000884852 001__ 884852
000884852 005__ 20210315194506.0
000884852 0247_ $$2doi$$a10.1103/PhysRevResearch.2.033401
000884852 0247_ $$2Handle$$a2128/25808
000884852 0247_ $$2altmetric$$aaltmetric:90067472
000884852 0247_ $$2WOS$$aWOS:000604182200001
000884852 037__ $$aFZJ-2020-03289
000884852 082__ $$a530
000884852 1001_ $$0P:(DE-Juel1)178993$$aGo, Dongwook$$b0$$eCorresponding author$$ufzj
000884852 245__ $$aTheory of current-induced angular momentum transfer dynamics in spin-orbit coupled systems
000884852 260__ $$aCollege Park, MD$$bAPS$$c2020
000884852 3367_ $$2DRIVER$$aarticle
000884852 3367_ $$2DataCite$$aOutput Types/Journal article
000884852 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1615812161_29418
000884852 3367_ $$2BibTeX$$aARTICLE
000884852 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884852 3367_ $$00$$2EndNote$$aJournal Article
000884852 520__ $$aMotivated by the importance of understanding various competing mechanisms to the current-induced spin-orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum between different degrees of freedom, achieved in a steady state under an applied external electric field. We then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. We evaluate the sources of torque using density functional theory, effectively capturing the impact of the electronic structure on these quantities. We apply our formalism to two different magnetic bilayers, Fe/W(110) and Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of the nonmagnetic substrate. Thus, the effective spin Hall angles for the total torque are negative and positive in the two systems. Our prediction can be experimentally identified in moderately clean samples, where intrinsic contributions dominate. This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics in spin-orbit coupled systems as it goes beyond the “spin current picture” by naturally incorporating the spin and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the ferromagnet are not negligible in both material systems.
000884852 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000884852 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x1
000884852 536__ $$0G:(DE-Juel1)jiff40_20190501$$aTopological transport in real materials from ab initio (jiff40_20190501)$$cjiff40_20190501$$fTopological transport in real materials from ab initio$$x2
000884852 588__ $$aDataset connected to CrossRef
000884852 7001_ $$0P:(DE-Juel1)130643$$aFreimuth, Frank$$b1$$ufzj
000884852 7001_ $$0P:(DE-Juel1)161179$$aHanke, Jan-Philipp$$b2
000884852 7001_ $$00000-0002-1737-2332$$aXue, Fei$$b3
000884852 7001_ $$0P:(DE-HGF)0$$aGomonay, Olena$$b4
000884852 7001_ $$00000-0001-6269-2266$$aLee, Kyung-Jin$$b5
000884852 7001_ $$0P:(DE-Juel1)130548$$aBlügel, Stefan$$b6$$ufzj
000884852 7001_ $$0P:(DE-HGF)0$$aHaney, Paul M.$$b7$$eCorresponding author
000884852 7001_ $$0P:(DE-HGF)0$$aLee, Hyun-Woo$$b8
000884852 7001_ $$0P:(DE-Juel1)130848$$aMokrousov, Yuriy$$b9$$eCorresponding author$$ufzj
000884852 773__ $$0PERI:(DE-600)3004165-X$$a10.1103/PhysRevResearch.2.033401$$gVol. 2, no. 3, p. 033401$$n3$$p033401$$tPhysical review research$$v2$$x2643-1564$$y2020
000884852 8564_ $$uhttps://juser.fz-juelich.de/record/884852/files/PhysRevResearch.2.033401.pdf$$yOpenAccess
000884852 8564_ $$uhttps://juser.fz-juelich.de/record/884852/files/PhysRevResearch.2.033401.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884852 909CO $$ooai:juser.fz-juelich.de:884852$$popen_access$$popenaire$$pdnbdelivery$$pdriver$$pVDB
000884852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178993$$aForschungszentrum Jülich$$b0$$kFZJ
000884852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130643$$aForschungszentrum Jülich$$b1$$kFZJ
000884852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161179$$aForschungszentrum Jülich$$b2$$kFZJ
000884852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b6$$kFZJ
000884852 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130848$$aForschungszentrum Jülich$$b9$$kFZJ
000884852 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000884852 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000884852 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000884852 9141_ $$y2020
000884852 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884852 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884852 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000884852 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000884852 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000884852 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000884852 980__ $$ajournal
000884852 980__ $$aVDB
000884852 980__ $$aI:(DE-Juel1)IAS-1-20090406
000884852 980__ $$aI:(DE-Juel1)PGI-1-20110106
000884852 980__ $$aI:(DE-82)080009_20140620
000884852 980__ $$aI:(DE-82)080012_20140620
000884852 980__ $$aUNRESTRICTED
000884852 9801_ $$aFullTexts