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Theory of current-induced angular momentum transfer dynamics in spin-orbit coupled systems
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Motivated by the importance of understanding various competing mechanisms to the current-induced spin-
orbit torque on magnetization in complex magnets, we develop a theory of current-induced spin-orbital coupled
dynamics in magnetic heterostructures. The theory describes angular momentum transfer between different
degrees of freedom in solids, e.g., the electron orbital and spin, the crystal lattice, and the magnetic order
parameter. Based on the continuity equations for the spin and orbital angular momenta, we derive equations
of motion that relate spin and orbital current fluxes and torques describing the transfer of angular momentum
between different degrees of freedom, achieved in a steady state under an applied external electric field. We
then propose a classification scheme for the mechanisms of the current-induced torque in magnetic bilayers. We
evaluate the sources of torque using density functional theory, effectively capturing the impact of the electronic
structure on these quantities. We apply our formalism to two different magnetic bilayers, Fe/W(110) and
Ni/W(110), which are chosen such that the orbital and spin Hall effects in W have opposite sign and the resulting
spin- and orbital-mediated torques can compete with each other. We find that while the spin torque arising
from the spin Hall effect of W is the dominant mechanism of the current-induced torque in Fe/W(110), the
dominant mechanism in Ni/W(110) is the orbital torque originating in the orbital Hall effect of the nonmagnetic
substrate. Thus, the effective spin Hall angles for the total torque are negative and positive in the two systems. Our
prediction can be experimentally identified in moderately clean samples, where intrinsic contributions dominate.
This clearly demonstrates that our formalism is ideal for studying the angular momentum transfer dynamics
in spin-orbit coupled systems as it goes beyond the “spin current picture” by naturally incorporating the spin
and orbital degrees of freedom on an equal footing. Our calculations reveal that, in addition to the spin and
orbital torque, other contributions such as the interfacial torque and self-induced anomalous torque within the
ferromagnet are not negligible in both material systems.
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I. INTRODUCTION

Spin-orbit coupling plays a central role in a plethora of
phenomena occurring in magnetic multilayers [1]. Current-
induced spin-orbit torque is one of the most important
examples, and is a workhorse in the field of spintronics
[2,3]. In contrast to spin-transfer torque in spin valve struc-
tures, a device utilizing spin-orbit torque does not require
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an extra ferromagnetic layer to create spin polarized current.
Instead, nonequilibrium spin currents and spin densities are
generated in nonmagnetic materials due to spin-orbit cou-
pling. The magnitude of spin-obit torque can be sufficient
to induce magnetic switching, as demonstrated in magnetic
bilayers consisting of a nonmagnet and a ferromagnet [4-8].
Spin-orbit torque also enables fast current-induced magnetic
domain wall motion [9-12]. Several microscopic mechanisms
of current-induced spin-orbit torque have been proposed.
However, quantification of the individual contributions is
challenging both theoretically and experimentally. Moreover,
our understanding of the phenomenon based on the properties
of the electronic structure is rather unsatisfactory yet.

In this work, we examine the fundamental physical nature
of spin-orbit torque in view of angular momentum exchange
between different interacting degrees of freedom in solids.
The possible channels for angular momentum transfer among
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FIG. 1. Interactions between angular-momentum-carrying de-
grees of freedom in solids: spin and orbital of the electron, the crystal
lattice, and the local magnetic moment. Orange arrows indicate mi-
croscopic interactions by which angular momentum is exchanged:
the spin-orbit coupling for interaction between the spin and orbital
momenta of an electron, crystal field potential for the interaction
between the lattice and the orbital angular momentum of the elec-
tron, and exchange interaction for the interaction between the local
magnetic moment and the spin of the electron.

these degrees of freedom are schematically shown in Fig. 1.
It is conceptually important to separate (i) angular momen-
tum carried by a conduction electron, encoded in its orbital
and spin parts of the wave function, (ii) mechanical angular
momentum of the lattice, and (iii) spin angular momentum
encoded into the local magnetic moment emerging as a result
of magnetic ordering. While spin-orbit coupling mediates an
angular momentum transfer between spin and orbital degrees
of the electron, the crystal field potential leads to an orbital an-
gular momentum transfer between the electron and the lattice,
while the exchange interaction enables spin transfer between
the conduction electron’s spin and local magnetic moment.
In its most elemental definition, the spin-orbit torque is un-
derstood as an angular momentum flow from the surrounding
lattice to the local magnetic moment—a process which is
mediated by spin-orbit entangled electrons.

Depending on the specifics of a particular angular momen-
tum exchange transfer channel, which takes place in different
parts of the solid, e.g., in the bulk or at the interface, we
can understand various competing mechanisms in nonuniform
magnetic heterostructures in an unified manner. Here, we
choose to consider a nonmagnet/ferromagnet bilayer geom-
etry, which is most widely studied in experiments. In this case
we can classify the current-induced torque into four differ-
ent mechanisms (Fig. 2). The classification is based on two
independent criteria: (1) the spatial origin of the spin-orbit
interaction, and (2) the spatial origin of the current responsible
for the angular momentum generation, which is absorbed by
the magnetization.

The spin Hall effect arising from the nonmagnet is consid-
ered to be one of the main mechanisms for generating a torque
on the magnetization of the ferromagnet (upper left panel in

Fig. 2) [5,6]. The spin Hall conductivity of the nonmagnet is
often assumed to be a bulk property, and the spin injection
and resulting torque generation on the local magnetic moment
is explained by the theory of the spin-transfer torque [13,14].
We denote this contribution due to spin injection from the non-
magnet as a spin torque. As a competing mechanism, the spin-
orbit coupling at the nonmagnet/ferromagnet interface has
been intensively investigated [15-23]. Since the Rashba-type
interfacial states are formed at the nonmagnet/ferromagnet in-
terface due to broken inversion symmetry [24-26], scattering
of electrons from the interface leads to finite spin density and
current [22,23], which interacts with and exerts a torque on the
local magnetic moments of the ferromagnet (upper right panel
in Fig. 2). We denote this contribution as interfacial torque.
We remark that our definition of the interfacial torque is
restricted rather than general. For example, our definition ne-
glects an effect of the current flowing in the nonmagnet in the
proximity of the interface. The definition agrees with the pic-
ture that spin-orbit effects in the ferromagnet originate in the
proximity-induced spin-orbit coupling from the nonmagnet.

While the role of spin-orbit coupling in the ferromagnet
has been considered to be negligible as compared to that of
the spin-orbit coupling in the nonmagnet, which usually com-
prises heavy atomic species, it has been found that spin-orbit
coupling in the ferromagnet can induce a sizable amount of
self-induced torque by the generation of the intrinsic spin cur-
rent, e.g., via the spin Hall effect [27-29]. The corresponding
torque contribution is called the anomalous torque in analogy
to the anomalous Hall effect in ferromagnets [28]. When
inversion symmetry is present in a stand-alone ferromagnet,
the net anomalous torque sums to zero. However, in the
nonmagnet/ferromagnet bilayer, where the inversion symme-
try is broken at the interface, the anomalous torque may exert
a finite torque (lower right panel in Fig. 2), comparable to
the spin torque and interfacial torque. The above mechanisms
(spin torque, interfacial torque, and anomalous torque) arise
from spin-dependent scattering in the bulk or at the interface,
and rely on the concept of spin current or spin density.

Recently, a mechanism of the torque generation based on
orbital angular momentum injection has been proposed [30].
This mechanism is fundamentally different from the other
mechanisms in that it requires the consideration of the orbital
part of the electron’s angular momentum, rather than its spin.
Called the orbital torque (lower left panel of Fig. 2), the orbital
angular momentum generated from the nonmagnet, e.g., by
the orbital Hall effect [31-34], is transferred to the local mag-
netic moment, which is mediated by the spin-orbit coupling
in the ferromagnet. We remark that the orbital Hall effect can
be gigantic [31,32] and its mechanism is independent of the
spin-orbit coupling [33,34].

Manifestly, all of the above mentioned mechanisms predict
same symmetry of the current-induced torque, which greatly
complicates the analysis of the experiments. Since previous
theoretical models have been developed assuming a restricted
setup and evaluated only specific contributions to the torque
[22,27], it is difficult to compare magnitudes of different
contributions directly. However, first-principles approaches
often evaluate the total torque from linear response theory
[35-40], which also makes it difficult to assess contributions
by different mechanisms quantitatively. Thus, it is necessary
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FIG. 2. Classification of the mechanisms of the current-induced torque. The row represents the origin of spin-orbit coupling (SOC) in
either the nonmagnet (NM) or in the ferromagnet (FM). The column represents the locality of the torque: i.e., whether the torque acting on the
FM originates from the electrical current flowing in the NM (nonlocal) or in the FM itself (local). The red arrows represent the spin, and the
blue arrows represent the orbital angular momentum. The local magnetic moment is represented with a big yellow arrow.

to develop an unified theory within which different mecha-
nisms of the current-induced torque are classified and can be
separately evaluated for a given system. This would bridge
the gap between the theoretical pictures set up by models and
first-principles calculations of real materials. The main diffi-
culty here lies in the nonlocality of magnetoelectric coupling
[41,42] and different sources of the spin-orbit coupling.

The orbital torque mechanism [30] is highly nonlocal in
nature, with the orbital current converted into spin current in
the ferromagnet. In view of the existing analysis based on the
spin current, the orbital torque mechanism appears abnormal
as the spin current seems to emerge out of nowhere, while
in fact it originates in the orbital current. This implies that
tracing only the spin current inevitably fails to describe the
orbital torque. In general, spin is not conserved in the presence
of spin-orbit coupling, and the spin current does not directly
correspond to the spin accumulation or torque on the local
magnetic moment [43]. However, it is important to realize that
the angular momentum of the spin is not simply lost. Instead,
it is transferred to other degrees of freedom. Therefore, in our
theory, we track not only the flow of spin but also the flow of
orbital angular momentum, as well as their interactions with
other degrees of freedom in solids, such as the crystal lattice
and local magnetic moment. Detailed analysis of the transfer
of angular momentum between these channels provides a
long-sought insight into the microscopic nature of different
competing mechanisms of current-induced torque.

Recent theories imply that the current-induced dynamics
and spin transport in the presence of spin-orbit coupling origi-
nate in the orbital degrees of freedom [32,33]. For example,

while the orbital Hall effect occurs regardless of the spin-
orbit coupling, the spin Hall effect is a consequence of the
orbital Hall effect by virtue of the spin-orbit coupling [33].
Depending on the correlation (or relative orientation) between
the spin and orbital angular momentum, the relative sign of the
orbital Hall effect and spin Hall effect may be the same or op-
posite, following Hund’s rule behavior [32,33]. In this sense,
the orbital Hall effect can be considered as a precursor to
the spin Hall effect. Another example is a Rashba-type state,
which is responsible for the interfacial torque generation. It is
well known that the Rashba state originates in a chiral orbital
angular momentum texture [44—46]. Such an orbital Rashba
effect persists even in the absence of spin-orbit coupling,
which induces current-induced orbital dynamics and transport
[47,48]. Through spin-orbit coupling, the orbital Rashba state
couples to the spin and the spin texture emerges, thus leading
to spin dynamics.

In general, such a hierarchy is expected to be a rather uni-
versal feature. The reason is the following: in the microscopic
Hamiltonian of the electrons in solids, the spin cannot interact
with an external electric field unless the spin-orbit coupling is
present. However, the orbital degree of freedom, originating in
the real-space charge distribution, directly couples to an exter-
nal electric field (see Fig. 1). Hence, under the perturbation by
an external electric field, the orbital dynamics is expected to
occur prior to the spin dynamics regardless of the spin-orbit
coupling, and the spin dynamics becomes correlated with the
orbital dynamics due to the spin-orbit coupling. We emphasize
that the precedence of orbital-related phenomena to spin-
related phenomena is a fundamental concept in orbitronics.
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An exception to this picture is a noncollinear magnet,
where orbital angular momentum is associated with the spin
chirality [49-51] or density of topological charge [51,52].
Here, spin and orbital momenta may interact even without
relativistic spin-orbit coupling [53]. Although such chiral or
topological orbital angular momentum exhibits exotic dy-
namic phenomena associated with complex spin structures
[54,55], we leave this case to future work.

The manuscript is organized as follows. In Sec. II, we
develop a theoretical formalism that describes angular mo-
mentum transfer between the spin and the orbital angular
momentum of the electron, lattice, and local magnetic mo-
ment in steady state under an external electric field. This
formalism is based on the continuity equations for the spin
and orbital angular momentum of the electron, which was
outlined in Ref. [56]. In Sec. IIl, we present the result
of first-principles calculation on two real material systems:
Fe/W(110) and Ni/W(110), which are carefully chosen with
the expectation that the spin torque and orbital torque have
an opposite sign in these bilayers. We show that the current-
induced torque is dominated by spin torque and orbital torque
contributions in Fe/W(110) and Ni/W(110), respectively,
which leads to opposite effective spin Hall angles for these
systems. This peculiar result is due to a positive sign of
the orbital Hall conductivity in W and pronounced spin-
orbit correlation in Ni. In Sec. IV, we further discuss the
disentangling of the various mechanisms of current-induced
torque and comment on several issues of orbital transport
and dynamics. This includes similarity and difference be-
tween the orbital current and spin current, and implications
on experiments. Finally, Sec. V summarizes and concludes the

paper.

II. THEORETICAL FORMALISM
A. Overview

In this section, we start from the effective single-particle
Hamiltonian to separately define the spin-orbit coupling,
the crystal field potential, and the exchange interaction,
which is adapted for the density functional theory framework
(Sec. IIB). Then we derive the continuity equations for the
spin and orbital angular momentum in Sec. II C. In the conti-
nuity equations, rates for the changes of the spin and orbital
angular momentum are captured by the influxes of the spin
and orbital angular momentum as well as torques describing
the angular momentum transfer between different degrees of
freedom. To evaluate individual contributions appearing in the
continuity equations under an external electric field, we con-
sider interband and intraband contributions within the Kubo
formula (Sec. II D). However, we point out that the interband
contribution does not satisfy the stationary condition in the
steady state (Sec. IIE). To resolve this problem, we pro-
pose a balance-type equation that describe a relation between
the interband and intraband contributions in the steady state,
which we call the interband-intraband correspondence. The
application of the interband-intraband correspondence to the
continuity equations of the spin and orbital angular momen-
tum leads to the equations of motion (Sec. Il F), which is the
main result of this section.

B. Effective single-particle Hamiltonian

Within the effective single-particle description, such as the
Kohn-Sham treatment within the density functional theory, the
general electronic Hamiltonian in a solid is formally written as

2
H = /d3r\IJT(r)|:p— + Veff(r)] W(r), (D
21’)10

where W(r) and U (r) are electron annihilation and creation
field operators in the second quantization representation, re-
spectively. Here, p = —iiV, is the momentum operator, &
is the reduced Plank constant, and mj is the electron mass.
The effective single-particle potential V. (r) can be divided
into the spin-orbit coupling Vso(r), the exchange interaction
Vxc(r), and the crystal field potential Veg(r):

Vert (r) = Vso(r) + Vxc(r) + Ver(r). (2)

We define Vg (r) such that it is independent of the spin. The
spin-orbit coupling and exchange interaction are explicitly
written as

Vso(r) = Bo - VVcr(r) x p, 3)

Vxc(r) = upSxc(r) - o, 4

respectively. Here, ¢ is the vector of the Pauli matrices repre-
senting the spin, B = /i/4m3c? with the speed of light ¢, up is
the Bohr magneton, and x¢(r) is an effective magnetic field
caused by the exchange interaction. We construct Vso(r) by
neglecting Vxc(r) as an approximation. Note that the degrees
of freedom of the lattice and the local magnetic moment are
implicitly included in this description, entering as coordinates
in the respective potentials Vxc(r) and Vcg(r). In the evalu-
ation of operators we use symmetrized representations such
that the hermiticity is kept in the numerical implementation.
However, we present nonsymmetrized forms throughout the
paper for notational brevity.

C. Continuity equations for spin and orbital angular momenta

The continuity equations for spin and orbital angular
momentum have been introduced by Haney and Stiles in
Ref. [56]. Here, we derive the expression adapted for the
first-principles calculation based on the density functional
theory, starting from the general single particle Hamiltonian
[Egs. (1) and (2)]. In the Heisenberg picture (indicated by the
hat symbol below), we define the orbital angular momentum
and spin density operators as

Ie,t) =9, HOLY(x, 1), (5a)
8(r,t) = U'i(r, )SW(r, 1). (5b)

While the spin S is represented by the vector of the Pauli
matrices S = (%i/2)o, evaluation of the orbital angular mo-
mentum is nontrivial in periodic solids because the position
r is ill-defined under periodic boundary conditions. Nonethe-
less, we can calculate the orbital angular momentum with
respect to the atomic spheres called muffin tins centered at
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the positions of the atoms:
L=Y L.
m

L, =0®R, —r,), xp).

(6a)

(6b)

Here, ®(x) is the Heaviside step function, p is the index of
an atom in the unit cell whose center is located at 7, r,, =
r — 7, is the displacement from the atom center, and R/, is the
radius of the muffin tin. This method is called atom-centered
approximation, and it gives a reliable result when orbital
currents are associated with partially occupied d or f shells,
which are localized around atomic centers. Thus, the usage
of the atom-centered approximation is justified in magnetic
bilayers consisting of transition metal elements, Fe/W(110)
and Ni/W(110), which are in the focus of our study. Under
the atom-centered approximation, the size of the region in real
space which gives rise to the orbital angular moment is smaller
than that of a wave packet, thus the orbital can be treated
as an internal degree of freedom, similar to the spin (see
Sec. IV B for the discussion). However, the atom-centered
approximation neglects contributions from nonlocal currents,
e.g., in Chern insulators and noncollinear magnets [57], and
ultimately one should resort to the modern theory of orbital
magnetization [58-60].

For the orbital angular momentum and spin densities de-
fined in Eq. (5), we can derive continuity equations from the
Heisenberg equations of motion. These are formally written
as

Ao(r,t) 1 - .
YR E[la(r, 1), H(@)]
==V, - QM(r,t)+ T™(r,1), (7a)
o (r,0) 1 .
T - lfl [Sa(r, t)a H(t)]
=V, - Q%(r, 1)+ T5%(r, 1), (7b)
where o = x, y, z. Here,
Ql(r,t) = W (r, 1){Lo, v}¥(r, 1), (8a)
Q% (r.1) = 3U7(x, 1){Sa. v} (r. 1), (8b)

are orbital and spin current operators, respectively, where
il
v=—(VE = V})+ Bo x V. Vcr(r) ©)
2m0
is the velocity operator (VL and V¥ act on the left and on the
right, respectively), and

TV (r, 1) = %‘iﬁ(r, DIL, Ve (01 (r, 1), (10a)
l

S(r,1) = %‘jﬁ(r, OIS, Verr (0)1¥ (x, 1) (10b)
are torque operators for the orbital angular momentum and
spin, respectively.

The appearance of the torques in Eq. (7) signals the fact
that the orbital angular momentum and spin are not conserved.
This implies that the angular momentum is transferred from
the electron to other degrees of freedom as described in Fig. 1.
The electrons exchange orbital angular momentum with the

lattice and with the electron’s spin via the crystal field poten-
tial Vep(r) and spin-orbit potential Vgo(r), respectively. Thus,
the torque acting on the orbital angular momentum of the
electron is decomposed as

TV(r, 1) = Th(r, 1) + T (r, 1), (11)

where
. 1. A
To(r, 1) = ﬁ‘w(l‘, DL, Vep(r) + Vxe (M)W (r, 1), (12)

To(r,1) = %\iﬁ(r, DOIL, Voo (r,1).  (13)
We denote T (r, ) as the crystal field torque and T (r,t)
as the spin-orbital torque. Note that we included the effect
of Vxc(r) in the definition of the crystal field torque, as it
contains nonspherical component in general. Meanwhile, the
electron exchanges the spin angular momentum with the local
magnetic moment and the electron’s orbital angular momen-
tum via Vxc(r) and Vso(r), respectively. Thus, the torque
acting on the electron’s spin can be decomposed as

T8(r,1) = T5-(r, 1) + TS (v, 1), (14)
where
. 1. .
T(r,t) = Eqﬁ(r, OIS, Vxe (@)W (r, 1), (15)
. 1 .. .
T8 (r, 1) = ﬁlll'(r, D[S, Vso(m)]¥(r, 1). (16)

We denote 7:3.(r, 1) as the exchange torque and TS, (r, 1) as
the spin-orbital torque. Note that TS'E)(r, t)and Tsso(r, t) differ,
and we specify them as the spin-orbital torques acting on the
orbital and spin, respectively.

We have a few remarks on the different torques and
their definitions. In the absence of the spin-orbit coupling,
the spin-orbital torques vanish. Thus, in a steady state,
where (93, (r,1)/0t) = 0, Eq. (7b) becomes (T)fé(r)) =V,
(Q%«(r)). Here, (---) represents expectation value in the
steady state. This implies that the spin current divergence
is absorbed by the local magnetic moment. Thus, this cor-
responds to the spin-transfer torque in the absence of the
spin-orbit coupling. If we consider the opposite situation
where the spin current flux is absent, occurring, e.g., in atomi-
cally thin magnetic films, where the spin current effect can be
neglected along the perpendicular direction to the film plane,
Eq. (7b) becomes (T;gj(r)) = —(TSSC“; (r)). Thus, the exchange
torque amounts to the spin-orbital torque. This is related to the
widely used terminology, spin-orbit torque [15]. However, in
our terminology, the net torque acting on the local magnetic
moment is the exchange torque, which may differ from the
spin-orbital torque due to the presence of the spin current flux.
In general, both the spin current flux and spin-orbital torque
contribute to the exchange torque.

We obtain additional insight from explicitly evaluating the
torques in a simplified situation. Let us first consider the
exchange torque. By using Eqs. (4) and (15), the exchange
torque can be written as

Tec(r,t) = pp¥i(r, o x Lxc¥(r,1)  (17)
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in general. Thus, it describes a precession of the spin with
respect to the direction of the exchange field. Meanwhile, by
using Egs. (3) and (16), the spin-orbital torque acting on the
spin is formally written as

78 (v, 1) = pUT(r, 1)o x [V Ver(r) x pH¥(r,1). (18)

Since it depends on the spatial gradient of Vcg(r), the
dominant contribution to it is concentrated near the atom
centers, where Vcp(r) is almost spherical. Thus, within
the muffin tins, we can approximately write V Vcgp(r) =
>, ORy — r)[8Ver(r,,)/dr,,]. Within this approximation

Vso(r) ~ Y Wi(r, )€ ()L, - o1¥(r, ). (19)
)z

Thus, the spin-orbital torque becomes

T8, 1) ~ Y &, (r) (L, x 0), (20)
"
where
_ B adVee(ry)
Eulry) = e dr 1)

is the strength of the spin-orbit coupling for the pth atom.
Therefore, Eq. (20) indicates that the spin-orbital torque
describes a mutual precession between the orbital angular
momentum and the spin. That is,

Ta(r, t) ~ =T (r, 1). (22)

While it is approximately true in most systems, we keep super-
scripts S and L separately, because TSSO(I', t) and —Tslb(r, 1)
differ in general due to nonspherical contributions to the
Vso(r) although it is small.

Meanwhile, the crystal field torque cannot be expressed in
simple terms. In general, it describes an angular momentum
transfer between the lattice and the electronic orbital angular
momentum. It originates due to the breaking of the continuous
rotation symmetry by the crystal field, which differentiates
specific directions depending on the structure of the crystal,
and leads to various anisotropic effects.

D. Kubo formula: Interband and intraband responses

The current-induced torque corresponds to the response of
the exchange torque to an electric field, [Egs. (15) and (17)].
One of the most widely used approaches for its calculation is
linear response theory, where often interband and intraband
contributions are evaluated separately. The interband contri-
bution originates in the change of a given state by a coherent
superposition of the eigenstates for a given K: in response to an
external electric field £ = £,X the periodic part of the Bloch
state |u,k) changes as

[tn) = |tnk) + |Ottnk) (23)
where

|umk) (umk| Ux(k) |unk>

) = IReds ) L Y

m#n

(24)

Here, e > 0 is the absolute value of the charge of the electron,
k is the crystal momentum, E, is the energy eigenvalue for

the periodic part of the nth Bloch state |u,x). The infinitesi-
mally small number 1 > 0O arises from the causality relation.
That is, in describing time-evolution of the state, the electric
field is adiabatically turned on from t = —oo to t = 0 by the
vector potential A(z) = —te™/"E, % such that & = —9A(¢)/dt.
As a result, the interband response of an observable O is
given by

Oy =23 fuRel (] OK) [Bu)], (25

nk

where f is the Fermi-Dirac distribution function for the state
|unk). By combining Eqgs. (24) and (25) and manipulating the
dummy indices n and m, we arrive at

(O)™" = eh& Y Y (fuk — fud)
n#m k
|:(unk| O(k) |umk> <Mmk| vx(k) |unk>
x Im ;
(Enx — Eqk + in)?

]. (26)

Here, we define O(k) = e~ *TOe* T in k-space. The inter-
band contribution in Eq. (26) is also known as the intrinsic
contribution since it depends only on the electronic structure,
the eigenstates and their energy eigenvalues in the ground
state.

Meanwhile, the intraband response arises due to a shift of
the Fermi surface by disorder scattering. The leading contri-
bution arises from the change of the occupation function:

(O™ = "(fuktak — fuk) (el O Jue) . (27)
nk

which is also referred to as Boltzmann-like contribution. Here,
Ak, = —e&;t /R is the shift of the Fermi surface caused by
the electric field £ = £,X, and 7 is the momentum relaxation
time. Up to linear order in AK,

Jukrak = fax = BAK fp (k] v (K) | (28)

where f; = 8 fu/9Ex. Thus, the intraband contribution is
written as

(O = —eEt Y fiy Cttel O L) (i v () i)

nk

(29)

Note that it is described by a single phenomenological pa-
rameter T, which is assumed to be state-independent. As
T increases, i.e., as the resistivity decreases, the intraband
contribution linearly increases. In general, the momentum
relaxation time depends on the particular state in the elec-
tronic structure. In ferromagnets, for example, it is known that
the momentum relaxation times of the majority and minority
electrons are different, which plays an important role in un-
derstanding various magnetotransport effects [61]. However,
within the approach that we pursue here, as given by Eq. (29),
we do not consider these effects.
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E. Stationary condition in the steady state

A serious problem of the linear response described by
Egs. (26) and (29) is that the stationary condition is not satis-

fied. That is,
do intra do inter
+(=2) #£o0,

— 30
dt dt (30)

where dO/dt =[O, H]/ih. Thus, the continuity equations
[Egs. (7)] are not satisfied if one naively evaluates the sum of
the interband and intraband contributions. This discrepancy is
due to the inconsistent treatment of disorder scattering, which
is only taken into account by the Fermi surface shift within
the relaxation time approximation. In general, the effect of
disorder scattering enters the equation via the self-energy
correction and vertex correction. It is known that a consistent
treatment of the self-energy and vertex corrections up to the
same order as the perturbation (which is a disorder potential
in this case) ensures that the continuity equation satisfied. This
is known as the Ward identity [62]. However, such treatment
is computationally demanding, and it requires us to assume a
specific model of the disorder potential.

Instead, we propose a remedy by finding a nontrivial rela-
tion between the interband and intraband contributions. This
allows us to evaluate the response functions given by Egs. (26)
and (29) and retain the stationary condition. We find that the
following relation holds:

l (O>intra — <

T

d inter
—O> , 31)

dt

as long as the operator O (k) does not have k-dependence. The
proof is presented in Appendix A. A physical interpretation of
Eq. (31) is the following. The right-hand side of the equation
describes intrinsic pumping of O, which depends only on
the electronic structure. The left-hand side of the equation
is related to a relaxation process, which tend to suppress
deviations from the equilibrium value of O. In the steady
state, the intrinsic pumping and the relaxation rates are equal,
thus ()" is determined by the relaxation rate . Therefore,
Eq. (31) describes a balance between a tendency to increase O
by the intrinsic process and a relaxation rate by the extrinsic
process. For the spin operator, Eq. (31) holds precisely since
it does not have k-dependence. However, the orbital angular
momentum operator [Eq. (6)] depends on k since it contains
momentum operator p, which turns into e *Tpe* ™ = p + 1k
in the k-space representation. However, the k-dependence of
the local orbital momentum is usually very small within the
atom-centered approximation as it is usually dominated by a
k-independent contribution, i.e., L(k) ~ L(0). In Secs. IIID
and IIIE, we verify that Eq. (31) is satisfied for the orbital
angular momentum with high precision, which implies that
the k = 0 contribution in L(k) dominates and determines
overall behavior of the orbital angular momentum operator
within the atom-centered approximation.

Meanwhile, the intraband contribution alone satisfies the
steady-state condition:

do intra
<E> =0 (32)

A proof of the stationary condition for the intraband
contribution is given in Appendix B. Note that for the intra-
band contribution, the stationary condition does not rely on
k-dependence of O(k), which is in contrast to the interband-
intraband correspondence [Eq. (31)]. Equations (31) and (32)
are used to derive the equations of motion below.

F. Steady-state equations of motion for spin
and orbital angular momenta

By applying the interband-intraband correspondence
[Eq. (31)] to the continuity equations [Eq. (7)], we arrive at
the following equations:

inter

1 . .
(o)™ = =V Q)™+ (T (1)

(33a)

inter
) 9

+{Tgs ()

1 : : inter
(5 (O™ = =V (Q ()™ + (TR r)] ™

+ (T ()™ (33b)
Note that the time dependence no longer appears since the
equations describe the steady state. Also, the hat symbol for
the Heisenberg picture is removed. Equation (33) relates the
current fluxes and torques of the intrinsic origin to the intra-
band accumulation of the orbital angular momentum and spin.
Application of Eq. (32) leads to constraints between intraband
contributions for the current fluxes and torques of the orbital
angular momentum and the spin:

—Vr . <QLﬂ (r)>intra + (TCLIQ; (r))intra + (TSLOﬂ (r)>imra -0
(34a)

-V, <QSB (r)>imra + <T£é(r)>intra + <TSS(§ (r)>imra —o.
(34b)

The above equations constitute equations of motion for the
spin and orbital angular momenta, which are coupled by the
spin-orbit coupling, in the steady state reached after an ex-
ternal electric field has been applied. This is one of the main
results of our work. Previous theories on the current-induced
torque have focused on evaluating linear response of the ex-
change torque [Eq. (15)] [35-39,63,64]. In contrast, Eqs. (33)
and (34) enable one to identify individual microscopic mecha-
nisms responsible for current-induced torque, as we illustrate
next.

III. FIRST-PRINCIPLES CALCULATIONS

In this section we apply the formalism presented in the
previous section to two specific systems: W /Fe and W /Ni bi-
layers. Before presenting an in-depth analysis of these systems
based on the formalism presented in the previous section, it is
useful to begin with an overview of the systems’ behavior.
The angular momentum flows that we calculate for the two
systems are illustrated schematically in Fig. 3. For the W /Fe
system, the flux of orbital angular momentum into the ferro-
magnetic layer is mostly transferred to a torque on the lattice,
while the flux of spin angular momentum is mostly transferred
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(a) Forces on slow
Influx of Ly, Sy, degrees of freedom

| Lattice torque

inter
y>

accumulation

FM layer

orbital | (@ [Qﬂ)mter

spin <¢ [sty]>i"‘”~

W/Fe

ﬁ Magnetization torque

(b) Forces on slow

Influx of Ly, S, degrees of freedom  accumulation

| Lattice torque

FM layer

orbital (<1> [Qﬂ)imer

. s inter
spin <¢ [sz >

-
W/Ni ﬁ

FIG. 3. Schematics of the angular momentum flow in (a) W/Fe
and (b) W/Ni. We note that (a) in W/Fe a torque on the magnetiza-
tion is mostly coming from the spin current influx. (b) However, in
W/Ni, there is a significant contribution of the spin-orbital torque to
the magnetization torque.

to a torque on the magnetization. This behavior is emblem-
atic of the conventional spin Hall effect combined with spin
transfer picture of spin-orbit torque in bilayer systems. The
W/Ni system exhibits qualitatively different behavior: the or-
bital angular momentum flux entering the ferromagnetic layer
contributes substantially to the torque on the magnetization,
indeed a magnitude which exceeds the contribution from the
spin current flux. In this case, the more prominent spin-orbit
coupling in Ni enables a flow of angular momentum from
orbital to spin degrees of freedom. The distinction between
W/Fe and W/Ni is evident by a different sign of the current-
induced torque on the magnetization in the two systems
(equivalently, a different sign of the effective spin Hall angle).
In the following sections we begin with a description of the
key differences in the electronic structure of the two systems
which underlie the difference in their magnetic response. We
then briefly discuss the symmetry constraints on the systems,
and finally present an in-depth analysis of the terms entering
the conservation of angular momentum in Eq. (33).

A. Motivation for choice of material systems

One of the main motivations in choosing a material system
is to find a system with dominant orbital torque behavior,
which has been elusive since the first theoretical prediction
[30], and compare it with a conventional system where the
spin torque is dominant. To do this, consider a case in which
the signs of the orbital torque and spin torque are opposite.
The sign of the net torque acting on the local magnetic mo-
ment will vary depending on whether the orbital torque is

NM F1y

W

f spin
f orbital

FIG. 4. Competition between the orbital torque and the spin
torque when the directions of the orbital Hall effect and spin Hall
effect are opposite in the nonmagnet (NM). In the ferromagnet (FM),
rotations of the angular momentum represent angular momentum
transfer to the local magnetic moment by dephasing, whose direc-
tions are opposite for the spin injection and orbital injection.

larger than the spin torque, or vice versa. This implies that
when the orbital torque is dominant over the spin torque, the
sign of the torque acting on the local moment can be opposite
to that expected from the spin torque mechanism only. This
situation can be realized either (1) when the spin Hall effect
and orbital Hall effect in the nonmagnet have opposite signs
and the spin-orbit correlation in the ferromagnet is positive
or (2) when the spin Hall effect and orbital Hall effect in
the nonmagnet have same sign and the spin-orbit correlation
in the ferromagnet is negative. The spin-orbit correlation in
the ferromagnet is important in the orbital torque mechanism
because the injected orbital angular momentum in the fer-
romagnet first couples to the spin and then exerts a torque
on the local magnetic moment. For typical 3d ferromagnets,
such as Fe, Co, and Ni, the spin-orbit correlation is expected
to be positive as d shells are more than half-filled, which
tends to align the orbital and spin angular momenta along
the same direction. Thus, we aim to achieve the case (1),
which is schematically illustrated in Fig. 4. As the directions
of the orbital Hall effect and spin Hall effect are opposite,
the angular momentum transfers (represented as the rota-
tion of the arrows in the ferromagnet in Fig. 4) are also
opposite.

One of the key features of the orbital torque mechanism is
that it relies on the spin-orbit coupling of the ferromagnet, thus
the orbital torque depends on the choice of the ferromagnet.
Although the spin-orbit coupling strength is similar for typical
3d ferromagnets such as Fe, Co, and Ni, the resulting effect
of spin-orbit coupling depends on details of the electronic
structure, such as the band structure, band filling, magnitude
of the exchange splitting, etc. This explains a noticeable dif-
ference of the spin Hall conductivities of Fe and Ni: od¢ =
519 (fi/e)(Qcm)~! and o = 1688 (fi/e)(2cm)™' [27].
Thus, even among 3d ferromagnets the effective spin-orbit
coupling strength — which incorporates not only the spin-
orbit coupling itself but also electronic structure effects —
can vary significantly. We expect that the effective spin-orbit
coupling strength is much stronger in Ni than in Fe, and we
show this by explicit calculations below.
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FIG. 5. (a) Crystal structure of ferromagnet (FM)/W(110), where FM = Fe or Ni. Side and top views are displayed on the left and right,
respectively. (b) First Brillouin zone and high symmetry points of bce(110) film. Electronic energy dispersion E, and the spin-orbit correlation
in the ferromagnet (L - S)'M for (c) Fe/W(110) and (d) Ni/W(110), which are represented by the line and color map, respectively. Note that
(L - S)™M is much more pronounced in Ni compared to Fe near the Fermi energy Er. Layer-resolved plots of the spin (blue squares) and orbital
(red stars) moments for (e) Fe/W(110) and (f) Ni/W(110). Comparing Fe/W(110) and Ni/W(110), the spin moment in Fe is much larger than
that in Ni, but the relative ratio of the orbital moment over the spin moment is much larger in Ni. This implies that the orbital degree of freedom

is not frozen in Ni/W(110), while it is quenched in Fe/W(110).

Therefore, we consider nonmagnet/ferromagnet bilayers
where the nonmagnet exhibits an opposite sign of the orbital
Hall effect and spin Hall effect, while the ferromagnet is
varied such that the strength of effective spin-orbit coupling
is controlled. These criteria lead us to the choice of Fe/W and
Ni/W bilayers. For W, the orbital Hall conductivity is by an
order of magnitude larger than the spin Hall conductivity, with
opposite sign [31]. A reason for choosing Fe and Ni as ferro-
magnets is the expectation that the orbital-to-spin conversion
efficiency of the orbital torque mechanism is much larger in
Ni than it is in Fe. Moreover, both materials can be grown epi-
taxially along the [110] direction of the body-centered cubic
(bee) structure. We denote these systems as Fe/W(110) and
Ni/W(110), respectively. Meanwhile, Fe/W(110) has been
previously studied for the anisotropic Dzyaloshinskii-Moriya
interactions for stabilizing the anti-Skyrmion [65].

Figures 5(a) and 5(b), respectively, display side and top
views of the ferromagnet/W(110) structure, where the fer-
romagnet = Fe or Ni. We consider eight layers of W and
two layers of the ferromagnet. We denote the magnetic atom
closest to the interface as Fel and Nil, while the magnetic
atom at the surface of the slab is marked as Fe2 and Ni2. For
the bce(110) stack of the W layers, we assume that the film
follows the bulk lattice parameters of the bcc W, whose lattice

constant is a = 6.028ay in the cubic unit cell convention,
where q is the Bohr radius. As a result, the distance between
the neighboring layers of W is dw.w = a/v/2 = 4.263ay.
The in-plane unit cell is of a rectangular shape, whose
length along the [001] and [110] directions are a = 6.028ag
and b = +/2a = 8.525a, respectively. The layer distances
between W-ferromagnet and ferromagnet-ferromagnet were
optimized to minimize the total energy: dw.pe = 3.825a¢ and
dpere = 3.296ay for Fe/W(110), and dw.ni = 3.607ay and
dnini = 3.301ap for Ni/W(110). We assume that the local
magnetic moment is oriented along the direction of —Z, where
Z is defined as the direction of [110]. The details of first-
principles calculation are given in Appendix C.

B. Spin-orbit correlation and orbital quenching

The calculated electronic band structures of Fe/W(110)
and Ni/W(110) are shown in Figs. 5(c) and 5(d), respectively.
On top of each energy band E,, the spin-orbit correlation in
the ferromagnet (L - S)'M is shown in color, which is defined
as

(L-Sht = Y (Wl PL-SIP [Yu) . (35)

zeFM
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Here, |,x) is the Bloch state of band n at k-point k, and
P, is the projection operator onto a layer whose index is z.
It can be seen that near the Fermi energy Ef, the spin-orbit
correlation is negligible in Fe/W(110). The hotspot of this
quantity is located about 1.0 eV below the Fermi energy,
whose effect is negligible in the steady-state transport. How-
ever, in Ni/W(110) the spin-orbit correlation is much more
pronounced for states near the Fermi energy. The positive sign
of this correlation tends to align the orbital angular momentum
and the spin in the same direction.

The difference in the spin-orbit correlation directly af-
fects the orbital moment of the ferromagnet in equilibrium.
In Figs. 5(e) and 5(f), spin and orbital magnetic moments
are plotted in each layer for Fe/W(110) and Ni/W(110),
respectively. Blue square symbols and red star symbols,
respectively, indicate the spin and orbital moments. For
Fe/W(110) [Fig. 5(e)], the magnitude of the spin moment
is large: +2.259 up and +2.856 up for Fel and Fe2, re-
spectively. However, the orbital moments of Fel and Fe2 are
small: 40.069 ug and 40.079 ug, respectively. The ratio
of the orbital moment over the spin moment is 3.06% and
2.76% for Fel and Fe2, respectively, which is fairly small.
Thus, the orbital magnetism is strongly quenched in Fe. This
implies that even though the orbital angular momentum may
be injected into Fe, i.e., by the orbital Hall effect of W, it is
likely that most of the orbital angular momentum is relaxed
to the lattice through the crystal field torque [Eq. (12)] in-
stead of being transferred to the angular momentum of the
spin through the spin-orbital torque [Eq. (13)]. Therefore, in
Fe/W(110), it is expected that the orbital torque mechanism
is not significant and the spin torque mechanism will be dom-
inant, in accordance with common expectation. Meanwhile,
we find proximity magnetism in W8 by the hybridization with
Fe, where the spin and orbital moments are —0.114 B and
—0.009 g, respectively.

In contrast to Fe/W(110), Ni atoms in Ni/W(110) exhibit
much smaller spin moment but relatively large orbital mo-
ment. The spin moments are +0.146 wg, +0.510 ug and
the orbital moments are +0.023 g, +0.070 ug for Nil and
Ni2, respectively. Remarkably, the ratio of the orbital moment
over the spin moment is 15.64% and 13.80% for Nil and
Ni2, respectively. Thus, the orbital moment is far from being
quenched in Ni. Such electronic structure, which is prone
to the formation of the orbital angular momentum, promotes
the mechanism where an orbital Hall effect-induced orbital
angular momentum can efficiently couple to the spin, resulting
in the torque on the local magnetic moment. Therefore, at
this point we expect that the orbital torque can be signifi-
cantly larger than the spin torque in Ni/W(110), leading to
the opposite effective spin Hall angle when compared to the
Fe/W(110) bilayer.

C. Symmetry constraints

Before presenting the results of first-principles calcu-
lations, we consider symmetry constraints on the electric
response of the system. We define % || [001], $ || [110], and
Z || [110], and apply an external electric field along the X
direction. We consider a situation when m = —Z, for which
the symmetry analysis reveals that only the y component is

nonzero in Eq. (33). However, for the equations of motion
of the intraband contribution [Eq. (34)], the x component is
the only nonzero component. Thus, we present the result for
a = yand 8 = x in Eqgs. (33) and (34), respectively. Details of
the symmetry analysis are given in Appendix D. The current-
induced torque on the local magnetic moment is given by

intra

™ = —(T5.)"" — (1) (36)
_ _y<T>;S‘é>imer _ f((Tg‘é)imm. (36b)

We further decompose T™ into dampinglike (7pr) and field-
like (7)) components:

T = T x (h x §) + Tppia X §
= —TDL)A' + TpLﬁ, (37)
By comparing Egs. (36b) and (37), we have

TDL _ <T).(S(‘.:>inter’ (383)
T, = —(T5)™". (38b)

Below, we present the analysis for L, and S, components of
quantities from Egs. (33a) and (33b), respectively, which is
closely related to that of the dampinglike torque. The analysis
for L, and S, from Egs. (34a) and (34b) is presented in the
Appendix E. To perform the decomposition of the computed
quantities into contributions coming from each atomic layer,
we adopt the tight-binding representation of the equations of
motion, as explained in detail in Appendix F. In the tight-
binding representation, we denote orbital and spin current
influxes, which correspond to the first terms in the right-hand
side of Egs. (7a) and (7b), as ®[Q%«] and P[Q5¢], respectively.

D. Fe/W(110)

In Fig. 6(a), spatial profiles of individual terms appearing
in Eq. (33a) are shown for L,. Note that the current influx
and torque have the same dimension, thus we omit the labels
for the current influx in the y-axes. We find that (®[Q"])inter
(blue squares) is negative near W1 and positive at W8, which
corresponds to a positive sign of the orbital Hall conductivity.

In concurrence with (<I>[Qf“‘])imer , (TCL}‘;')“‘“”r (purple diamonds)

. L Ly
appears in the opposite sign. However, (T5)™" (red stars)

is much smaller than (CIJ[Q?"])inter and (TCL}§)inter . This means
that most of the orbital current influx is absorbed by the lat-
tice. Meanwhile, the sum of (CIJ[QZL"])"‘ter and the total torque
(TLyyinter — (TSLS)"‘ter + (TCLE)"‘ter (cyan crosses), which corre-
sponds to the right-hand side of Eq. (33a), matches (Ly)intra /T
(black dashed line), which corresponds to the left-hand side
of Eq. (33a). This confirms the validity of the equation of
motion [Eq. (33a)]. Slight deviations are due to a finite 1 pa-
rameter assumed in the calculation of the interband responses
by Eq. (26) (Appendix C) and k-dependence of the orbital
angular momentum operator (Appendix A).

Analogously, spatial profiles of the individual terms ap-
pearing in Eq. (33b), related to the spin degree of freedom,
are displayed in Fig. 6(b). We remark that the responses re-
lated to spin are an order of magnitude smaller than those
related to the orbital channel in Fig. 6(a). This is natural
since the spin dynamics is caused by the orbital dynamics
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FIG. 6. Electric response (per unit cell) of L, and S, current inﬂuxes—CD[QZL"] and @[QZS"’]—and various torques—TS%, TCLlé', T2, and

SO

T)fé—arising from the interband processes and accumulation, and arising from the intraband processes (divided by 7) in Fe/W(110). Spatial
profiles for (a) orbital and (b) spin quantities at the true Fermi energy Er = E}*°. Fermi energy dependence for (c) orbital and (d) spin quantities,
summed over the ferromagnet layers (Fel and Fe2). Note that the sum of the interband responses of the orbital/spin current influx and the
total torque (T% = TSL(S + TCLl; and TS = TSS(‘) + T;& for orbital and spin, respectively) matches with the intraband response of the orbital /spin

accumulation divided by t.

that occurs first. From the sign of (CID[Qf"Dimer (light blue
squares), which is positive near W1 and negative near W8, we
conclude that the sign of the spin Hall conductivity is negative.
In Fe layers, (T)fé)imer (orange circles) is sizable, where the
exchange interaction is dominant. The overall positive sign
of (TXSE)inter in Fe layers corresponds to a negative sign of
the effective spin Hall angle. We observe a strong correla-
tion between (®[Q 1) and (TXSé)i"ter. This implies that the
spin current influx is mostly transferred to the local mag-
netic moment, which agrees with the spin torque mechanism.
Meanwhile, (TSSC‘;)““er (dark red stars) is much smaller, but not
negligible. The sum of (<I>[Qf"])i“ter and the total torque on
the spin (75 )iner — (TSS(-‘)’)illter + (T;’C')inter (green crosses), the
right-hand side of Eq. (33b), corresponds to (Sy)™"™ /7 on the
left-hand side (black dashed line).

A pronounced value of (CID[Q?"])imer near the Fe layers,
compared to its value at W1, may seem anomalous [Fig. 6(b)].
However, it can be understood by looking at (Sy)i"“"‘, which
exhibits a much more pronounced magnitude in W1 and W2,
as compared to its value in Fel and Fe2. That is, in Fel and
Fe2, the spin current is efficiently absorbed by the ferromagnet
instead of inducing the spin accumulation. The situation is
opposite in W1 and W2, where such spin current absorption
is not possible, and the spin current simply results in spin
accumulation. A similar behavior, where the spin current is
strongly enhanced near the ferromagnet interface, has been
also predicted in Co/Pt [36] and Py/Pt [66].

To understand the predicted behavior in terms of the elec-
tronic structure, we present the Fermi energy dependence of
the computed quantities in Figs. 6(c) and 6(d) for spin and
orbital channels, respectively, where a superscript FM means
that it is summed over Fel and Fe2 layers. To arrive at these
plots, we intentionally varied the Fermi energy Er from —2 eV

to +2 eV with respect to the true Fermi energy Ef"°, assuming
that the potential [Eq. (2)] remains invariant when Er changes.
For the orbital channel [Eq. (33a) and Fig. 6(c)], we observe
that (B[O ])™r (blue solid line) and (TCLg)i“ter (purple solid
line) tend to cancel each other. Meanwhile, (TSLé)inter (red
solid line) is smaller than the rest of the contributions. Thus,
most of the orbital angular momentum is transferred to the
lattice instead of the spin. We find that the equation of motion
[Eq. (33a)] is valid over the whole range of Er, where the sum
of (dD[Qf"])i“ter and (T)™e (cyan solid line) corresponds to
(L,)™2 /7 (black dashed line). The Fermi energy properties

for the spin channel [Eq. (33b)] are shown in Fig. 6(d). Here, a

strong correlation between (<I>[Qf"])i“ter (light blue solid line)
and (T;é)““er (orange solid line) can be observed. We thus

conclude that the spin torque mechanism is dominant over the

whole range of Er. At the same time, (TSSC’;)inter (dark red solid
line) is suppressed, which implies that the contribution to the
current-induced torque caused by the spin-orbit coupling in
the ferromagnet, i.e., the orbital torque and anomalous torque
mechanisms, is negligible.

To clarify the microscopic mechanism of the current-
induced torque better, we intentionally switch on and off the
spin-orbit coupling in Fe or W atoms. When spin-orbit cou-
pling is on in W and off in Fe [Fig. 7(a)], the Fermi energy

dependence of (dD[Qf"'])"““A’r (light blue solid line) perfectly
matches that of (TXSE)““er with reversed sign (orange solid
line), which supports the spin torque mechanism. However,
(Tssé)imer (dark red solid line) is essentially zero due to the
absence of spin-orbit coupling in Fe. Meanwhile, when spin-
orbit coupling is off in W and on in Fe [Fig. 7(b)], all the
responses become very small. Thus, any contribution arising
from the spin-orbit coupling of the ferromagnet (orbital torque
or anomalous torque) is negligible.
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FIG. 7. Fermi energy dependence of interband responses (per
unit cell) of the spin current influx CD[Qf’] (light blue solid line),
spin-orbital torque TSS(‘)' (dark red solid line), and exchange torque
TXSé (orange solid line), which are summed over the Fe layers in
Fe/W(110). (a) The result when spin-orbit coupling is on in W and
off in Fe, and (b) the result when spin-orbit coupling is off in W and
on in Fe.

E. Ni/W(110)

In Figs. 8(a) and 8(b) we show the plots of layer-
resolved individual terms appearing in the equation of motion
[Eq. (33)] for the y component of the orbital and spin parts, re-
spectively, in Ni/W(110). In Fig. 8(a), we find that the orbital

Hall conductivity is positive in sign according to (d>[Qf"‘])imer
(blue squares). As in the case of Fe/W(110), (@[QZL-V yinter
and (T, T )“‘ter (purple diamonds) are only different in sign,
unplylng that the orbital angular momentum is transferred
to the lattice. Thus, (T;g)imer (red stars) is much smaller.
These features are similar to those we found in Fe/W(110).
The interband-intraband correspondence between (L,)"™"*/t

(black dashed line) and the sum of (CD[QZL""])"]ter and total
torque (7)™ (cyan crosses) is also preserved.

However, as shown in Fig. 8(b), spatial profiles of
spin quantitites are significantly different from those of
Fe/W(110). First, we notice that (CID[Qf""])imer (light blue
squares) does not exhibit a close correlation with (T T )‘m"r

(orange circles). Moreover, the 51gn of (T, C)"“er is negative.
This means positive effective spin Hall angle in Ni/W(110),
which is opposite to the negative sign of the spin Hall conduc-
tivity in W. This is in contrast to the common interpretation
that the spin Hall angle is a property of the nonmagnet,
regardless of the ferromagnet. Second, (Tssé)i“ter (dark red
stars) is comparable to the rest of the contributions, indicating
the importance of spin-orbit coupling in Ni. Meanwhile, the
interband-intraband correspondence stands with high preci-
sion (green crosses for the sum of (B[O ])iMer and (T'S)iner,
and a black dashed line for (S,)"" /7).

The Fermi energy dependence of the computed quantities,
shown in Figs. 8(c) and 8(d) for orbital and spin channels,
respectively, provides a detailed information on the overall

trend. Although (<I>[Q "]yinter and ( CF)““er have opposite sign,

their magnitudes differ and we find that (T, SLO)““er is very
pronounced near the Fermi energy, with corresponding peak
indicated with a black arrow [Fig. 8(c)]. Since the response of
the spin quantities is an order of magnitude smaller than that
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FIG. 8. Electric response (per unit cell) of L, and S, current inﬂuxes—CD[Qfy ] and <I>[ny ]—and various torques—

Er — EM™ [oV]

Tso’ TCF’ TSO’ and

TXSé—arising from the interband processes and accumulation, and arising from the intraband processes (divided by 7) in Ni/W(110). Spatial
profiles for (a) orbital and (b) spin quantities at the true Fermi energy Er = E}*°. Fermi energy dependence for (c) orbital and (d) spin quantities,
summed over the ferromagnet layers (Nil and Ni2). Note that the sum of the interband responses of the orbital/spin current influx and the
total torque (T™ = TSLO)’ + T and TS = TSS(‘)' + TXS)C for orbital and spin, respectively) matches with the intraband response of the orbital/spin

accumulation divided by .
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for the orbital channel, the pronounced spin-orbital torque

which is still much smaller than (P [Q "]yiner and (7 )‘“ter
can have a significant effect on the dynamics of spin. In
concurrence with the increase of (TSL(S)i“‘“, (TCLI;)i“ter is sig-
nificantly decreased near the Fermi energy. This implies that
a channel for the orbital angular momentum transfer to the
lattice is suppressed.

As a result, the response of spin in Ni/W(110) exhibits
a much more rich and complicated behavior when compared

to Fe/W(110) [Fig. 8(d)]. We first notice that the correlation
between (CIJ[Qf’])““‘Sr (light blue solid line) and (Ty, )lnter (or-
ange yellow solid line) is no longer present. Moreover with
the negative drop of (T T )‘"ter corresponding to the positive

sign of the effective spin Hall angle, there is an associated

positive peak from (TSS(“)‘)inter (dark red solid line), which is

indicated with a black arrow. This indicates that the spin is
transferred from the orbital rather than spin current influx.
Therefore, the orbital angular momentum is responsible for
the current-induced torque in Ni/W(110). Meanwhile, the
interband-intraband correspondence (green solid line for the
sum of (®[QY])Mer and (TS)™er and black dashed line for
(Sy)intra /1) is satisfied.

As we have done for Fe/W(110), we switch on and off
the spin-orbit coupling separately for W and Ni atoms in
Ni/W(110) as well, showing the results in Fig. 9. In Fig. 9(a),

the Fermi energy dependence of (®[Q."])™e", (TSS(';)imer, and

(T)fé)i“‘er is shown when the spin-orbit coupling of W is on
and the spin-orbit coupling of Ni is off. First of all, we find
that (T )‘"ter is positive at the Fermi energy, which is opposite
to the full spin-orbit coupling case [Fig. 8(d)]. In this case, we
find a strong correlation between (®[OD 7)™ and (T T . yinter,
Thus, the negative sign of the effective spin Hall angle is
caused by the spin injection from the spin Hall effect of W.
However, such correlation is not as perfect as in the case of
Fe/W(110) [Fig. 7(a)]. We attribute such difference to an in-
terfacial mechanism, where the torque is generated regardless
of the spin current. Meanwhile, (T SSO)mter is negligible since
the spin-orbit coupling of Ni is off.

As shown in Fig. 9(b), when the spin-orbit coupling is off
in W and on in Ni, nontrivial features show up in (@[Qf’])imer,
(TSS(")")imer, and (T, S‘C)lmer, which is in contrast to Fe/W(110)
[Fig. 7(b)]. This is due to nontrivial spin-orbit correlation
of Ni shown in Fig. 5(d). Moreover, (TXSE)irlter is negative
at the Fermi energy. We find that nontrivial peak features
[black arrows in Fig. 8(d)] are reproduced in this calcula-
tion. Thus, we confirm that the latter peaks originate in the
spin-orbit coupling of Ni. To further clarify the microscopic
mechanisms, we apply the external electric field in W only
[Fig. 9(c)] or Ni only [Fig. 9(d)] when the spin-orbit coupling
of the W is off and the spin-orbit coupling of Ni is on, which
correspond to the orbital torque and the anomalous torque
contributions, respectively (more details can be found in the
Appendix C). In both cases, (TXS-‘C')imer exhibits a negative
drop near Er — Ef"® ~ 0.15 eV, which is correlated with a
positive peak of (T )lnter This implies that for both cases the
angular momentum transfer from the orbital channel to the
spin channel is crucial. The difference is that for the orbital
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FIG. 9. Fermi energy dependence of interband responses (per
unit cell) of the spm current influx CD[Q "] (light blue solid line),
spin-orbital torque TSO (dark red solid line), and exchange torque
TXSé (orange solid line), which are summed over the Ni layers in
Ni/W(110), for the case when (a) the spin-orbit coupling is on in
W and off in Ni, and (b) the spin-orbit coupling is off in W and on
in Ni. Both panels (c) and (d) show the results when the spin-orbit
coupling is off in W and on in Ni, and the external electric field is
applied only in (c) W and (d) Ni layers.

torque mechanism, Fig. 9(c), (®[Q>"])™" exhibits a positive
peak at the Fermi energy (marked with a black arrow), which
comes from the conversion of the orbital current into the spin
current by the spin-orbit coupling of Ni. We find that it is
correlated with a shoulder feature of (TXSE)inter at the Fermi en-

ergy (marked with a black arrow). Such peak of (CD[Q:f) ]yinter
implies that in the orbital torque mechanism, there are two dif-
ferent microscopic channels for the orbital-to-spin conversion:
one for the spin converted from the orbital angular momentum

via (TSS(")")imer, and the other for the conversion of the orbital
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current into the spin current followed by the spin-transfer
torque. Meanwhile, in Fig. 9(d), which corresponds to the

anomalous torque mechanism, (<I>[Q‘7S;“])imer is not very pro-
nounced, and only the peak of ( TS%)i“ler is observed (indicated

with a black arrow). The negative sign of (TXSE)"“‘er (positive
sign of the effective spin Hall angle) is due to a positive
sign of the spin Hall conductivity in Ni. We note that, as
expected, for the anomalous torque mechanism, the orbital-
to-spin conversion via (TSS(“'))““er is crucial since it originates
in the spin-orbit coupling of the ferromagnet. Therefore, we
conclude that in Ni/W(110) the orbital torque and anomalous
torque are the first and the second dominant mechanisms for
the torque generation on the local magnetic moment.

IV. DISCUSSION
A. Disentangling different microscopic mechanisms

In Sec. III, we found that the spin torque provides the dom-
inant contribution to the current-induced torque in Fe/W(110)
according to the correlation between the exchange torque
and the spin current influx from W, which is reflected in the
negative effective spin Hall angle [Fig. 7(a)]. In Ni/W(110),
however, the orbital torque is found to be the most dominant
contribution. The evidence for the orbital torque is provided
by pronounced peaks in the spin-orbital torque and the spin
current influx that suggests a positive effective spin Hall angle,
associated with the exchange torque [Fig. 9(c)]. However, we
also observed that the anomalous torque can be associated
with the spin-orbital torque [Fig. 9(d)] because the self-
induced spin accumulation in the ferromagnet results from the
current-induced orbital angular momentum. A crucial differ-
ence between the orbital torque and anomalous torque is that
while the orbital torque is due to an electrical current flowing
in the nonmagnet, the anomalous torque is due to an electrical
current passing through the ferromagnet. In this respect, only
the orbital torque is important for memory applications where
the ferromagnetic layer must be patterned to form a physically
separate memory cell, whereas both orbital torque and anoma-
lous torque are important for applications based on magnetic
textures (i.e., domain walls and Skyrmions) for which such
patterning is not necessary.

We can disentangle each of the contributions in the current-
induced torque of Fe/W(110) and Ni/W(110), according to
the classification scheme outlined in Fig. 2. The different con-
tributions to the current-induced torque can be disentangled
by modifying the system parameters “by hand” in the calcula-
tion. To distinguish between local and nonlocal contributions
to the torque, the electric field is selectively applied to only the
ferromagnetic or nonmagnetic layer, respectively. We note,
however, that this is an approximate measure since an electric
current may flow in the ferromagnet(nonmagnet) although an
electric field is applied only to the nonmagnet (ferromagnet)
layer, as the electronic wave functions are delocalized across
the film. For determining the spin-orbit coupling origin (non-
magnet versus ferromagnet), we do not simply turn on and off
the spin-orbit coupling because it causes significant change
of the band structure. Instead, we change the sign of the
spin-orbit coupling in the relevant layer, which changes the
sign of its contribution. For example, we rely on the property

(a) Fe/W(110) (b) Ni/W(110)
0.204 0.05
@i 0.15 é; 0.00 1
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FIG. 10. Disentanglement of the dampinglike torque into the
spin torque (ST), orbital torque (OT), interfacial torque (IT), and
anomalous torque (AT) in (a) Fe/W(11) and (b) Ni/W(110). Note
that the ST and OT are the most dominant mechanisms in Fe/W(110)
and Ni/W(110), respectively. We note that the IT and AT are not
negligible neither in Fe/W(110) nor in Ni/W(110).

that the sign of the orbital torque and anomalous torque should
become opposite after flipping the sign of spin-orbit coupling
in the ferromagnet, while the spin torque and interfacial torque
remain invariant. By computing the torque under different
system configurations, the four contributions to the current-
induced torque can be determined, as illustrated in Fig. 2 and
described in detail in Appendix G. We note that the sum of
spin torque, orbital torque, interfacial torque, and anomalous
torque equals the net torque when the electric field applied to
the entire system with the actual spin-orbit coupling strength
of each atom. Although this classification scheme relies on
computational handles with no experimental counterpart, it
provides a systematic basis for physically interpreting the
results of calculations, which in turn enables the development
of intuition about materials and system designs.

In Figs. 10(a) and 10(b) we show the decomposition of
the total dampinglike torque in Fe/W(110) and Ni/W(110),
respectively, into separate contributions. In Fe/W(110), the
spin torque is the most dominant contribution. However, our
analysis reveals that the interfacial torque is not negligible,
accounting for about 35% of the spin torque. Overall, the spin
torque and interfacial torque are larger than the orbital torque
and anomalous torque, implying that the spin-orbit coupling
in W is more important than that in Fe. In Ni/W(110), howver,
the orbital torque is the most dominant contribution. The
second largest contribution is the anomalous torque, which is
comparable to a half of the orbital torque. The magnitude of
the interfacial torque is not much smaller, reaching as much
as 37% of the magnitude of the orbital torque. Overall, the
orbital torque and anomalous torque are dominant over the
spin torque and interfacial torque in Ni/W(110). This suggests
that the spin-orbit coupling in Ni is more important than the
spin-orbit coupling in W in this system, in contrast to an intu-
itive expectation that spin-orbit coupling in 3d ferromagnets
plays a minor role as compared to the spin-orbit coupling
of the heavy element. These results are consistent with our
analysis of the results presented in Figs. 7 and 9.

B. Orbital current versus spin current

Although the orbital current [Eq. (8a)] and the spin current
[Eqg. (8b)] are defined in a similar way, there are differences
in their numerical treatment. While the spin and its current
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can be locally defined everywhere in space, the orbital angular
momentum is evaluated within the muffin-tin by the atom-
centered approximation. This leads to a conceptual problem
in defining the orbital current: The orbital current evaluated
in the interstitial region becomes zero although its value is
finite inside the muffin-tin. Heuristically, the orbital angular
momentum is encoded in a vorticity of the phase of a wave
function, which exists not only in the muffin-tin but also in
the interstitial region. It is the vorticity of the wave function
that is transported through the interstitial region. However,
the orbital current “influx” into the muffin-tin does not suffer
from such problem because orbital angular momentum and
velocity can be calculated on the boundary of the muffin-
tin. Therefore, we have evaluated orbital current influx into
the muffin-tin instead of calculating the orbital current itself
throughout the manuscript.

As the atom-centered approximation neglects the contri-
bution from interstitial region, the crystal field torque in
our calculation [Eq. (12)] only describes angular momentum
transfer from the orbital to the lattice within the muffin-
tin, which is mostly concentrated near the surfaces and the
interface [Figs. 6(a) and 8(a)]. In general, we expect that
nonspherical component of the potential is more pronounced
in the interstitial region, which provides another channel for
angular momentum transfer from the electronic orbital to the
lattice. However, as the d character electronic wave function
of a transition metal is localized inside the muffin-tin, we
expect that additional contribution to the crystal field torque
from the interstitial region is small.

C. Experiments and materials

Although the effective spin Hall angle measured in experi-
ments is the sum of all contributions to the torque on the local
magnetic moment, it has been assumed that it is a property
of the nonmagnet in nonmagnet/ferromagnet bilayers, which
can be incorrect. For example, we have shown that the current-
induced torque depends on the choice of the ferromagnet in
ferromagnet/W(110), where ferromagnet is Fe or Ni. In this
case, it is due to an opposite sign of the orbital Hall effect
and spin Hall effect in W, and the resulting orbital-to-spin
conversion efficiencies are different for Fe and Ni. As a re-
sult, even the sign of the effective spin Hall angle changes:
from negative for Fe/W(110) to positive for Ni/W(110). We
believe that such change-of-sign behavior can be directly mea-
sured in experiment. More concretely, we suggest performing
a spin-orbit torque experiment on an FeNi alloy to observe
change of the effective spin Hall angle as the alloying ratio
varies, with the effective spin Hall angle turning to zero at a
certain critical concentration.

We speculate that this behavior would be observed in other
systems where the orbital Hall effect competes with the spin
Hall effect. For example, among 5d elements, Hf, Ta, and
Re exhibit gigantic orbital Hall conductivity, whose sign is
opposite to that of the spin Hall conductivity [32]. Such
behavior holds in general for groups 4-7 among transition
metals. For 3d elements, such as Ti, V, Cr, and Mn, the spin
Hall conductivity is much smaller than that of 5d elements,
while the orbital Hall conductivity is almost as large as in
5d elements [34]. Thus, the orbital torque contribution is

expected to be more pronounced than the spin torque contribu-
tion when the nominally nonmagnetic substrate is made of 3d
elements, as compared to the systems where the nonmagnet
is made of 5d elements. Therefore, alloying not only the
ferromagnet but also the nonmagnet provides a useful knob
for observing competing mechanisms of the current-induced
torque.

The layer thickness dependence of the spin-orbit torque has
been measured in Ta/CoFeB /MgO [67] and Hf /CoFeB/MgO
[68], where the sign of the current-induced torque was found
to change when the thickness of Ta or Hf was as small as ~1
to 2 nm. The origin of the sign change has been attributed to
the competition between the bulk and interfacial mechanisms,
which correspond to the spin torque and interfacial torque
mechanisms in our terminology. Recently, such behavior has
also been observed in a similar system Zr/CoFeB/MgO [69],
where a 4d element Zr was used instead of a 5d element. Due
to a negligible spin Hall conductivity of Zr as compared to the
orbital Hall conductivity, it has been proposed that the sign
change occurs due to a competition between the spin torque
and orbital torque [69], instead of the competition between
the spin torque and interfacial torque. Detailed investigation
of these systems by our method may reveal the origin of the
sign change.

Another widely studied system in spintronics is a Pt-based
magnetic heterostructure. Due to a large spin Hall conduc-
tivity of Pt [70], the spin torque is assumed to be the most
dominant mechanism of the torque in Pt-based systems [5].
In Co/Pt, however, theoretical analysis revealed that the in-
terfacial spin-orbit coupling contributes significantly to the
fieldlike torque [19,71]. However, the dampinglike torque is
attributed to the spin torque mechanism [35,71], which is
also supported by experiments [72]. Hayashi et al. compared
Ni/Pt and Fe/Pt bilayers, finding that the current-induced
torque strongly depends on the choice of the ferromagnet
[73]. According to their interpretation, while the bulk effect is
dominant in Ni/Pt, a pronounced interface effect in Fe/Pt not
only leads to fieldlike torque but also suppresses the spin cur-
rent injection from Pt, which leads to a distinct ferromagnet
dependence of the torque [73]. A similar conclusion has also
been drawn in an experiment by Zhu et al., where the interfa-
cial spin-orbit coupling has been varied by choosing different
samples and annealing conditions [74]. Further investiga-
tion of the exact mechanism in these systems by theory is
required.

For the study of the interplay between the spin and orbital
degrees of freedom transition metal oxides may present a
very fruitful playground. In transition metal oxides, a strong
entaglement of the spin, orbital, and charge degrees of free-
dom has been intensively studied in the past [75-77]. For
example, magnetic properties of transition metal oxides are
heavily affected by the orbital physics not only via the effect
of spin-orbit coupling but also because of the anisotropic
exchange interactions caused by the shape of participating
orbitals [75]. However, most studies on the transition metal
oxides have focused on their ground state properties, such as
various competing magnetic phases. We expect that the inves-
tigation of the spin-orbital entangled dynamics would provide
crucial insights into understanding the complex physics of
transition metal oxides.
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V. CONCLUSION

Motivated by various proposed mechanisms of the current-
induced torques, which are challenging to disentangle both
theoretically and experimentally, we developed a theory of
current-induced spin-orbital coupled dynamics in magnetic
heterostructures, which tracks the transfer of the angular mo-
mentum between different degrees of freedom in solids: spin
and orbital of the electron, lattice, and local magnetic moment.
By adopting the continuity equations for the orbital and spin
angular momentum [Eq. (7)], we derived equations for the
angular momentum dynamics in the steady state reached when
an external electric field is applied, which provide relations
between interband and intraband contributions to the current
influx, torques, and accumulation of the spin and orbital an-
gular momentum [Eqgs. (33) and (34)]. We remark that this
formalism can be generally applicable to various schemes of
calculation such as k - p method and tight-binding model, as
well as density functional theory. The only requirement is
that each term in the Hamiltonian is separately defined as in
Egs. (1) and (2).

This formalism is particularly useful for the detailed study
of the microscopic mechanisms of the current-induced torque.
In this work we implemented this formalism in first princi-
ples calculations to investigate the spin-orbit torque origins in
Fe/W(110) and Ni/W(110) bilayers. In Fe/W(110), we ob-
serve a strong correlation between the spin current influx and
the exchange torque, which is a key characteristic of the spin
torque mechanism. However, such correlation is not observed
in Ni/W(110). Instead, we observe a pronounced correlation
between the exchange torque and the spin-orbital torque, in-
dicating the transfer of angular momentum from the orbital to
the spin channel. Moreover, the spin current influx exhibits
a sign opposite to that of the spin Hall effect in W. This
leads us to a conclusion that the orbital torque is dominant in
Ni/W(110). Considering that our calculations capture contri-
butions driven by electronic structure—i.e., the intrinsic-type
of contributions—our prediction is expected to be observed
in experiments when the sample is in a “moderately clean”
regime of the resistivity. Although the calculations presented
here do not capture disorder-driven contributions such as side
jump and skew-scattering, our theoretical approach and pre-
dictions can play a guiding role for further advances in this
area, in analogy to the theoretical developments around the
anomalous and spin Hall effects [78,79]. Consistent treatment
of the disorder scattering effects such as side jump and skew-
scattering remains to be investigated, but this goes beyond the
scope of this work.

We further proposed a classification scheme of the different
mechanisms of current-induced torque based on the criteria of
whether the scattering source is in the nonmagnet-spin-orbit

J

coupling or the ferromagnet-spin-orbit coupling, and whether
the torque response is of local or nonlocal nature (Fig. 2).
This analysis also confirms that the spin torque and orbital
torque are the most dominant mechanisms in Fe/W(110) and
Ni/W(110), respectively. However, we also find that the other
contributions, interfacial torque and anomalous torque, are not
negligible as well. Our formalism enables an analysis of the
angular momentum transport and transfer dynamics in detail,
which clearly goes beyond the “spin current picture.” Since
it treats the spin and orbital degrees of freedom on an equal
footing, it is ideal for systematically studying the spin-orbital
coupled dynamics in complex magnetic heterostructures.
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APPENDIX A: INTERBAND-INTRABAND
CORRESPONDENCE

Here we provide a proof of Eq. (31). We assume that the
operator O does not have position dependence, which leads to
O(k) = e *TOe*T = 0. From Egs. (29), the left-hand side
of Eq. (31) is written as

Application of integration by parts to the first term in Eq. (A1) leads to

1
T

It can be rewritten as
1

T
n#m Kk

. g,
—(O0)" = % ank[(akxunk| O ) + (k| O |, i) |-
nk

A £,
—(OF™ = S5 S ok fraRe {0t t) (k] O lt) .

1 . e,
—(O)™ = == % bk fok (k| O ), (A1)
nk
where we used
8fnk afnk 8Enk v
= = h{u, K) |tx) - A2
ok, 9, ok, STt (e | v (K) [1tk) (A2)
(A3)
(A4)
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By using identities

R (k| vx(K) [t

(akx unk|umk) = Enk — Emk (AS)
and
(] O ) = ihi (tty | (1;}‘1)[(’2 HEK)] |unk)’ (A6)
nk — Lmk
for n # m, we have
L inra _ _ (k| Vx(K) |t} (U] (1/iR)[O, H (K)] |1t )
—{O)" = —ehé, ; ;mk fmk)lm[ Er—En) } (A7a)
_ _ (unkl (l/zh)[(’), H(k)] |umk) (umk| Ux(k) |unk>
= ehex;;mk fmk)Im[ Ex—En +InP } (A7)
d(’) inter
_ <E> . (ATc)

This proves Eq. (31). In case when O(K) is k-dependent, the
deviation is given by

1 - e,
—{O)N = ——= i (k| 9, O ), (A8B)
such that
1 ) 1 o d inter
_<O>1ntra + _(O)dewanon — <_O> (A9)
T T dt

holds even when O(k) is k-dependent.
APPENDIX B: STATIONARY CONDITION
OF THE INTRABAND CONTRIBUTION
For a proof of Eq. (32), we apply Eq. (29) to dO/dt:
<d0 >intra B egxt

o e Zk [k, for Gt TOG). HAO] ) ].
(BI)
Because
(unk | [O(K), H(K)] i) = O (B2)
for any Hermitian operator O, we have
do\m
<W> =0. (B3)

APPENDIX C: COMPUTATIONAL METHOD

First-principles calculation consists of three steps. The first
step is calculation of the electronic structure from the density
functional theory. In this step, we obtain Bloch states and their
energy eigenvalues. The second step is to obtain maximally
localized Wannier functions (MLWFs) starting from the Bloch
states obtained in the first step. Once the MLWFs are found,
matrix elements of all relevant operators (Hamiltonian, posi-
tion, spin, and orbital) are expressed within the basis set of
the MLWFs. Thus, a tight-binding model is obtained. The last
step is evaluation of the interband and intraband responses of
the individual terms in the equations of motion [Eqgs. (33) and

(

(34)] by solving the tight-binding model obtained from the
second step.

The electronic structure of ferromagnet/W(110)
(ferromagnet=Fe or Ni), whose lattice structure is shown in
Fig. 5, is calculated self-consistently in the film mode of the
full-potential linearized augmented plane wave method [80]
from the code FLEUR [81]. We use Perdew-Burke-Ernzerhof
exchange-correlation functional within the generalized
gradient approximation [82]. Muffin-tin radii of the
ferromagnet and W atoms are set to 2.lap and 2.5aq,
respectively, where ag is the Bohr radius. The plane wave
cutoff is set to 3.8a, . The Monkhorst-Pack k-mesh of
24 x 24 are sampled from the first Brillouin zone. The
spin-orbit coupling is treated self-consistently within the
second variation scheme. The layer distances dpypv and
dw.pym are optimized such that the total energy is minimized.
The optimized values for Fe/W(110) are dw.pe = 3.825qa,
and dpepe = 3.296ap, and those for Ni/W(110) are
dW-Ni = 360700 and dNi-Ni = 330100

To obtain MLWFs, we initially project the Bloch states
onto dyy, dy;, d.., and sp3d, trial orbitals for each atom, and
minimize their spreads using the code WANNIER9O [83]. We
obtain in total 180 MLWFs out of 360 Bloch states, that is, 18
MLWFs for each atom. For the disentanglement of the inner
and outer spaces, we set the frozen window as 2 eV above
the Fermi energy. The Hamiltonian, position, spin, and orbital
operators, which are evaluated beforehand within the Bloch
basis, are then transformed to the basis of MLWFs, and the
tight-binding model is obtained.

Individual terms appearing in the equations of motion
[Egs. (33) and (34)] are evaluated using Egs. (26) and (29) for
interband and intraband contributions, respectively. The inte-
gration is performed over interpolated k-mesh of 240 x 240.
For the interband contributions, we set n = 25 meV for con-
vergence, which describes broadening of the spectral weight
by disorders. In the intraband contribution, we set the momen-
tum relaxation time as v = /i/2I" with I' = 25 meV, which
corresponds to T = 1.26 x 107! 5. We set the temperature
in the Fermi-Dirac distribution function as room temperature
T =300 K. For the application of an external electric field
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specifically onto ferromagnet or W layers, we replaced v, in
Eq. (26) by

oM =" P, + uP, (Cla)
zeFM

vy =Y P+ .k, (Clb)
zeW

where P, is the projection onto the MLWFs located in a layer
whose index is z. We confirm that the 18 MLWFs are well
localized in each layer. Note that Eq. (C1) is defined such that

v, =M 4V, (C2)

APPENDIX D: SYMMETRY ANALYSIS

In Sec. IIIC, we state that only y and x components
are nonzero in Egs. (33) and (34), respectively. Here, we
prove this by symmetry argument. Two important symmetries
present in ferromagnet/W(110), where the magnetization is
pointing the z direction, are 7 M, and 7 M, symmetries.
Here, 7 is the time-reversal operator and M, is the mirror
reflection operator along the direction of x(y). Since all the
terms appearing in the same equation should transform in the
same way, we consider only the response of a torque operator

-4
Cdt

for a general angular momentum operator J, which can be
either orbital and spin origin. To find symmetry constraints
on the interband [Eq. (26)] and intraband [Eq. (29)] re-
sponses, we first investigate how matrix elements of v, and T'7
transform. We define U7 and U 4, ,, as Hilbert space represen-
tations of 7 and M), respectively. Note that 7 transforms
v, and TV as

(D1

Ur'vUr = —v;, (D2)
and
UF'TIUr = +T7, (D3)

respectively. However, M, and M, symmetries transform v,
and T7 as

Upi vUpm, = =0y, (D4a)
U/Ctlv v Unm, = +uy, (D4b)
and

U T Uy, = 4T, (05)
UXAIXTJ, Up, = -T", (D5b)
U T U, = T, (D9
U/r/(l‘.TJX Upt, = 1%, (D5d)
U.X/llv T Upn, = +7%, (D5e)
U/QIVTJZUMV =T, (D5f)

As aresult, 7 M, and 7 M, symmetries transform v, and il
as

U’;}Vl} va'TMX = vy, (D6a)
Uz ja, 0:UT M, = =0, (D6b)
and
Urh T"Urm, = +T" D7
TM, TM, =+, (D7a)
Ui T "Urm, = =T7, (D7b)
Ui T Urpm, = =T", (D7¢)
Uppg T"Urm, = =T, (D7d)
Ui T"Urm, = +T%, (D7e)
Ura, T Urpt, = =T*, (D7f)
whe}tlre [}JIT Mo, = UrUnrm,,,,- Note that T and M, commute
each other.

We remark that U7 and U, are antiunitary and unitary
operators, respectively. Thus, U a,,,, is antiunitary. For an ar-
bitrary antiunitary operator ®, a matrix element of an operator
O satisfies

(09| O10Y) = (9] (©7'00) |y)*. (D8)

Thus, combining this result with Eqs. (D6) and (D7) pro-
vides constraints on the interband [Eq. (26)] and intraband
[Eqg. (29)] contributions.

As an illustration, let us demonstrate that both interband
and intraband contributions vanishes for T’:. We consider
T M, symmetry at first. By this, matrix elements of v, and
T7: transform as

(U p, Yok | vx |UT M, Wk) = + (Wt | e W), (D9)

and
(Ui k| T |Ur i k) = — (W | T 191,

(D10)

where k' = (+k,, —k,, —k;). However, T .M, symmetry gives

(U p, Yk | V3 | UT M, k) = — (Wt | 02| Wier), (D)
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and

(Ui, V| T |Ur s, Yrik) = — (Woaer | T [rer)

where K" = (—k,, +k,, —k,).

(D12)

A constraint for the interband contribution for 77 [Eq. (26)] is given by T .M, symmetry:

Joyinter Z Z (U a, Y| TP Uz sty W) (UT- A, V| 0 | U7, k)
<T > - ehgx n#m k (fnk” - fmk” )Im|: (Enk” — Emk/r + ”7)2 (D13a)
_ (Yo | TP | Yer) (Wt | Ve [ W)
= ehé&, ngém Ek (frukr — Sk )Im[ G — B + 1) } (D13b)
_ Z Z (Y| T 1Y) (Ymkc| v [Wkc)
- ehgx i (fmk - ﬁlk)lm[ (Emk — Enk + ”’)2 i| (D13C)

— _ <TJZ >imer

(D13d)

in the limit # — 04. Thus, (77%)™" is forbidden by 7" M, symmetry. In Eq. (D13a), we used the fact that the linear response
can also be written in terms of the transformed states. Note that we use the Bloch state representation instead of their periodic
parts. For the intraband contribution, we have the following constraint by 7 M, symmetry:

. 5x
(T =~ 37 o [ (U V| T |Uraa, )] (D14a)
nk
&
=42 h’ Zk O Lt (Wt | T i) (D14b)
— _<Tjg>intra. (D14C)

Therefore, both interband and intraband responses for T
vanishes by the symmetries. By the procedure for different
components of the torque, we arrive at the conclusion that the
presence of 7 M, and T M, symmetries allows only (7% )inter
and (77*)"" to be nonzero.

APPENDIX E: INTRABAND RESPONSE

In Fig. 11, intraband contributions appearing in Eq. (34)
are plotted for each layer of Fe/W(110). We confirm that
the sum of the current influx and torques vanishes for the
intraband contributions, respectively, for the orbital and spin,
which confirms Eq. (34). For the orbital [Fig. 11(a)], we find
that (®[QL]) ™™ tends to cancel with (7;5) ™™ and (Tyg)™™
is small. Meanwhile, for the spin, not only (CID[Qf—*])intra and
(T)f*c)i“Lra but also (TSS(")>i“lra are of comparable magnitudes,
which is distinct from the interband response [Fig. 6(b)].
However, near the Fe layers, (ATSSC"))i“tra is small, and (7)™
tends to cancel with (<I>[Qf-‘])‘“"a. We attribute this behavior
to small spin-orbit correlation in Fe [Fig. 5(c)], and quench-
ing of the orbital moment. Fermi energy dependence plots
in Fig. 11 also show the cancellation behaviors between the
orbital current influx and crystal field torque, and between
the spin current influx and the exchange torque. Although the
spin-orbital torque is not particularly small in general, only
near the true Fermi energy it is suppressed. Therefore, the
fieldlike torque originates in the spin current injection (spin
torque mechanism).

In Ni/W(110), for the orbital, (®[Q5])"™ and (7)™
cancel each other, with small magnitude of (Tag)™™®
[Fig. 12(a)]. For the spin, however, as well as (CD[Qf*])i“"a,

(

(TSS(;)i“tra contributes to (T)fg:)imra, in comparable magnitudes
[Fig. 12(b)]. This is due to pronounced spin-orbit correlation
of Ni at the Fermi energy [Fig. 5(d)]. The Fermi energy
dependence plots in Figs. 12(c) and 12(d) also show that
the spin-orbital torque is nonnegligible at the Fermi energy.
Therefore, in Ni/W(110), the fieldlike torque is a combined
effect of the spin injection and the spin-orbit coupling. Such
behavior has also been observed in Pt/Co [71].

To clarify microscopic mechanisms of different origins, we
disentangle the fieldlike torque into the spin torque, orbital
torque, interfacial torque, and interfacial torque, analogously
to Fig. 10. For Fe/W(110) [Fig. 13(a)], we find that the spin
torque is the most dominant contribution, as expected. How-
ever, for Ni/W(110) [Fig. 13(b)], not only the spin torque but
also the anomalous torque significantly contributes. This is
due to pronounced spin-orbit correlation in Ni. Meanwhile,
we also find that the interfacial torque is not negligible.

APPENDIX F: TIGHT-BINDING REPRESENTATION
OF THE CONTINUITY EQUATION

Here, we derive a tight-binding representation of the cur-
rent influx and torque appearing in the continuity equation
[Eq. (7)]. To do this, we first define P, as a projection operator
onto a set of MLWFs located near a layer whose index is z.
Then, for the spin operator S, we define

S(z) = 1[SP, + P.S] (F1)

as the spin operator at z, such that

S=) S@). (F2)
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FIG. 11. Electric response of current inﬂuxes—fIZ'[Qfv ] and CD[Qf"]—and various torques—TSLs, TCLI;l', TSS())’, and T)fé—arising from the

intraband process in Fe/W(110). Spatial profiles for (a) the orbital and (b) the spin at true Fermi energy Er = E{*°. Fermi energy dependences
for (c) the orbital and (d) the spin, which are summed over the ferromagnet layers (Fel and Fe2).

The Heisenberg equation of motion for S(z) is written as We define local torque operator at z by
1
T3(@) = (P8, H1+ S, HIP.) (F4a)
dS(z) 1 1
o = 8@ H] (F3a) = E[TSPZ + P,TS], (F4b)
1
= 57 [SP.. PS. H] (F3b) ~ where
L 1
1 T8 = —[S, H] (F5)
= 58, HIP: + S[P,, H1+ [P, HIS + P.IS, M) ih

is the total torque operator, and we define

(F3c¢) .
=T5@) + o[51(z). (F3d) ®[j%1(z) = 25 P HIS + SIP, 11 (F6)
@ () |
< 27 —m (DL
s 7 51 e (T5)"™ (29)
Q§ 11 j\ —o— <TCLIT_>inn-a
~ 0 = ¢
~ 72< B | | | | | | |
gl | e ] Z220-15 71.0]501 ]%gmo[gv]l.o 15 20
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FIG. 12. Electric response of current inﬂuxes—CD[QfV] and dD[Qf’]—and various torques—TSLs, Té‘};f, TSS(’;, and T)fé—arising from the

intraband process in Ni/W(110). Spatial profiles for (a) the orbital and (b) the spin at true Fermi energy Er = E{*°. Fermi energy dependences
for (c) the orbital and (d) the spin, which are summed over the ferromagnet layers (Nil and Ni2).
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FIG. 13. Disentanglement of the fieldlike torque into the spin
torque (ST), orbital torque (OT), interfacial torque (IT), and anoma-
lous torque (AT) in (a) Fe/W(11) and (b) Ni/W(110). In both
systems, the ST is most dominant mechanism. We note that the AT
is not negligible in Ni/W(110).

the spin current influx at z.

Although ®[%](z) may not seem intuitive, it corresponds
to an usual definition of the spin current influx. To demon-
strate this point, we consider the case where P = [r) (r| and
H= —h2V§ /2myg, where |r) is an eigenket for the position
operator r. Then ®[j%] becomes

1
Q[5 = 5770 (Kl HS = H Ir) (xS
+S|r) (r|H — SH |r) (r|}.

Thus, a matrix element between states ¢ and i is written as

(F7)

ih
(¢l DL |y) = 2’—m{¢*<r)S[V3w<r)] — [V2¢*(0)]Sv ()

(F8a)
=V, (¢l§°[¥), (F8b)
where
ih
(@15 ly) = —2’—m{¢*<r>8[w<r>] + [Veg* (0)ISY (r)).
(F9)

From Eq. (F9), we find that this is consistent with usual defini-
tion of the spin current j% = S ® (p/my). Therefore, Eq. (F6)
can be understood as an operator of the spin current influx to
the subspace defined by the projection P..

APPENDIX G: DISENTANGLING DIFFERENT
CONTRIBUTIONS OF THE CURRENT-INDUCED TORQUE

To disentangle different contributions of the torque
(Figs. 10 and 13), we utilize a property that upon changing
the sign of the spin-orbit coupling constant in the ferromagnet
the orbital torque and anomalous torque flip their signs while
the signs of the spin torque and interfacial torque remains
invariant. That is, the total exchange torque is decomposed as
the sum of the contribution driven by the spin-orbit coupling
in the nonmagnet and the contribution driven by the spin-orbit
coupling in the ferromagnet:

(T>§c = <T)§C

In an auxiliary system where the sign of the spin-orbit cou-
pling is flipped in the ferromagnet atoms, the exchange torque
becomes

>10t )NM—SOC + <TXSC )FM—SOC )

(GD

)aux )NM—SOC _ ( >FM—SOC

()™ = (Txe Tie (G2)
Thus, the nonmagnet-spin-orbit coupling contribution is writ-
ten as

s \NM-SOC 1 S
<TXC) = E[(TXC

and the ferromagnet-spin-orbit coupling contribution is writ-
ten as

>l0t

+{Txe ], (G3)

(TXSC>FM_SOC = %[(szcym - <szc>aux]'

(G4)

Then, by applying the electric field only in the nonmagnet or
ferromagnet layers by Eq. (C1), we can separately evaluate the
spin torque, orbital torque, anomalous torque, and interfacial
torque.
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