000884823 001__ 884823
000884823 005__ 20220930130253.0
000884823 0247_ $$2doi$$a10.1016/j.biopsych.2020.09.024
000884823 0247_ $$2Handle$$a2128/26635
000884823 0247_ $$2altmetric$$aaltmetric:91753535
000884823 0247_ $$2pmid$$a33357631
000884823 0247_ $$2WOS$$aWOS:000603473100016
000884823 037__ $$aFZJ-2020-03278
000884823 082__ $$a610
000884823 1001_ $$0P:(DE-Juel1)171414$$aChen, Ji$$b0$$eCorresponding author
000884823 245__ $$aIntrinsic connectivity patterns of task-defined brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and are linked to molecular architecture
000884823 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000884823 3367_ $$2DRIVER$$aarticle
000884823 3367_ $$2DataCite$$aOutput Types/Journal article
000884823 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1609265959_13522
000884823 3367_ $$2BibTeX$$aARTICLE
000884823 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884823 3367_ $$00$$2EndNote$$aJournal Article
000884823 520__ $$aBackground: Despite the marked inter-individual variability in the clinical presentation of schizophrenia, it remains unclear the extent to which individual dimensions of psychopathology may be reflected in variability across the collective set of functional brain connections. Here, we address this question using network-based predictive modeling of individual psychopathology along four data-driven symptom dimensions. Follow-up analyses assess the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns. Methods: We investigated resting-state fMRI data from 147 schizophrenia patients recruited at seven sites. Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using relevance vector machine based on functional connectivity within 17 meta-analytic task-networks following a repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps of nine receptors/transporters from prior molecular imaging in healthy populations. Results: Ten-fold and leave-one-site-out analyses revealed five predictive network-symptom associations. Connectivity within theory-of-mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory-of-mind and socio-affective-default networks. Importantly, these predictions generalized to the independent sample. Intriguingly, these two networks were positively associated with D1 dopamine receptor and serotonin reuptake transporter densities as well as dopamine-synthesis-capacity. Conclusions: We revealed a robust association between intrinsic functional connectivity within networks for socio-affective processes and the cognitive dimension of psychopathology. By investigating the molecular architecture, the present work links dopaminergic and serotonergic systems with the functional topography of brain networks underlying cognitive symptoms in schizophrenia.
000884823 536__ $$0G:(DE-HGF)POF3-571$$a571 - Connectivity and Activity (POF3-571)$$cPOF3-571$$fPOF III$$x0
000884823 588__ $$aDataset connected to CrossRef
000884823 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika I.$$b1
000884823 7001_ $$0P:(DE-Juel1)177727$$aDukart, Jürgen$$b2
000884823 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b3
000884823 7001_ $$0P:(DE-HGF)0$$aBaker, Justin T.$$b4
000884823 7001_ $$0P:(DE-HGF)0$$aHolmes, Avram J.$$b5
000884823 7001_ $$0P:(DE-HGF)0$$aVatansever, Deniz$$b6
000884823 7001_ $$0P:(DE-HGF)0$$aNickl-Jockschat, Thomas$$b7
000884823 7001_ $$0P:(DE-Juel1)171422$$aLiu, Xiaojin$$b8
000884823 7001_ $$0P:(DE-HGF)0$$aDerntl, Birgit$$b9
000884823 7001_ $$0P:(DE-HGF)0$$aKogler, Lydia$$b10
000884823 7001_ $$0P:(DE-HGF)0$$aJardri, Renaud$$b11
000884823 7001_ $$0P:(DE-HGF)0$$aGruber, Oliver$$b12
000884823 7001_ $$0P:(DE-HGF)0$$aAleman, André$$b13
000884823 7001_ $$0P:(DE-HGF)0$$aSommer, Iris E.$$b14
000884823 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b15
000884823 7001_ $$0P:(DE-Juel1)172843$$aPatil, Kaustubh R.$$b16
000884823 773__ $$0PERI:(DE-600)1499907-9$$a10.1016/j.biopsych.2020.09.024$$n3$$p308-319$$tBiological psychiatry$$v89$$x0006-3223$$y2020
000884823 8564_ $$uhttps://juser.fz-juelich.de/record/884823/files/19793CV9.pdf
000884823 8564_ $$uhttps://juser.fz-juelich.de/record/884823/files/Invoice_OAD0000073391.pdf
000884823 8564_ $$uhttps://juser.fz-juelich.de/record/884823/files/1-s2.0-S0006322320319557-main-1.pdf$$yOpenAccess
000884823 8564_ $$uhttps://juser.fz-juelich.de/record/884823/files/Invoice_OAD0000073391.pdf?subformat=pdfa$$xpdfa
000884823 8767_ $$8OAD0000073391$$92020-10-06$$d2020-10-06$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200159236
000884823 8767_ $$819793CV9$$92020-11-27$$d2020-12-07$$eColour charges$$jZahlung erfolgt$$zBelegnr. 1200160599
000884823 909CO $$ooai:juser.fz-juelich.de:884823$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171414$$aForschungszentrum Jülich$$b0$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b1$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177727$$aForschungszentrum Jülich$$b2$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b3$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171422$$aForschungszentrum Jülich$$b8$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b15$$kFZJ
000884823 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172843$$aForschungszentrum Jülich$$b16$$kFZJ
000884823 9131_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000884823 9141_ $$y2020
000884823 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOL PSYCHIAT : 2018$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bBIOL PSYCHIAT : 2018$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884823 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2019-12-21
000884823 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2019-12-21
000884823 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884823 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2019-12-21$$wger
000884823 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2019-12-21
000884823 920__ $$lyes
000884823 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000884823 980__ $$ajournal
000884823 980__ $$aVDB
000884823 980__ $$aUNRESTRICTED
000884823 980__ $$aI:(DE-Juel1)INM-7-20090406
000884823 980__ $$aAPC
000884823 9801_ $$aAPC
000884823 9801_ $$aFullTexts