| Home > Publications database > Controlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors > print |
| 001 | 884855 | ||
| 005 | 20210423193419.0 | ||
| 024 | 7 | _ | |a 10.1038/s41467-020-18540-3 |2 doi |
| 024 | 7 | _ | |a 2128/25823 |2 Handle |
| 024 | 7 | _ | |a altmetric:90544960 |2 altmetric |
| 024 | 7 | _ | |a pmid:32948776 |2 pmid |
| 024 | 7 | _ | |a WOS:000573732600001 |2 WOS |
| 037 | _ | _ | |a FZJ-2020-03292 |
| 082 | _ | _ | |a 500 |
| 100 | 1 | _ | |a Schneider, Lucas |0 0000-0001-5556-6376 |b 0 |
| 245 | _ | _ | |a Controlling in-gap end states by linking nonmagnetic atoms and artificially-constructed spin chains on superconductors |
| 260 | _ | _ | |a [London] |c 2020 |b Nature Publishing Group UK |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1619159526_16149 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Chains of magnetic atoms with either strong spin-orbit coupling or spiral magnetic order which are proximity-coupled to superconducting substrates can host topologically non-trivial Majorana bound states. The experimental signature of these states consists of spectral weight at the Fermi energy which is spatially localized near the ends of the chain. However, topologically trivial Yu-Shiba-Rusinov in-gap states localized near the ends of the chain can lead to similar spectra. Here, we explore a protocol to disentangle these contributions by artificially augmenting a candidate Majorana spin chain with orbitally-compatible nonmagnetic atoms. Combining scanning tunneling spectroscopy with ab-initio and tight-binding calculations, we realize a sharp spatial transition between the proximity-coupled spiral magnetic order and the non-magnetic superconducting wire termination, with persistent zero-energy spectral weight localized at either end of the magnetic spiral. Our findings open a new path towards the control of the spatial position of in-gap end states, trivial or Majorana, via different chain terminations, and the realization of designer Majorana chain networks for demonstrating topological quantum computation. |
| 536 | _ | _ | |a 142 - Controlling Spin-Based Phenomena (POF3-142) |0 G:(DE-HGF)POF3-142 |c POF3-142 |f POF III |x 0 |
| 536 | _ | _ | |a First-principles investigation of single magnetic nano-skyrmions (jias17_20190501) |0 G:(DE-Juel1)jias17_20190501 |c jias17_20190501 |f First-principles investigation of single magnetic nano-skyrmions |x 1 |
| 536 | _ | _ | |a First-principles investigation of long range effects in magnetic nanostructures (jias1c_20191101) |0 G:(DE-Juel1)jias1c_20191101 |c jias1c_20191101 |f First-principles investigation of long range effects in magnetic nanostructures |x 2 |
| 588 | _ | _ | |a Dataset connected to CrossRef |
| 700 | 1 | _ | |a Brinker, Sascha |0 P:(DE-Juel1)168211 |b 1 |
| 700 | 1 | _ | |a Steinbrecher, Manuel |0 0000-0003-3250-402X |b 2 |
| 700 | 1 | _ | |a Hermenau, Jan |0 P:(DE-HGF)0 |b 3 |
| 700 | 1 | _ | |a Posske, Thore |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a dos Santos Dias, Manuel |0 P:(DE-Juel1)145395 |b 5 |
| 700 | 1 | _ | |a Lounis, Samir |0 P:(DE-Juel1)130805 |b 6 |
| 700 | 1 | _ | |a Wiesendanger, Roland |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Wiebe, Jens |0 P:(DE-HGF)0 |b 8 |e Corresponding author |
| 773 | _ | _ | |a 10.1038/s41467-020-18540-3 |g Vol. 11, no. 1, p. 4707 |0 PERI:(DE-600)2553671-0 |n 1 |p 4707 |t Nature Communications |v 11 |y 2020 |x 2041-1723 |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/884855/files/s41467-020-18540-3.pdf |y OpenAccess |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/884855/files/s41467-020-18540-3.pdf?subformat=pdfa |x pdfa |y OpenAccess |
| 909 | C | O | |o oai:juser.fz-juelich.de:884855 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)168211 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)145395 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)130805 |
| 913 | 1 | _ | |a DE-HGF |b Energie |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-142 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-100 |4 G:(DE-HGF)POF |v Controlling Spin-Based Phenomena |x 0 |
| 913 | 2 | _ | |a DE-HGF |b Programmungebundene Forschung |l ohne Programm |1 G:(DE-HGF)POF4-890 |0 G:(DE-HGF)POF4-899 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-800 |4 G:(DE-HGF)POF |v ohne Topic |x 0 |
| 914 | 1 | _ | |y 2020 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1040 |2 StatID |b Zoological Record |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1060 |2 StatID |b Current Contents - Agriculture, Biology and Environmental Sciences |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2020-01-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |d 2020-01-16 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |d 2020-01-16 |
| 915 | _ | _ | |a Article Processing Charges |0 StatID:(DE-HGF)0561 |2 StatID |f 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |d 2020-01-16 |
| 915 | _ | _ | |a Fees |0 StatID:(DE-HGF)0700 |2 StatID |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2020-01-16 |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NAT COMMUN : 2018 |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |d 2020-01-16 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2020-01-16 |
| 915 | _ | _ | |a Creative Commons Attribution CC BY 4.0 |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |
| 915 | _ | _ | |a IF >= 10 |0 StatID:(DE-HGF)9910 |2 StatID |b NAT COMMUN : 2018 |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2020-01-16 |
| 915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b DOAJ : Peer review |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2020-01-16 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2020-01-16 |
| 920 | 1 | _ | |0 I:(DE-Juel1)IAS-1-20090406 |k IAS-1 |l Quanten-Theorie der Materialien |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)PGI-1-20110106 |k PGI-1 |l Quanten-Theorie der Materialien |x 1 |
| 920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 2 |
| 920 | 1 | _ | |0 I:(DE-82)080012_20140620 |k JARA-HPC |l JARA - HPC |x 3 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a I:(DE-Juel1)IAS-1-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)PGI-1-20110106 |
| 980 | _ | _ | |a I:(DE-82)080009_20140620 |
| 980 | _ | _ | |a I:(DE-82)080012_20140620 |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|