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Abstract: This paper presents a life cycle assessment (LCA) of photovoltaic (PV) solar modules
which have been integrated into electric vehicle applications, also called vehicle integrated
photovoltaics (VIPV). The LCA was executed by means of GaBi LCA software with Ecoinvent v2.2
as a background database, with a focus on the global warming potential (GWP). A light utility
electric vehicle (LUV) named StreetScooter Work L, with a PV array of 930 Wp, was analyzed for
the location of Cologne, Germany. An operation time of 8 years and an average shadowing factor
of 30% were assumed. The functional unit of this LCA is 1 kWh of generated PV electricity on-board,
for which an emission factor of 0.357 kg CO2-eq/kWh was calculated, whereas the average grid
emissions would be 0.435 kg CO2-eq/kWh. Hence, charging by PV power hence causes lower
emissions than charging an EV by the grid. The study further shows how changes in the shadowing
factor, operation time, and other aspects affect vehicle’s emissions. The ecological benefit of
charging by PV modules as compared to grid charging is negated when the shadowing factor
exceeds 40% and hence exceeds emissions of 0.435 kg CO2-eq/kWh. However, if the operation time
of a vehicle with integrated PV is prolonged to 12 years, emissions of the functional unit go down
to 0.221 kg COz-eq/kWh. It is relevant to point out that the outcomes of the LCA study strongly
depend on the location of use of the vehicle, the annual irradiation, and the carbon footprint of the
grid on that location.
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1. Introduction

The European Union (EU) has agreed on a range of policies aiming to reduce greenhouse gas
emissions in various sectors of society. Since transport largely contributes to these emissions by a
share of 27% of the EU’s total emissions in 2016, these emissions have to be reduced. For the year
2030, this policy implies that in the EU fleet-wide CO2 emissions of passenger cars should be reduced
by 37.5% as compared to 1990 levels. For new vans and trucks, the emissions should be reduced by
31% [1]. Therefore, new strict targets require the reduction of average CO:z emissions of new vehicles
that will enter the market. Consequently, the year 2020 is widely expected to bring dramatic changes
to the automotive market. Due to the aforementioned targets, manufacturers are forced to invest
intensively in innovative technologies of sustainable mobility. Therefore, many automotive players
focus on battery electric vehicles (BEVs). In recent years, a large number of environmental impact
studies were published, analyzing the potential environmental benefits of electric vehicles (EVs). The
overall conclusion is that BEVs are preferable over petrol and diesel vehicles, however only if charged
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by renewable energy [2]. A possible solution is to charge these cars with low-emission renewable
energy technologies such as photovoltaic systems. This could be achieved by charging stations which
are powered by PV systems or by photovoltaic solar modules which are built in a car’s body parts,
also called vehicle integrated photovoltaics (VIPV). Some vehicle manufacturers already aim at
integrating PV cells in body parts of their passenger cars. One of the most recent solar powered
electric vehicles is the Lightyear One of the Dutch company Lightyear. The vehicle has an integrated
silicon PV array of more than 5 m? with a nominal installed powered of 1250 Wp. Similarly, Munich-
based producer Sono Motors is planning on launching their solar electric vehicle, named Sion. The
Sion’s PV array has a nominal power of 1200 Wp. Solar charging in summer can add 34 km to the
drive range of 255 km. With Audi’s e-tron Quattro with a nominal PV power of 400 Wp and the
Toyota Prius P with a PV array of 860 Wp, two of the car industry’s major players recently entered
the market as well. Especially for light utility electric vehicles (LUV), VIPV could be an attractive
feature due to their predictability of utilization, in particular their moments of use and daily travel
distances, and their significantly larger and flat roof surface which, if covered by solar cells, can
potentially yield sufficient amounts of solar power. LUVs are usually vehicles with a gross vehicle
weight of no more than 3.5 metric tonnes and are optimized to be tough-built, have low operating
costs, and to be used in intra-city operations. Though prior studies have often indicated that VIPV
will result in lower COz emissions, actual life cycle assessments (LCAs) of VIPV are barely available,
and most claims until now have not been quantified or validated for the specific situation of VIPV of
LUVs [3-5]. Thus, the goal of this work is to analyze how PV-powered vehicles can contribute to
sustainable mobility. Therefore, an LCA focused on determining the CO2 emissions of a German
VIPV LUV called StreetScooter will be conducted. The results of this research could be useful for car
manufacturers, to calculate emissions per vehicle, for political institutions to estimate environmental
impacts for the transport sector, and for business parties in the solar market to identify further
application possibilities and yield useful data to identify critical areas for the improvement of VIPV
for LUVs.

This LCA study was executed in the framework of a project called STREET, which was funded
by the German Ministry for Economic Affairs and Energy and a German logistics company of
Deutsche Post DHL Group named StreetScooter, which is currently working on the integration of PV
on electric light utility vehicles (see Figure 1). Forschungszentrum Jiilich as an organization for
applied research supports the project by equipping the vehicle with PV modules and by analyzing
the energy yield of PV modules on this vehicle by the analysis of data measured by radiation sensors
on the vehicle under real shading and reflection conditions.

Figure 1. StreetScooter Work L Reprinted from: CC-BY-SA-4.0 (via Wikimedia Commons), Superbass,
2017 .

This paper is structured as following: in Section 2 the LCA method will be explained and all
input parameters of the LCA will be described. Major assumptions regarding the operation phase
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and technology choice for the on-board vehicle application are discussed. The results, sensitivity
analyses, and limitations of the study are reported in Section 3. Finally, Section 4 summarizes the
results, presents the conclusions, and offers recommendations for future studies.

2. Method and Data

This section presents the general methodology used to execute the LCA, defines the efficiency
of the VIPV investigated, and quantifies the resulting CO: emissions. Additionally, key parameters
that limit the environmental performance of the electricity produced by the PV system integrated
into the vehicle are shown. Assumptions about these critical parameters for the reference case are
clarified.

2.1. Life Cycle Assessment Method

LCA is a useful tool to quantify environmental performance, considering a holistic perspective.
LCA is generally understood as a compilation and evaluation of the inputs, outputs, and potential
environmental impacts of a product system throughout its life cycle [6]. LCA studies always consist
of four main phases, which are covered through ISO standards (DIN 14044; ISO 14040:2006). The first
step of the LCA is used to define the goal and scope of the study. The second step is a life cycle
inventory (LCI) model through which data is collected and organized. The third step is the life cycle
impact assessment (LCIA), used to understand the relevance of all the inputs and outputs in an
environmental framework. The fourth step is the interpretation, which is a systematic technique to
identify, check, and evaluate information resulting from the LCIA (see Figure 2).
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Figure 2. Life cycle assessment (LCA) framework (DIN 14044; ISO 14040:2006).

The environmental impact assessment for this study is completed at the mid-point level.
Midpoints are considered to be connections in the cause—effect chain of different impact categories,
also known as the problem-oriented approach or classical impact assessment method. Greenhouse
gas emissions (kgCO2-eq) were used as an indicator of climate change contribution. The 100-year
global warming potentials based on the latest IPCC 2013 were assumed, according to their radiative,
forcing capacity relative to the reference substance CO:. Global warming potential (GWP) during the
life cycle stages of a PV system was estimated as an equivalent of CO: containing all the significant
emissions CO2 (GWP =1), CH4 (GWP =25), N20O (GWP =298) and chlorofluorocarbons (GWP =4750-
14,400). The calculations were performed using LCA software GaBi with Ecoinvent v2.2+ as back-
ground database. GaBi is a process-oriented software, examining the material and energy flows of
each step of the production chain. The applied methodology of this study can be divided into four
sections which will be briefly described below.
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(A) VIPV Use Case Parameters

In the first section, the system boundaries and the input parameters for the operation in urban
delivery were clarified and collected for the Use Case StreetScooter. Promising VIPV configuration
was defined as the result.

(B) LCI of VIPV —Manufacturing

The second section was dedicated to compiling an inventory of energy and material inputs and
outputs over the life cycle of VIPV. Life-Cycle Inventory was completed based on the data from
literature. Based on the Inventory, a GaBi model was developed.

(O) LCI of VIPV —Operation and VIPV Energy flow model

The third part included the simulation of VIPV contribution to charging. To simulate the
reduction of grid power demand, an energy flow model for the identified reference case was
developed.

(D) Evaluation of environmental impacts

In the last part, potential environmental impacts (GWP) related to identified inputs and releases
were evaluated. LCA results were compared to grid charging by means of their environmental
impacts. The characterization factors were based on IPCC (2013) and should be incorporated for the
impact category of global warming potential, which is tracked in kg CO:2 eq.

2.2. Functional Unit, Goal, and Scope

The use case is the light utility battery electric vehicle Work L of StreetScooter. The functional
unit for this study is 1 kWh of electricity supplied by the PV system to the battery of the StreetScooter.
In comparison to the functional unit of 1 km driven, the emissions of 1 kWh can be calculated more
accurately. Furthermore, the chosen functional unit of 1 kWh allows for a direct comparison of effects
of charging by PV modules to those due to charging by the grid. Thus, the emissions of VIPV and
grid charged BEV can be evaluated more precisely referring to the same functional unit. The
operation of the electrical vehicle is set in Cologne, Germany and starts in 2017. Within the scope of
this project, the environmental impacts of VIPV are to be studied according to the standard of life
cycle assessment ISO 14040:2006. The PV system configuration is based on the first generation of the
VIPV panels for the STREET Project with heterojunction silicon PV modules manufactured in China.
The analyzed VIPV configuration includes three panels and three control units including the cables
mounted on the vehicle roof. The overall capacity of the VIPV system is 930 Wp. The system of the
VIPV electricity includes raw material extraction, wafers, crystalline silicon-based heterojunction
solar cells and module manufacturing, mounting structures manufacturing, inverters manufacturing,
system installation, and the operation.

2.3. Input Parameters for the Life Cycle Inventory

The production process of a typical commercial crystalline silicon solar cell is modelled based
on the existing datasets describing the supply chain [7] (see Figure 3). Input parameters of the
manufacturing of the PV control unit (PVCU) as well as the vehicle integration process were added
based on internal communication in the project STREET. The electricity consumption on all process
levels is modelled following specific electricity mixes corresponding to China (CN) or Germany (DE),
respectively, based on the Ecoinvent datasets.
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Figure 3. Vehicle integrated photovoltaics (VIPV) system value chain: process flow diagram. CN

means China, DE Germany.

Allinput parameters of the manufacturing and vehicle integration process are described in Table
1. The exact location of manufacturing plants is undocumented and unknown. However, it can be
assumed that the location of these plants is somewhere within China. Modelling of the transportation
was based on the standard distances as suggested in the Guideline for PC LCA [7]. Metal parts were
commonly reported with 200 km train and 100 km truck transportation in China. Additionally,
transoceanic transport from China to Belgium was estimated to be 19,994 km based on searates.com
data. In Europe, lorry transport from Antwerp (Belgium) to Cologne (Germany), a total of 500 km,
was used.

Table 1. Input parameters of the manufacturing process and vehicle integration Ppocess.

Parameter Based Comment
on
Wafer Type: n-type c-Si (b) Wafer (Solar Grade)
Thickness: 180 nm (a) Wafer thickness

SHJ cell processing adopted due to
STREET requirements, pc-SiOx:H
Area: 239 mm? (@) 156 x 156 mm?

Describes the efficiency of the solar

Cell Technology SHJ c-Si

Efficiency: 22.5% @] cells
Panel Efficiency: 19.7% © Describes the efficiency of the solar
cells
. ] The thickness of the solar glass used
Glass thickness: 2 mm © on the front side of the solar cell
Back: EVA Back Foil (@) EVA back foil conﬁ.gur?tlons based
on the Guideline
Cell number per panel: 72 (b) Standard-based on the Guideline
. Panel Number: 3
In:/e};:tlf . Total PV Area: 4.8 m? (b)
egratio PVCU Number 3

Mounting: on the rooftop
Integration with Bosch Profiles
(a) Guideline (Frischknecht et al. 2015) [7]; (b) STREET Internal Expert Judgement; (c) LCI on SHJ
Cells (Louwen et al. 2016; Olson et al. 2013) [8,9].
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For the solar cells in the VIPV, heterojunction technology (SHJ) was chosen due to the best trade-
off between efficiency and costs. Thus, in the LCA, the cell heterojunction process was described by
the following process steps taken from [8] and [10] and shown in Table 2. The metallization of the
front side requires a double print of the standard amount of silver paste and sputtered aluminum
closed back side. The LCI data on material and energy consumption were added for heterojunction
cell processing, referring to [8-10].

Table 2. Process steps of heterojunction cell.

Process Step Material Description
Metallization front ~ Ag print Screenprint
TCO ITO Sputtering of indium-tin-oxide
Emitter a-Si: H (p) ALD—atomic layer deposition
Passivation a-Si:H (i) Deposited by PECVD
BSF a-Si:H (n) Back surface field
Metallization back ~ Ag print Screenprint

2.4. Input Parameters for the Energy Flow Model

The main factor for the estimation of PV electricity generation is the effective solar irradiance,
which depends on the route and location, season, time, and module configuration and orientation.
For the reference case of the LCA, the location for the operation was set in Cologne, Germany. The
hourly global horizontal solar irradiance was defined by averaging hourly incident global horizontal
radiation data extracted from the PVGIS database. The on-board generation of electricity was
simulated based on degradation, system losses, and shadowing factor (see Table 3). A 19.7% module
efficiency was assumed [9]. In line with IEA-PVPS methodology guidelines [7], degradation of 0.7%
per year was applied. Operation time of the reference case was set to 8 years, based on data of LUVs
in delivery services [11].

Table 3. Input parameters for the operation of the VIPV.

Parameter Value Unit
Capacity 930 Wp
Efficiency 19.7 %
Degradation 0.7 %
Operation lifetime 8 a
Location Cologne (50.938, 6.954) Lat/Lon
Database PVGIS-CMSAF /

According to the literature guidelines, efficiency for the VIPV system was estimated. Due to
dynamic shading, an average 70% performance compared to residential PV was assumed [3].
Furthermore, generated energy cannot be used directly for traction of the vehicle and must be stored
in the battery, where DC-Charging/discharging loss of 2% appears. Additional loss of 5% was
considered due to the DC/DC converter. The loss of the MPP tracking additionally limits its efficiency
in the model to 95% [3]. A performance loss of 9% due to temperature increase and low irradiance
was assumed [5]. The overall average efficiency losses of the VIPV system is to be found in Table 4.

Table 4. VIPV system efficiency.

Loss Coefficient Changes in Output (%)
MPPT loss -5
Temperature/low irradiance -9
DC/DC conversions -5
DC charging/discharging loss -2

Average shadowing factor -30
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2.5. Input Parameters of the Grid Charge

The grid mix in the location of the charge was analyzed regarding its carbon intensity. The
emissions of the grid can vary massively depending on the different power plants. Fossil power
plants dominate the power generation in Germany. Acknowledged studies usually consider annual
average carbon footprints of the grid power plants caused by the life cycle (construction, fuel
production, operation, etc.) [12]. Hourly average emissions of the German electricity mix vary
depending on the day and night times. The German electricity mix was modelled using SMARD
electricity generation data from 2017 and utilized for the projection of the future scenario [13].

The reference scenario follows the pathway of technological development as far as possible,
according to the goals set by politics. The target of the electricity sector in Germany for 2030 is 180-
186 Mio t. Until 2028, the annual electricity mix GWP is expected to decrease by 2% per year [1]. Table
5 gives an overview of the emissions of different electricity sources, found in [14].

Table 5. Emission factors of electricity sources.

Electricity Source (g COz eq./kWh) Reference

Biomass 272 [15]
Hydropower 3
Pumped hydro 26
Wind offshore 6
Wind onshore 11
Photovoltaics 67 [12]
Geothermal 192
Lignite 1142
Coal 815
Natural gas 374
Nuclear 32 [14]
German mix average 486 [12]

2.6. Reliability of the Data

The LCI in this study was based on extracting the data from reliable literature. The commercial
LCA software GaBi Version 8.7.1.30 was used to model and calculate the LCI and impact assessment
results. Essential materials, electricity mixes were calculated based on data represented by the
Ecoinvent database unless otherwise noted. The International Energy Agency (IEA) developed
guidelines to make the LCAs of PV systems more consistent and to enhance quality and reliability.
Data on production is mainly based on these guidelines and LClIs of photovoltaics [7], additionally
considering the heterojunction process of [9,10]. Some values for the Vehicle Integration Process and
PVCU were adjusted after internal communication in STREET. The reason for adjustment was mainly
a lack of access to the supply chain model data. The data used for this LCA varies in quality and
reliability. To limit the resulting uncertainty, the differences of the data sources were analyzed and
scored referring to the Quality Pedigree Matrix Flow Indicators determined by DIN 14044. Due to the
above-mentioned conditions, the scores for each step were evaluated in Table 6. The highest score
shows the lowest uncertainty and data scored with 5 shows the highest uncertainty.
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Table 6. LCA data quality.

8 of 14

F1
Process Data Source Quality Comment ow
Score
High variability of
(Frischknecht et process data, low
. al. 2015) . uncertainty, verified
Feedstock t P dat
eeastock, meoL Material flow: rimary daa, data based on 2
wafer production _ measured .
Ecoinvent measurements with less
database than 6 years of
difference
Wafer cleani L t al.
ater ¢ e'amng, (Louwen eta . Low variability of
texturing, 2016; Louwen et Primary data, rocess data. low
PECVD of a-Si al. 2012b; Olson  measured, Ecoinvent unpcertaint bz;se don
layers, TCO et al. 2013) processes updated Y, bas 1
o . measurements with less
deposition, Material flow: based on updated
. . than 6 years of
contacting, Ecoinvent data .
.. difference
wiring database
Expert Low variability of
judgement— Primary data, process data, higher
PVCU continental adjusted and verified uncertainty, verified by )
material flow: by the STREET STREET Experts, less
Ecoinvent experts than 6 years of
database difference
L iability, high
(Frischknecht et ow vana bility, BNt
al. 2015) uncertainty, verified
Module . Primary data, precise data based on
Material flow: . 2
assembly . measured measurements with less
Ecoinvent
than 6 years of
database .
difference
High variability, high
Expert judgment: . 161 varia 1 1y, e
Estimated data based uncertainty,
. StreetScooter e .
Vehicle Material flow: on metadata, verified  documented estimate, 3
integration . ' by the STREET verified by STREET
Ecoinvent
concept Experts, less than 6
database .
years of difference
(PY—Powered Estimated data based ngh gﬁcertamty, high
Vehicle Strategy . variability, documented
. on metadata, lacking . .
Operation Committee 2019) measurements of PV estimate, verified by 3
P Material flow: STREET Experts, less
. output and
Ecoinvent maintenance than 6 years of
database difference
3. Results

This section presents the results of the LCA study completed to the mid-point level.

3.1. Manufacturing Process of the VIPV

The results of the analysis of the manufacturing phase [kg CO2eq] demonstrate the impact before
the operation starts. The manufacturing process VIPV shows similar results to other PV systems. The
most dominant contributor to this phase is the Solar-Grade Process. It is responsible for 444.30 kg CO:
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eq, a third of total emissions. The process of integration of the cells into the panel emits 235.24kg CO:
eq. The calculated total amount of emissions during the manufacturing process is 1143.12 kg CO2 eq
(see Figure 4).

GWRP ( incl. Biogenic C02)

VIPV - Manufacturing Phase [N ( ':c. 118

CN: Cell ProcessingHeterojunction [l 83,501
CN: Ingot Process [l 127.233
CN: Panel Production [ 235234

CN: Silicon,solar grade, Siemens NG 44,299
De:Vehicle Integration [l 141,881

Rest [l 110972

0 200 400 600 800 1000 1200 1400

CLIMATE CHANGE (INCL. BIOGENIC CARBON)
[KG CO,-EQUIV]

Figure 4. Results of the LCA, the manufacturing phase global warming potential (GWP) = 1143 [kg
COzeq].

3.2. Operation Phase of the VIPV

The on-board generation of electricity was simulated based on the assumptions on degradation,
system losses, and shadowing factor, as previously described in Section2.4. While driving the EV, the
batteries will discharge and will recharge again using the on-board PV modules. The degree of VIPV’s
impact was expected to vary with the usage patterns: different daily driving distances have different
depths of discharge corresponding to daily driving durations. In this study, all incoming irradiance
during the day is used, assuming energy is being collected energy and the battery is being charged,
even if not driving. The results of the energy flow model are shown in Table 7.

Table 7. Results of the energy flow model.

Parameter Value Unit

Average yield in urban area 936  (kWh/kWp)

Average annual VIPV electricity production on board 479  (kWh/year)
Total production VIPV 3738 (kWh)

For the reference scenario of 8 years operation and a shadowing factor of 30%, the VIPV
contribution is 3738.116 kWh. Prolonged operation of 12 years generates 5526.702 kWh in total.
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3.3. Comparison to the Emissions of the Grid Charge

For the same amount of energy, if the grid would be used, 1630 kg CO2-eq for 8 years and 2267
kgCOz-eq for 12 years were calculated. The losses appearing due to grid distribution were not
calculated, because the emission factor is already based on an energy consumption perspective.

Main findings of the comparison with grid electricity show: VIPV can improve the carbon
footprint for the reference case of an average shadowing factor of 30% and 8 years of operation time.
For the functional unit of 1 kWh of on-board generated PV electricity, the emission factor of 0.357
kgCO:z-eq/kWh is calculated for the reference case. In comparison, the average grid emissions for the
operation time are expected to be 0.435 kgCO2-eq/kWh.

Considering the data quality of the LCA, reduction of emissions of the functional unit for the
reference case compared to the grid is about 18%. The holistic view of the results for the reference
case shows 3738 kWh VIPV contribution. For the functional unit of 1 kWh of on-board generated PV
electricity, the emission factor of 0.357 kgCOzeq/kWh is calculated. In comparison, the average grid
emissions for the operation time are expected to be 0.435 kgCO2eq/kWh. Compared to the estimated
grid average, about 18% less emissions per kWh are caused by VIPV. Projected contribution of VIPV
was replaced by grid charging to find out in which operation year VIPV have fewer emissions than
the grid and thus calculate the “ecological break-even point”. In the previously described reference
case, this point is achieved in the year 2022. That means that after 6.5 years of operation, the ecological
impact of VIPV equals the impact of the grid charge. However, an increasing shadowing factor of
mobile application causes a significant growth of emissions per kWh.

3.4. Sensitivity Analysis

The results of the study are wide-ranging. The variations mainly arise from system operating
assumptions (e.g., solar irradiation, system lifetime, shadowing factors) and technology
improvements (e.g., electricity consumption for manufacturing processes). In this section some
adjustments of the reference case (8 years of operation, 0.7% degradation, and 30% shadowing factor)
are considered.

PV-generated power is an essential variable for the reduction in emissions. By increasing the
shadowing factor, emissions per kWh grow significantly. An emission factor of 0.357 kgCO2-eq/kWh
is calculated for the reference case. The increased shadowing factor of 40% results in 0.435 kgCO»-
eq/kWh, which equals the average emissions of the future grid electricity. As shown in Figure 5, the
ecological benefit over the grid charge disappears completely when the shadowing factor reaches
40%.
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Figure 5. Emissions depending on the shadowing factor.
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Sensitivities show that if the VIPV is used for a prolonged life of 12 years, the emission factor of
the produced electricity decreases to 0.221 kgCOz-eq/kWh. A reduction of 38% (0.136 kgCOz-eq/kWh)
compared to the reference case of 8 years is noted. The average grid mix emissions of prolonged use
decrease to 0.409 kgCO:z-eq/kWh. Comparable results can be achieved with a shadow factor of 55%
or an average annual VIPV generation of about 260 kWh/a. Lifetime extension of the vehicle operation
will automatically result in a reduction of the emissions per produced kWh of the VIPV. Figure 6
demonstrates the potential of the longer operation phase for different shadowing factors.

0,9
60%
0,8
- »

= 0,7
=
<
o
7y
£
7]
)

0
736 650 h64 479 393 308 222
ANMNUAL VIPV CONTRIBUTION [KWH/YEAR]
+— Lifetime 8 a —i— Lifetime 12 German Grid (12 years average)

Figure 6. Emissions of “prolonged use” scenario.

Based on findings of the sensitivity analyses, the highest potential for emission reduction can be
confirmed for a “green” electricity scenario, where renewable electricity is used for the
manufacturing process. The emission factor of 0.831 kgCOz/kWh for the electricity mix of China used
for the simulation of the reference case is based on the GaBi Education Database from 2017. With the
increasing share of renewable energy in the electricity mix, lower GWP impact will arise from the
production phase of the VIPV. Using green electricity has the potential to be almost carbon-free, as is
the case for today’s hydropower. For “green” electricity, assumptions of hydro plants with average
emissions of 0.003 kgCOz-eq/kWh were used to cover the energy need of the manufacturing phase in
China [15]. As illustrated in Figure 7, the emissions decrease from 0.357 to 0.230 kgCO2-eq/kWh for
the shadowing factor of 30%.



Energies 2020, 13, 5120 12 of 14

=
~

=]
(=2}

2
[4]

o
.

=
[

o
]

EMISSION FACTOR [KG CO./KWH]
[=]

736 650 564 479 393 308 222
ANNUAL VIPV CONTRIBUTION [KWH]

—4— Reference Case =— Green Mix Scenario(g/kWh VIPV) Average Grid (8a)

Figure 7. Emissions of “green manufacturing” scenario.

4. Discussion and Conclusions

The study reports the unique observation that placing a PV system on-board of an existing
StreetScooter can improve the carbon footprint of the generated electricity for the reference case of
an average shadowing factor of 30% and 8 years of operation time. The ecological benefits of PV-
powered light utility vehicles are confirmed for the reference case of the StreetScooter. Yet, the results
of the LCA show that viability is heavily dependent on the vehicle’s deployment region and usage
scenario. Main findings of the comparison to the grid electricity show: VIPV can improve the carbon
footprint for the reference case of an average shadowing factor of 30% and 8 years of operation time.
For the functional unit of 1 kWh of on-board generated PV electricity, the emission factor of 0.357
kgCOz-eq/kWh is calculated. In comparison, the average grid emissions for the operation time are
expected to be 0.435 kgCOz-eq/kWh. Considering the data quality of the LCA, reduction of emissions
of the functional unit for the reference case compared to the grid is about 18%. By increasing the
shadowing factor, emissions per kWh grow significantly. The ecological benefit to the grid charge
disappears completely when the shadowing factor reaches 40%. However, if the operation time is
prolonged to 12 years, the shadowing factor can reach 55%, having similar emissions to grid charge.
For the reference case with 30% shadowing, a reduction of 38% compared to 8 years in use can be
noted. For this case, 0.221 kgCO2-eq/kWh is estimated for the functional unit.

One of the key challenges of this work was finding an appropriate vehicle usage model to
reproduce the ratio of using solar power and performance assessment of Maximum Power Point
Tracker (MPPT) algorithms for VIPV. Tests with radiation sensors investigating shading and
reflection conditions are suggested. Numeric simulation of VIPV output test drives with irradiance
profiles of routes should include different vehicle usage times, effects of panel position and
movement. Additionally, it is necessary to address the electrical and technical issues.

For the recycling process, no established and reliable routes were found. As to the knowledge of
the author, no study provides details on the LCI with the input and output of every process stage.
However, if material depletion is considered, recycling is crucial, and further research should include
recyclability options. Since second use is an important issue, the mounting structure, removable, and
lightweight, must become a priority for research. Furthermore, a scenario of VIPV connection to the
public grid while parking during weekends, in which the surplus of unused electricity can be fed into
the grid, seems to be realistic. Vehicle2Grid (V2G) concepts can be very profitable, but first, the
dependence on the state of charge (SOC) of the battery including an ageing model of the battery with
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charging and discharging losses should be analyzed. Enhanced communication and cooperation
between automotive companies and PV players can contribute to the positive image of vehicle
integrated photovoltaic systems in order to achieve the goal to change the image of VIPV. Likewise,
international methods for evaluating the reduction of emissions of PV-powered vehicles can help to
communicate the created value for the different driving and charging behaviors. To contribute to the
growth of the VIPV market, governments willing to achieve emission goals must support the
standardization of the technology. To solve this problem, international methods of evaluating added
value on the reduction of grid power and ecological benefits are required.
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