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Abstract: The combined addition of Nb and W provides increased solid solution and precipitation

strengthening by (Fe,Cr,Si)2(Nb,W)-Laves phase particles of ferritic, 17 wt.% Cr stainless high-

performance ferritic (HiperFer) steel. Based on alloy modifications and the obtained hardness, tensile,

and creep testing results; a new high alloying variant is proposed as a candidate steel for future

structural application up to approximately 680 ◦C in power engineering and the process industry.
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1. Introduction

High-chromium, ferritic stainless steels are widely known for their excellent high-temperature

oxidation resistance, but are typically considered to be non-hardenable, and thus not applicable for structural

application at an elevated temperature. Previous research demonstrated that viable creep properties can

be obtained in ferritic steel based on precipitation of a variety of intermetallic phase precipitates [1–4].

A proprietary development at Forschungszentrum Juelich GmbH, Germany, features a ferritic stainless steel

strengthened by a combination of solid solution strengthening and precipitation of (Fe,Cr,Si)2(Nb,W)-Laves

phase particles [5–8]. Optimization of these high-performance ferritic (HiperFer) steels so far cumulated in

an alloy, which can combat the strongest low-cost, heat-resisting structural steels [9] typically applied in

power engineering and the process industry up to approximately 680 ◦C. Alteration of the main Laves

phase constituting elements W, Nb, and Si strongly influences the mechanical properties by modification of

the solid solution and precipitation strengthening effects in such alloys. The relation of W and Nb contents

directly affects short-term precipitation and long-term particle growth kinetics. This paper provides

comprehensive information on the impact of combined Nb- and W-addition on microstructure and some

mechanical properties of HiperFer steel.

2. Methods and Materials

2.1. Alloy Design and Production

Based on the HiperFer 17Cr2 (2.4W0.6Nb) prototype alloy [9–12], the chemical compositions of the

trial alloys were systematically varied in thermodynamic equilibrium calculations (utilizing the commercial

software package Thermocalc®, database: TCFE7), including an increase in niobium to 1 wt.% and

a variation in tungsten content from 2.4 wt.% up to 4 wt.% (Table 1). High-purity lab melts were then
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manufactured by vacuum induction melting of high-purity raw materials, casting, soaking at 1250 ◦C for

2 h, and forging (3 steps from 140 × 140 mm2 to 92 × 92 mm2 in the temperature range from 1250 ◦C

to 950 ◦C, interstage annealing: 1250 ◦C, 20 min.) at the Steel Institute of RWTH Aachen University.

Prior to examination, all the materials were solution annealed (SA) at 1200 ◦C for 30 min and subsequently

water quenched.

Table 1. Compositions of the base (17Cr2) and the high W/high Nb model alloys, wt.%.

Model Alloy Cr W Nb Si Mn Fe

17Cr2 (2.4W0.6Nb) 17.10 2.41 0.63 0.25 0.18 R
2.6W1Nb 17.43 2.83 0.9 0.2 0.27 R
3.1W1Nb 17.37 3.27 1.0 0.2 0.23 R
4W1Nb 17.30 3.97 0.93 0.2 0.23 R

2.2. Microstructural Investigation

Samples for microstructural investigation were cut from annealed specimens and cold mounted in

epoxy resin for preparation. The mounted samples were ground and polished (applying diamond polish

solution down to 1 µm of roughness, followed by Al2O3 in dilute KOH solution, utilizing vibration

polishing as the final step). The samples were then etched in ethanol/H2SO4 solution for 3 to 5 s. Images

of a resolution of 6144 × 4608 pixels were taken utilizing a Zeiss Merlin high-resolution field emission

scanning electron microscope (HR-FESEM). The images were analyzed quantitatively (utilizing the

software package analySIS pro) applying the method reported by Lopez et al. [13].

2.3. Mechanical Testing

Vickers hardness testing, applying 10 N of testing force (i.e., HV1) in a Buehler Micromet®1 hardness

tester, was performed to evaluate the effect of alloying on solid solution hardening, precipitation kinetics,

and particle hardening. Ambient temperature tensile experiments were performed at flat, miniature size

specimens (gauge dimensions: 10 × 2 × 1 mm3). The tensile tests were carried out applying a strain rate

of 10−3 s−1, utilizing an Instron 1362 testing machine. Compression creep experiments at cylindrical

miniature (d: 3 mm, h: 3.5 mm) specimens were carried out at 650 ◦C in an Instron 8862 testing

machine (Instron, Darmstadt, Germany). A type S thermocouple was attached to the specimen to

control the testing temperature to an accuracy of +/− 1 ◦C. The decrease in effective testing stress

by specimen strain was neglected, but limited by restriction of the maximum strain to less than 2%.

All the mechanical testing specimens were cut by electrical discharge machining.

3. Results and Discussion

3.1. Thermodynamic Modelling of Alloy Compositions

Figure 1 displays simplified, calculated phase diagrams of the alloy compositions given in Table 1.

According to the calculations, the increase in Nb-content improved the stability temperature range

of the so-called high-temperature Laves (HTL, cf. Figure 1) phase from less than 1000 ◦C to about

1100 ◦C in comparison to the 17Cr2 prototype steel. The improvement in the stability (from less than

650 ◦C to about 740 ◦C) range and the volume fraction (less than 0.5% to more than 1%) of the so-called

low-temperature (LTL, cf. Figure 1) Laves phase indicated that the addition of Nb preferentially

benefited the nucleation of the LTL phase. W had a positive effect on the phase fractions of both

the types of Laves phase too [14].

The calculations indicate the LTL phase as an equilibrium phase; but in light of the results

outlined in [15–18], it rather has to be considered a metastable, non-equilibrium phase. In this respect,

the description of the Laves phase in the applied database does not seem accurate enough for correct

calculations in the present alloying system.
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