001     884850
005     20240711085553.0
024 7 _ |a 10.1088/1741-4326/aba336
|2 doi
024 7 _ |a 0029-5515
|2 ISSN
024 7 _ |a 1741-4326
|2 ISSN
024 7 _ |a 2128/25796
|2 Handle
024 7 _ |a altmetric:91103852
|2 altmetric
024 7 _ |a WOS:000575506800001
|2 WOS
037 _ _ |a FZJ-2020-03287
082 _ _ |a 620
100 1 _ |a Emmerich, Thomas
|0 0000-0001-8521-3141
|b 0
|e Corresponding author
245 _ _ |a Development progress of coating first wall components with functionally graded W/EUROFER layers on laboratory scale
260 _ _ |a Vienna
|c 2020
|b IAEA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601553546_20960
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the course of developing functionally graded tungsten/steel-layer systems as protective coatings for the first wall (FW) of future fusion reactors, an overview of the results attained so far is given. This includes the determined parameters for creating such systems by vacuum plasma spraying on a laboratory scale and the achieved material properties determined in previous works. To realize the coating of future full scale FWs as well, the coating process is adapted to larger coating areas in the form of mock-ups. For such components, special attention needs to be paid to the challenges of the limited temperature window during coating to achieve good coating adhesion, whilst avoiding exceeding the tempering temperature of the steel. One successfully coated mock-up is also exposed to fusion-relevant heat loads in HELOKA (Helium Loop Karlsruhe) to evaluate the coating system behavior and verify its durability. Finally, for even larger components the coating design and process are further optimized, supported by finite element simulations.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Qu, Dandan
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Ghidersa, Bradut-Eugen
|0 0000-0002-7863-6290
|b 2
700 1 _ |a Lux, Martin
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Rey, Jörg
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 5
700 1 _ |a Aktaa, Jarir
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1088/1741-4326/aba336
|g Vol. 60, no. 12, p. 126004 -
|0 PERI:(DE-600)2037980-8
|n 12
|p 126004 -
|t Nuclear fusion
|v 60
|y 2020
|x 1741-4326
856 4 _ |u https://juser.fz-juelich.de/record/884850/files/Emmerich_2020_Nucl._Fusion_60_126004-1.pdf
|y Restricted
856 4 _ |y Published on 2020-09-22. Available in OpenAccess from 2021-09-22.
|u https://juser.fz-juelich.de/record/884850/files/Development%20progress%20of%20FGM%20W_EuFE_TE2020.03.pdf
856 4 _ |y Published on 2020-09-22. Available in OpenAccess from 2021-09-22.
|x pdfa
|u https://juser.fz-juelich.de/record/884850/files/Development%20progress%20of%20FGM%20W_EuFE_TE2020.03.pdf?subformat=pdfa
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/884850/files/Emmerich_2020_Nucl._Fusion_60_126004-1.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:884850
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-18
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NUCL FUSION : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-18
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-18
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
|d 2020-01-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2020-01-18
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21