000884846 001__ 884846
000884846 005__ 20220930130253.0
000884846 0247_ $$2doi$$a10.1016/j.jag.2020.102240
000884846 0247_ $$2Handle$$a2128/25969
000884846 0247_ $$2altmetric$$aaltmetric:92672268
000884846 0247_ $$2WOS$$aWOS:000601280500003
000884846 037__ $$aFZJ-2020-03283
000884846 041__ $$aEnglish
000884846 082__ $$a550
000884846 1001_ $$0P:(DE-Juel1)177038$$aBayat, Bagher$$b0$$eCorresponding author$$ufzj
000884846 245__ $$aToward operational validation systems for global satellite-based terrestrial essential climate variables
000884846 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2020
000884846 3367_ $$2DRIVER$$aarticle
000884846 3367_ $$2DataCite$$aOutput Types/Journal article
000884846 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1603785097_19269
000884846 3367_ $$2BibTeX$$aARTICLE
000884846 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884846 3367_ $$00$$2EndNote$$aJournal Article
000884846 520__ $$aTerrestrial Essential Climate Variables, known as terrestrial ECVs, are key sources of information for both application- and scientific- oriented research. A large number of global terrestrial ECV products have been derived from satellite observations, and more are forthcoming. To unlock the full potential of these products, end-users need to know their uncertainties and error magnitudes. Due to the lack of conformity among validation strategies, a wide range of validation approaches have been employed to assess the quality of these products, and have resulted in reduced comparability even for the same terrestrial ECV. Addressing this challenge in validation practices requires the use of unified, standard, publicly available, traceable and objective validation procedures that are operational for all products of a specific terrestrial ECV, and preferably also applicable for all ECVs at the global scale. This can allow end-users to perform comparative assessments. To this end, the current study aims to investigate the readiness status of a selected group of seven global long-term satellite-based terrestrial ECVs for operational validation. Selected variables are Leaf Area Index (LAI), Land Surface Temperature (LST), Evapotranspiration (ET), Soil Moisture (SM), Albedo, the fraction of Absorbed Photosynthetically Active Radiation (fAPAR), and Land Cover (LC). For each of these terrestrial ECVs, we reviewed key prerequisites and primary tools [notably, long term global product availability, globally distributed in situ measurement availability, a validation good practice protocol, and an online validation platform] required for developing an operational validation system. With respect to the “readiness level”, the investigation results demonstrate that LAI, SM, and LC are at the highest level of readiness for moving toward a full operational validation at the global scale. However, ET is at the lowest level of readiness, mainly due to the lack of standard validation good practice protocol and lack of a pilot online validation platform. The remainder of the selected terrestrial ECVs are identified to be at mid-level readiness, mainly because either a validation platform (i.e., LST and albedo) or good practice protocol (i.e., fAPAR) still needs to be developed. This review can pave the way for open-access, traceable, transparent, and operational validation procedures of satellite-based global terrestrial ECVs.
000884846 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000884846 588__ $$aDataset connected to CrossRef
000884846 65027 $$0V:(DE-MLZ)SciArea-140$$2V:(DE-HGF)$$aGeosciences$$x0
000884846 7001_ $$0P:(DE-HGF)0$$aCamacho, Fernando$$b1
000884846 7001_ $$0P:(DE-HGF)0$$aNickeson, Jaime$$b2
000884846 7001_ $$0P:(DE-HGF)0$$aCosh, Michael$$b3
000884846 7001_ $$0P:(DE-HGF)0$$aBolten, John$$b4
000884846 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b5$$ufzj
000884846 7001_ $$0P:(DE-Juel1)129506$$aMontzka, Carsten$$b6$$ufzj
000884846 773__ $$0PERI:(DE-600)2097960-5$$a10.1016/j.jag.2020.102240$$gVol. 95, p. 102240 -$$p102240 -$$tInternational journal of applied earth observation and geoinformation$$v95$$x0303-2434$$y2020
000884846 8564_ $$uhttps://juser.fz-juelich.de/record/884846/files/Invoice_OAD0000072140.pdf
000884846 8564_ $$uhttps://juser.fz-juelich.de/record/884846/files/1-s2.0-S0303243420308837-main.pdf$$yOpenAccess
000884846 8564_ $$uhttps://juser.fz-juelich.de/record/884846/files/Invoice_OAD0000072140.pdf?subformat=pdfa$$xpdfa
000884846 8564_ $$uhttps://juser.fz-juelich.de/record/884846/files/1-s2.0-S0303243420308837-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884846 8767_ $$8OAD0000072140$$92020-09-30$$d2020-10-06$$eAPC$$jZahlung erfolgt$$pS0303243420308837$$zJournal flipped to gold at the beginning of 2020 / Belegnr. 1200157844
000884846 909CO $$ooai:juser.fz-juelich.de:884846$$popenCost$$pVDB$$pVDB:Earth_Environment$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000884846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177038$$aForschungszentrum Jülich$$b0$$kFZJ
000884846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b5$$kFZJ
000884846 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129506$$aForschungszentrum Jülich$$b6$$kFZJ
000884846 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000884846 9141_ $$y2020
000884846 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000884846 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884846 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINT J APPL EARTH OBS : 2018$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884846 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000884846 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000884846 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000884846 980__ $$ajournal
000884846 980__ $$aVDB
000884846 980__ $$aUNRESTRICTED
000884846 980__ $$aI:(DE-Juel1)IBG-3-20101118
000884846 980__ $$aAPC
000884846 9801_ $$aAPC
000884846 9801_ $$aFullTexts