001     884823
005     20220930130253.0
024 7 _ |a 10.1016/j.biopsych.2020.09.024
|2 doi
024 7 _ |a 2128/26635
|2 Handle
024 7 _ |a altmetric:91753535
|2 altmetric
024 7 _ |a 33357631
|2 pmid
024 7 _ |a WOS:000603473100016
|2 WOS
037 _ _ |a FZJ-2020-03278
082 _ _ |a 610
100 1 _ |a Chen, Ji
|0 P:(DE-Juel1)171414
|b 0
|e Corresponding author
245 _ _ |a Intrinsic connectivity patterns of task-defined brain networks allow individual prediction of cognitive symptom dimension of schizophrenia and are linked to molecular architecture
260 _ _ |a Amsterdam [u.a.]
|c 2020
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1609265959_13522
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Background: Despite the marked inter-individual variability in the clinical presentation of schizophrenia, it remains unclear the extent to which individual dimensions of psychopathology may be reflected in variability across the collective set of functional brain connections. Here, we address this question using network-based predictive modeling of individual psychopathology along four data-driven symptom dimensions. Follow-up analyses assess the molecular underpinnings of predictive networks by relating them to neurotransmitter-receptor distribution patterns. Methods: We investigated resting-state fMRI data from 147 schizophrenia patients recruited at seven sites. Individual expression along negative, positive, affective, and cognitive symptom dimensions was predicted using relevance vector machine based on functional connectivity within 17 meta-analytic task-networks following a repeated 10-fold cross-validation and leave-one-site-out analyses. Results were validated in an independent sample. Networks robustly predicting individual symptom dimensions were spatially correlated with density maps of nine receptors/transporters from prior molecular imaging in healthy populations. Results: Ten-fold and leave-one-site-out analyses revealed five predictive network-symptom associations. Connectivity within theory-of-mind, cognitive reappraisal, and mirror neuron networks predicted negative, positive, and affective symptom dimensions, respectively. Cognitive dimension was predicted by theory-of-mind and socio-affective-default networks. Importantly, these predictions generalized to the independent sample. Intriguingly, these two networks were positively associated with D1 dopamine receptor and serotonin reuptake transporter densities as well as dopamine-synthesis-capacity. Conclusions: We revealed a robust association between intrinsic functional connectivity within networks for socio-affective processes and the cognitive dimension of psychopathology. By investigating the molecular architecture, the present work links dopaminergic and serotonergic systems with the functional topography of brain networks underlying cognitive symptoms in schizophrenia.
536 _ _ |a 571 - Connectivity and Activity (POF3-571)
|0 G:(DE-HGF)POF3-571
|c POF3-571
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Müller, Veronika I.
|0 P:(DE-Juel1)131699
|b 1
700 1 _ |a Dukart, Jürgen
|0 P:(DE-Juel1)177727
|b 2
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 3
700 1 _ |a Baker, Justin T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Holmes, Avram J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vatansever, Deniz
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Nickl-Jockschat, Thomas
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Liu, Xiaojin
|0 P:(DE-Juel1)171422
|b 8
700 1 _ |a Derntl, Birgit
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kogler, Lydia
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Jardri, Renaud
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Gruber, Oliver
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Aleman, André
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Sommer, Iris E.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Eickhoff, Simon B.
|0 P:(DE-Juel1)131678
|b 15
700 1 _ |a Patil, Kaustubh R.
|0 P:(DE-Juel1)172843
|b 16
773 _ _ |a 10.1016/j.biopsych.2020.09.024
|0 PERI:(DE-600)1499907-9
|n 3
|p 308-319
|t Biological psychiatry
|v 89
|y 2020
|x 0006-3223
856 4 _ |u https://juser.fz-juelich.de/record/884823/files/19793CV9.pdf
856 4 _ |u https://juser.fz-juelich.de/record/884823/files/Invoice_OAD0000073391.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884823/files/1-s2.0-S0006322320319557-main-1.pdf
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884823/files/Invoice_OAD0000073391.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884823
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)171414
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)177727
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)171422
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)131678
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 16
|6 P:(DE-Juel1)172843
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-571
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Connectivity and Activity
|x 0
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2019-12-21
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b BIOL PSYCHIAT : 2018
|d 2019-12-21
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b BIOL PSYCHIAT : 2018
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2019-12-21
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2019-12-21
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2019-12-21
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2019-12-21
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2019-12-21
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2019-12-21
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21