-3028$$y2020
000884796 8564_ $$uhttps://juser.fz-juelich.de/record/884796/files/adfm.202004767.pdf$$yOpenAccess
000884796 909CO $$ooai:juser.fz-juelich.de:884796$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130620$$aForschungszentrum Jülich$$b6$$kFZJ
000884796 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130677$$aForschungszentrum Jülich$$b7$$kFZJ
000884796 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000884796 9141_ $$y2020
000884796 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-02-26
000884796 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884796 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)9915$$2StatID$$aIF >= 15$$bADV FUNCT MATER : 2018$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV FUNCT MATER : 2018$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884796 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884796 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884796 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884796 920__ $$lyes
000884796 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000884796 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000884796 980__ $$ajournal
000884796 980__ $$aVDB
000884796 980__ $$aUNRESTRICTED
000884796 980__ $$aI:(DE-Juel1)PGI-7-20110106
000884796 980__ $$aI:(DE-82)080009_20140620
000884796 9801_ $$aFullTexts