000884855 001__ 884855
000884855 005__ 20210423193419.0
000884855 0247_ $$2doi$$a10.1038/s41467-020-18540-3
000884855 0247_ $$2Handle$$a2128/25823
000884855 0247_ $$2altmetric$$aaltmetric:90544960
000884855 0247_ $$2pmid$$apmid:32948776
000884855 0247_ $$2WOS$$aWOS:000573732600001
000884855 037__ $$aFZJ-2020-03292
000884855 082__ $$a500
000884855 1001_ $$00000-0001-5556-6376$$aSchneider, Lucas$$b0
000884855 245__ $$aControlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors
000884855 260__ $$a[London]$$bNature Publishing Group UK$$c2020
000884855 3367_ $$2DRIVER$$aarticle
000884855 3367_ $$2DataCite$$aOutput Types/Journal article
000884855 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1619159526_16149
000884855 3367_ $$2BibTeX$$aARTICLE
000884855 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884855 3367_ $$00$$2EndNote$$aJournal Article
000884855 520__ $$aChains of magnetic atoms with either strong spin-orbit coupling or spiral magnetic order which are proximity-coupled to superconducting substrates can host topologically non-trivial Majorana bound states. The experimental signature of these states consists of spectral weight at the Fermi energy which is spatially localized near the ends of the chain. However, topologically trivial Yu-Shiba-Rusinov in-gap states localized near the ends of the chain can lead to similar spectra. Here, we explore a protocol to disentangle these contributions by artificially augmenting a candidate Majorana spin chain with orbitally-compatible nonmagnetic atoms. Combining scanning tunneling spectroscopy with ab-initio and tight-binding calculations, we realize a sharp spatial transition between the proximity-coupled spiral magnetic order and the non-magnetic superconducting wire termination, with persistent zero-energy spectral weight localized at either end of the magnetic spiral. Our findings open a new path towards the control of the spatial position of in-gap end states, trivial or Majorana, via different chain terminations, and the realization of designer Majorana chain networks for demonstrating topological quantum computation.
000884855 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000884855 536__ $$0G:(DE-Juel1)jias17_20190501$$aFirst-principles investigation of single magnetic nano-skyrmions (jias17_20190501)$$cjias17_20190501$$fFirst-principles investigation of single magnetic nano-skyrmions$$x1
000884855 536__ $$0G:(DE-Juel1)jias1c_20191101$$aFirst-principles investigation of long range effects in magnetic nanostructures (jias1c_20191101)$$cjias1c_20191101$$fFirst-principles investigation of long range effects in magnetic nanostructures$$x2
000884855 588__ $$aDataset connected to CrossRef
000884855 7001_ $$0P:(DE-Juel1)168211$$aBrinker, Sascha$$b1
000884855 7001_ $$00000-0003-3250-402X$$aSteinbrecher, Manuel$$b2
000884855 7001_ $$0P:(DE-HGF)0$$aHermenau, Jan$$b3
000884855 7001_ $$0P:(DE-HGF)0$$aPosske, Thore$$b4
000884855 7001_ $$0P:(DE-Juel1)145395$$ados Santos Dias, Manuel$$b5
000884855 7001_ $$0P:(DE-Juel1)130805$$aLounis, Samir$$b6
000884855 7001_ $$0P:(DE-HGF)0$$aWiesendanger, Roland$$b7
000884855 7001_ $$0P:(DE-HGF)0$$aWiebe, Jens$$b8$$eCorresponding author
000884855 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/s41467-020-18540-3$$gVol. 11, no. 1, p. 4707$$n1$$p4707$$tNature Communications$$v11$$x2041-1723$$y2020
000884855 8564_ $$uhttps://juser.fz-juelich.de/record/884855/files/s41467-020-18540-3.pdf$$yOpenAccess
000884855 8564_ $$uhttps://juser.fz-juelich.de/record/884855/files/s41467-020-18540-3.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884855 909CO $$ooai:juser.fz-juelich.de:884855$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000884855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168211$$aForschungszentrum Jülich$$b1$$kFZJ
000884855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145395$$aForschungszentrum Jülich$$b5$$kFZJ
000884855 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130805$$aForschungszentrum Jülich$$b6$$kFZJ
000884855 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000884855 9132_ $$0G:(DE-HGF)POF4-899$$1G:(DE-HGF)POF4-890$$2G:(DE-HGF)POF4-800$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000884855 9141_ $$y2020
000884855 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2018$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884855 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-01-16
000884855 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884855 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2018$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Peer review$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-16
000884855 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-01-16
000884855 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000884855 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000884855 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000884855 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000884855 980__ $$ajournal
000884855 980__ $$aVDB
000884855 980__ $$aI:(DE-Juel1)IAS-1-20090406
000884855 980__ $$aI:(DE-Juel1)PGI-1-20110106
000884855 980__ $$aI:(DE-82)080009_20140620
000884855 980__ $$aI:(DE-82)080012_20140620
000884855 980__ $$aUNRESTRICTED
000884855 9801_ $$aFullTexts