000884825 001__ 884825
000884825 005__ 20230217124413.0
000884825 0247_ $$2doi$$a10.1103/PhysRevA.102.032623
000884825 0247_ $$2ISSN$$a0556-2791
000884825 0247_ $$2ISSN$$a1050-2947
000884825 0247_ $$2ISSN$$a1094-1622
000884825 0247_ $$2ISSN$$a1538-4446
000884825 0247_ $$2ISSN$$a2469-9926
000884825 0247_ $$2ISSN$$a2469-9934
000884825 0247_ $$2ISSN$$a2469-9942
000884825 0247_ $$2Handle$$a2128/25791
000884825 0247_ $$2WOS$$aWOS:000575174800002
000884825 0247_ $$2altmetric$$aaltmetric:74930498
000884825 037__ $$aFZJ-2020-03280
000884825 082__ $$a530
000884825 1001_ $$0P:(DE-Juel1)173989$$aPommerening, Joel C.$$b0$$eCorresponding author
000884825 245__ $$aWhat is measured when a qubit measurement is performed on a multiqubit chip
000884825 260__ $$aWoodbury, NY$$bInst.$$c2020
000884825 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2020-09-22
000884825 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2020-09-01
000884825 3367_ $$2DRIVER$$aarticle
000884825 3367_ $$2DataCite$$aOutput Types/Journal article
000884825 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601477048_28529
000884825 3367_ $$2BibTeX$$aARTICLE
000884825 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884825 3367_ $$00$$2EndNote$$aJournal Article
000884825 520__ $$aWe study how single-qubit dispersive readout works alongside two-qubit coupling. To make calculations analytically tractable, we use a simplified model which retains core characteristics of but is discretized compared to dispersive homodyne detection. We show how the measurement speed and power determine what information about the qubit(s) is accessed. Specifically we find the basis the measurement is closest to projecting onto. Compared to the basis in which gates are applied, this measurement basis is modified by the presence of photons in the readout resonator.
000884825 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000884825 542__ $$2Crossref$$i2020-09-22$$uhttps://link.aps.org/licenses/aps-default-license
000884825 588__ $$aDataset connected to CrossRef
000884825 7001_ $$0P:(DE-Juel1)143759$$aDiVincenzo, David P.$$b1
000884825 77318 $$2Crossref$$3journal-article$$a10.1103/physreva.102.032623$$bAmerican Physical Society (APS)$$d2020-09-22$$n3$$p032623$$tPhysical Review A$$v102$$x2469-9926$$y2020
000884825 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.102.032623$$gVol. 102, no. 3, p. 032623$$n3$$p032623$$tPhysical review / A$$v102$$x2469-9926$$y2020
000884825 8564_ $$uhttps://juser.fz-juelich.de/record/884825/files/2001.11756.pdf$$yOpenAccess
000884825 8564_ $$uhttps://juser.fz-juelich.de/record/884825/files/PhysRevA.102.032623.pdf$$yOpenAccess
000884825 8564_ $$uhttps://juser.fz-juelich.de/record/884825/files/2001.11756.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884825 8564_ $$uhttps://juser.fz-juelich.de/record/884825/files/PhysRevA.102.032623.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884825 909CO $$ooai:juser.fz-juelich.de:884825$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173989$$aForschungszentrum Jülich$$b0$$kFZJ
000884825 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143759$$aForschungszentrum Jülich$$b1$$kFZJ
000884825 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000884825 9141_ $$y2020
000884825 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-24
000884825 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000884825 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2018$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884825 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-24
000884825 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-24
000884825 920__ $$lyes
000884825 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000884825 980__ $$ajournal
000884825 980__ $$aVDB
000884825 980__ $$aUNRESTRICTED
000884825 980__ $$aI:(DE-Juel1)PGI-2-20110106
000884825 9801_ $$aFullTexts
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.69.062320
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.7.054020
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevApplied.10.034040
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1361-6633/aa7e1a
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.92.052306
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.79.032317
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/11/8/083017
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nphys1733
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/s41534-016-0004-0
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.110.243604
000884825 999C5 $$1S. Richer$$2Crossref$$oS. Richer 2013$$y2013
000884825 999C5 $$1J. M. Gambetta$$2Crossref$$oJ. M. Gambetta Lecture Notes of the 44th IFF Spring School, Quantum Information Processing 2013$$tLecture Notes of the 44th IFF Spring School, Quantum Information Processing$$y2013
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.101.052308
000884825 999C5 $$1A. Peres$$2Crossref$$oA. Peres Quantum Theory: Concepts and Methods 1993$$tQuantum Theory: Concepts and Methods$$y1993
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.76.012325
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.85.042321
000884825 999C5 $$1D. Aharonov$$2Crossref$$oD. Aharonov Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing—STOC '98 1998$$tProceedings of the Thirtieth Annual ACM Symposium on Theory of Computing—STOC '98$$y1998
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4086/toc.2009.v005a011
000884825 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.4086/cjtcs.2013.008
000884825 999C5 $$1J. Watrous$$2Crossref$$9-- missing cx lookup --$$a10.1017/9781316848142$$y2018