001     884800
005     20240712100859.0
024 7 _ |a 10.5194/amt-13-4927-2020
|2 doi
024 7 _ |a 1867-1381
|2 ISSN
024 7 _ |a 1867-8548
|2 ISSN
024 7 _ |a 2128/25779
|2 Handle
024 7 _ |a altmetric:90543637
|2 altmetric
024 7 _ |a WOS:000574778900002
|2 WOS
037 _ _ |a FZJ-2020-03262
082 _ _ |a 550
100 1 _ |a Strube, Cornelia
|0 P:(DE-Juel1)169715
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Removing spurious inertial instability signals from gravity wave temperature perturbations using spectral filtering methods
260 _ _ |a Katlenburg-Lindau
|c 2020
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601376927_13975
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Gravity waves are important drivers of dynamic processes in particular in the middle atmosphere. To analyse atmospheric data for gravity wave signals, it is essential to separate gravity wave perturbations from atmospheric variability due to other dynamic processes. Common methods to separate small-scale gravity wave signals from a large-scale background are separation methods depending on filters in either the horizontal or vertical wavelength domain. However, gravity waves are not the only process that could lead to small-scale perturbations in the atmosphere. Recently, concerns have been raised that vertical wavelength filtering can lead to misinterpretation of other wave-like perturbations, such as inertial instability effects, as gravity wave perturbations.In this paper we assess the ability of different spectral background removal approaches to separate gravity waves and inertial instabilities using artificial inertial instability perturbations, global model data and satellite observations. We investigate a horizontal background removal (which applies a zonal wavenumber filter with additional smoothing of the spectral components in meridional and vertical direction), a sophisticated filter based on 2D time–longitude spectral analysis (see Ern et al., 2011) and a vertical wavelength Butterworth filter.Critical thresholds for the vertical wavelength and zonal wavenumber are analysed. Vertical filtering has to cut deep into the gravity wave spectrum in order to remove inertial instability remnants from the perturbations (down to 6 km cutoff wavelength). Horizontal filtering, however, removes inertial instability remnants in global model data at wavenumbers far lower than the typical gravity wave scales for the case we investigated. Specifically, a cutoff zonal wavenumber of 6 in the stratosphere is sufficient to eliminate inertial instability structures. Furthermore, we show that for infrared limb-sounding satellite profiles it is possible as well to effectively separate perturbations of inertial instabilities from those of gravity waves using a cutoff zonal wavenumber of 6. We generalize the findings of our case study by examining a 1-year time series of SABER (Sounding of the Atmosphere using Broadband Emission Radiometry) data.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 1
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 2
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 3
773 _ _ |a 10.5194/amt-13-4927-2020
|g Vol. 13, no. 9, p. 4927 - 4945
|0 PERI:(DE-600)2505596-3
|n 9
|p 4927 - 4945
|t Atmospheric measurement techniques
|v 13
|y 2020
|x 1867-8548
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884800/files/amt-13-4927-2020.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884800/files/amt-13-4927-2020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884800
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS MEAS TECH : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21