001     884812
005     20210130005946.0
024 7 _ |a 10.1002/hbm.25143
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a 2128/26315
|2 Handle
024 7 _ |a altmetric:86819517
|2 altmetric
024 7 _ |a WOS:000553581400001
|2 WOS
037 _ _ |a FZJ-2020-03269
082 _ _ |a 610
100 1 _ |a Zhang, Yong Hang
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Do intrinsic brain functional networks predict working memory from childhood to adulthood?
260 _ _ |a New York, NY
|c 2020
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1606575620_2106
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Working memory (WM) is defined as the ability to maintain a representation online to guide goal‐directed behavior. Its capacity in early childhood predicts academic achievements in late childhood and its deficits are found in various neurodevelopmental disorders. We employed resting‐state fMRI (rs‐fMRI) of 468 participants aged from 4 to 55 years and connectome‐based predictive modeling (CPM) to explore the potential predictive power of intrinsic functional networks to WM in preschoolers, early and late school‐age children, adolescents, and adults. We defined intrinsic functional networks among brain regions identified by activation likelihood estimation (ALE) meta‐analysis on existing WM functional studies (ALE‐based intrinsic functional networks) and intrinsic functional networks generated based on the whole brain (whole‐brain intrinsic functional networks). We employed the CPM on these networks to predict WM in each age group. The CPM using the ALE‐based and whole‐brain intrinsic functional networks predicted WM of individual adults, while the prediction power of the ALE‐based intrinsic functional networks was superior to that of the whole‐brain intrinsic functional networks. Nevertheless, the CPM using the whole‐brain but not the ALE‐based intrinsic functional networks predicted WM in adolescents. And, the CPM using neither the ALE‐based nor whole‐brain networks predicted WM in any of the children groups. Our findings showed the trend of the prediction power of the intrinsic functional networks to cognition in individuals from early childhood to adulthood.
536 _ _ |a 574 - Theory, modelling and simulation (POF3-574)
|0 G:(DE-HGF)POF3-574
|c POF3-574
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Hao, Shuji
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lee, Annie
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 3
700 1 _ |a Pecheva, Diliana
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cai, Shirong
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Meaney, Michael
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Chong, Yap‐Seng
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Broekman, Birit F. P.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Fortier, Marielle V.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Qiu, Anqi
|0 0000-0002-0215-6338
|b 10
|e Corresponding author
773 _ _ |a 10.1002/hbm.25143
|g p. hbm.25143
|0 PERI:(DE-600)1492703-2
|n 16
|p 4574-4586
|t Human brain mapping
|v 4
|y 2020
|x 1097-0193
856 4 _ |u https://juser.fz-juelich.de/record/884812/files/hbm.25143.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:884812
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131678
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-574
|2 G:(DE-HGF)POF3-500
|v Theory, modelling and simulation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-02-26
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2018
|d 2020-02-26
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-02-26
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-02-26
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-02-26
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-02-26
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-26
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-02-26
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-02-26
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21