000884812 001__ 884812
000884812 005__ 20210130005946.0
000884812 0247_ $$2doi$$a10.1002/hbm.25143
000884812 0247_ $$2ISSN$$a1065-9471
000884812 0247_ $$2ISSN$$a1097-0193
000884812 0247_ $$2Handle$$a2128/26315
000884812 0247_ $$2altmetric$$aaltmetric:86819517
000884812 0247_ $$2WOS$$aWOS:000553581400001
000884812 037__ $$aFZJ-2020-03269
000884812 082__ $$a610
000884812 1001_ $$0P:(DE-HGF)0$$aZhang, Yong Hang$$b0
000884812 245__ $$aDo intrinsic brain functional networks predict working memory from childhood to adulthood?
000884812 260__ $$aNew York, NY$$bWiley-Liss$$c2020
000884812 3367_ $$2DRIVER$$aarticle
000884812 3367_ $$2DataCite$$aOutput Types/Journal article
000884812 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1606575620_2106
000884812 3367_ $$2BibTeX$$aARTICLE
000884812 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884812 3367_ $$00$$2EndNote$$aJournal Article
000884812 520__ $$aWorking memory (WM) is defined as the ability to maintain a representation online to guide goal‐directed behavior. Its capacity in early childhood predicts academic achievements in late childhood and its deficits are found in various neurodevelopmental disorders. We employed resting‐state fMRI (rs‐fMRI) of 468 participants aged from 4 to 55 years and connectome‐based predictive modeling (CPM) to explore the potential predictive power of intrinsic functional networks to WM in preschoolers, early and late school‐age children, adolescents, and adults. We defined intrinsic functional networks among brain regions identified by activation likelihood estimation (ALE) meta‐analysis on existing WM functional studies (ALE‐based intrinsic functional networks) and intrinsic functional networks generated based on the whole brain (whole‐brain intrinsic functional networks). We employed the CPM on these networks to predict WM in each age group. The CPM using the ALE‐based and whole‐brain intrinsic functional networks predicted WM of individual adults, while the prediction power of the ALE‐based intrinsic functional networks was superior to that of the whole‐brain intrinsic functional networks. Nevertheless, the CPM using the whole‐brain but not the ALE‐based intrinsic functional networks predicted WM in adolescents. And, the CPM using neither the ALE‐based nor whole‐brain networks predicted WM in any of the children groups. Our findings showed the trend of the prediction power of the intrinsic functional networks to cognition in individuals from early childhood to adulthood.
000884812 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000884812 588__ $$aDataset connected to CrossRef
000884812 7001_ $$0P:(DE-HGF)0$$aHao, Shuji$$b1
000884812 7001_ $$0P:(DE-HGF)0$$aLee, Annie$$b2
000884812 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3
000884812 7001_ $$0P:(DE-HGF)0$$aPecheva, Diliana$$b4
000884812 7001_ $$0P:(DE-HGF)0$$aCai, Shirong$$b5
000884812 7001_ $$0P:(DE-HGF)0$$aMeaney, Michael$$b6
000884812 7001_ $$0P:(DE-HGF)0$$aChong, Yap‐Seng$$b7
000884812 7001_ $$0P:(DE-HGF)0$$aBroekman, Birit F. P.$$b8
000884812 7001_ $$0P:(DE-HGF)0$$aFortier, Marielle V.$$b9
000884812 7001_ $$00000-0002-0215-6338$$aQiu, Anqi$$b10$$eCorresponding author
000884812 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.25143$$gp. hbm.25143$$n16$$p4574-4586$$tHuman brain mapping$$v4$$x1097-0193$$y2020
000884812 8564_ $$uhttps://juser.fz-juelich.de/record/884812/files/hbm.25143.pdf$$yOpenAccess
000884812 909CO $$ooai:juser.fz-juelich.de:884812$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884812 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000884812 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000884812 9141_ $$y2020
000884812 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2018$$d2020-02-26
000884812 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000884812 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-02-26$$wger
000884812 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884812 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-26
000884812 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2020-02-26$$wger
000884812 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-02-26
000884812 920__ $$lyes
000884812 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000884812 980__ $$ajournal
000884812 980__ $$aVDB
000884812 980__ $$aUNRESTRICTED
000884812 980__ $$aI:(DE-Juel1)INM-7-20090406
000884812 9801_ $$aFullTexts