001     884810
005     20210130005945.0
024 7 _ |a 10.1016/j.neubiorev.2020.05.015
|2 doi
024 7 _ |a 0149-7634
|2 ISSN
024 7 _ |a 1873-7528
|2 ISSN
024 7 _ |a 2128/26218
|2 Handle
024 7 _ |a altmetric:85227758
|2 altmetric
024 7 _ |a pmid:32485265
|2 pmid
024 7 _ |a WOS:000579731200022
|2 WOS
037 _ _ |a FZJ-2020-03267
082 _ _ |a 610
100 1 _ |a Li, Ting
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Mapping common grey matter volume deviation across child and adolescent psychiatric disorders
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1605789633_29122
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Childhood and adolescence represent a time notable for the emergence of many psychiatric disorders, where comorbidity and co-occurrence of symptoms are well-documented. However, it remains unclear whether there exists common brain structural disturbance across psychiatric disorders in youth. Here, we conduct a transdiagnostic meta-analysis of 132 structural neuroimaging experiments in youth consisting of multiple psychiatric diagnoses. Compared to healthy peers, youth psychiatric disorders are characterized by reduced grey matter volume (GMV) of amygdala and lateral orbitofrontal cortex and enhanced GMV of ventromedial prefrontal cortex and precuneus. These four regions were then subjected to functional connectivity and decoding analyses based on healthy participant datasets, allowing for a data-driven quantitative inference on psychophysiological functions. These regions and their networks mapped onto systems implicated in negative valence, positive valence, as well as social and cognitive functioning. Together, our findings are consistent with transdiagnostic models of psychopathology, uncovering common structural disturbance across youth psychiatric disorders, potentially reflecting an intermediate transdiagnostic phenotype in association with broad dimensions of youth psychopathology.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Wang, Ling
|0 P:(DE-Juel1)174154
|b 1
700 1 _ |a Camilleri, Julia
|0 P:(DE-Juel1)172024
|b 2
700 1 _ |a Chen, Xinling
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Li, Suiqing
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Stewart, Jennifer L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Jiang, Yali
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 7
700 1 _ |a Feng, Chunliang
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1016/j.neubiorev.2020.05.015
|g Vol. 115, p. 273 - 284
|0 PERI:(DE-600)1498433-7
|p 273 - 284
|t Neuroscience & biobehavioral reviews
|v 115
|y 2020
|x 0149-7634
856 4 _ |u https://juser.fz-juelich.de/record/884810/files/manuscripts_NBR_20200405_w_SOM%20TingLi.pdf
|y Published on 2020-05-30. Available in OpenAccess from 2021-11-30.
|z StatID:(DE-HGF)0510
909 C O |o oai:juser.fz-juelich.de:884810
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 1
|6 P:(DE-Juel1)174154
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)172024
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-14
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEUROSCI BIOBEHAV R : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-14
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1120
|2 StatID
|b BIOSIS Reviews Reports And Meetings
|d 2020-01-14
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-14
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEUROSCI BIOBEHAV R : 2018
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-01-14
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-14
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-14
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-14
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21