
PHYSICAL REVIEW B 102, 121408(R) (2020)
Rapid Communications

Two-dimensional chiral stacking orders in quasi-one-dimensional charge density waves
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Chirality manifests in various forms in nature. However, there is no evidence of the chirality in
one-dimensional charge density wave (CDW) systems. Here, we have explored the chirality among quasi-one-
dimensional CDW ground states with the aid of scanning tunneling microscopy, symmetry analysis, and density
functional theory calculations. We discovered three distinct chiralities emerging in the form of two-dimensional
chiral stacking orders composed of degenerate CDW ground states: right-, left-, and nonchiral stacking orders.
Such chiral stacking orders correspond to newly introduced chiral winding numbers. Furthermore, we observed
that these chiral stacking orders are intertwined with chiral vortices and chiral domain walls, which play a crucial
role in engineering the chiral stacking orders. Our findings suggest that the unexpected chiral stacking orders can
open a way to investigate the chirality in CDW systems, which can lead to diverse phenomena such as circular
dichroism depending on chirality.

DOI: 10.1103/PhysRevB.102.121408

Chirality or handedness exists everywhere in nature and
plays a significant role in all branches of the natural sciences
including chemistry, biology, mathematics, and physics [1].
In spin- or pseudospin-ordered states, chirality manifests in
various forms including magnetic chiral solitons in chiral
magnets, vortices or skyrmions in thin magnetic layers, and
topological monopoles in Weyl semimetals [2–4]. Such rich-
ness is quite natural because of the vector order parameter in
spin/pseudospin systems. In contrast, it is hard to find chiral-
ity in charge-ordered states since their order parameter has a
scalar nature. A decade ago, two-dimensional (2D) 1T -TiSe2

was proposed as the first charge density wave (CDW) system
with a three-dimensional (3D) real-space chiral stacking order
due to inversion symmetry breaking [5]. Such a chiral order
of 1T -TiSe2 has been investigated in terms of chiral phase
transition [6] and optically induced gyrotropic electronic or-
der [7]. However, a recent sophisticated scanning tunneling
microscopy (STM) investigation revealed that the intrinsic 3D
chiral order (without optical induction) of 1T -TiSe2 is not
allowed due to its preserved inversion symmetry between two
adjacent layers [8]. Thus, the existence of the intrinsic chiral
order in 2D CDW remains elusive. Furthermore, there has
been no report regarding its one-dimensional (1D) counterpart
that exhibits 2D chiral orders in 1D CDW.

Recently, topological solitons with chirality are realized in
quasi-1D CDW atomic wires consisting of indium (In) atoms
on Si(111) [9–11]. Although the solitons are found to exhibit
unusual topological properties such as Z4 topology, charge
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fractionalization, and topological algebraic operation between
them [10,11], their CDW ground states have not been explored
in terms of chirality or chiral order. In this system, mirror
symmetry is spontaneously broken as soon as CDW arises.
Since such broken symmetry makes CDW ground states to be
geometrically chiral, this quasi-1D CDW system might show
chiral CDW orders in real space.

In this Rapid Communication, we carefully investigate the
chiral order in arrays of quasi-1D CDW wires with the aid
of STM and density functional theory (DFT) calculations.
We experimentally observed three distinct 2D chiral stacking
orders among CDW ground states with STM and performed
extensive DFT calculations with symmetry and topology anal-
ysis to investigate their energetics as well as the microscopic
mechanism behind observed chiral stacking orders. To distin-
guish these chiral stacking orders, we introduced phase-shift
vectors, which topologically lead to chiral winding numbers.
In addition, these 2D chiral stacking orders are intertwined
with chiral vortices and chiral domain walls, which may en-
able one to manipulate the emergent 2D chiral CDW orders.

The quasi-1D metallic nanowire system, In/Si(111), was
grown by depositing one monolayer of In atoms onto the
clean Si(111) surface at 700 K [9,12]. Subsequently, the sam-
ple was cooled down well below the (4 × 1)–(8 × 2) CDW
transition temperature of about 125 K. STM experiments were
performed in an ultrahigh vacuum (below 1 × 10−8 Pa) at low
temperature (T = 78.150 ± 0.001 K). All STM images pre-
sented here were obtained in the constant-current mode with
an electrochemically etched tungsten tip. To clearly visualize
CDW phases, the sample bias and tunneling current were set
to −0.5 V and 0.1 nA, respectively.

To properly predict the energetics of the In/Si(111) sys-
tem, we have performed DFT calculations employing the
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FIG. 1. (a) Atomic structures of 4 × 1 and a degenerate 4 × 2
CDW quartet (a, b, c, and d). In atoms are represented by black and
colored spheres. Gray spheres indicate Si atoms in the zigzag chains
at the surface while smaller ones do in the substrate. Each colored
oval corresponds to bright protrusions on STM images. Vertical lines
and black dashed rectangles indicate Mx mirror planes and unit cells,
respectively. �1 and �2 represent the atomic dimerization displace-
ments for two In outer subchains. The surface coordinate system
is defined by x and y along the [11̄0] and [112̄] crystallographic
directions, respectively. (b) STM image of In atomic wires grown
on Si(111) obtained at 78 K. Scale bar, 3 nm. Along the y axis,
there are dominant ordering patterns consisting of 4 × 2 structures
in (a). In each inset, zoom-in STM images are overlaid with the
corresponding atomic configurations. Four dominant local ordering
patterns are referred to as dcba, abcd , bc, and ad by counting from
bottom to top.

Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional [13,14]
with the van der Waals (vdW) correction [15,16] (referred to
as HSE+vdW) within the FHI-aims code [17]. Note that the
HSE+vdW scheme has been successfully applied to predict
the energetics of 4 × 1, 4 × 2, and 8 × 2 structures as well as
the band gap [18–21], which is consistent with previous ex-
perimental observations [22,23]. Since the energy differences
among various phases are small, we carefully performed cal-
culations with dense 256 k points per 4 × 1 unit cell and force
criteria for optimizing the structures being set to 0.001 eV/Å.
The Si(111) substrate below the In wires was modeled by a
six-layer slab with ∼30 Å of vacuum in between the slabs.
The bottom two-layer Si atoms with the lowest bottom Si
layer passivated by H atoms were fixed during the structure
relaxation.

Self-assembled In nanowires on Si(111) consist of two In
atomic zigzag subchains in the [11̄0] direction [Fig. 1(a)],
which are stitched with adjacent Si chains [24–26]. Upon
cooling, two In atomic subchains undergo a structural tran-
sition from 4 × 1 to 4 × 2 through the periodicity-doubling
dimerization [�1,�2 in Fig. 1(a)] along a wire. The two-way
dimerization degree of freedom along both In atomic sub-
chains spontaneously breaks the Mx mirror symmetry of the
4 × 1 structure [27]. This broken symmetry leads to a unique
CDW quartet {a, b, c, d}, which consists of four symmetri-

TABLE I. Calculated total energies (in meV per 8 × 2 unit cell)
of possible 8 × 2 structures relative to the lowest energy configura-
tion ad .

a b c d

a 84.2 4.3 106.5 0.0
b 4.3 84.2 0.0 106.5
c 106.5 0.0 84.2 4.3
d 0.0 106.5 4.3 84.2

cally distinct 4 × 2 CDW ground states as shown in Fig. 1(a).
Each 4 × 2 CDW ground state is chiral as it cannot be su-
perposed onto its mirror image by any combination of rigid
rotations and translations. In the CDW quartet, one can further
classify chiral or achiral partners depending on their symme-
try relations. For instance, a is a chiral partner (mirror image)
of b and d related by mirror operators M1 and M2, respectively
[Fig. 1(a)]. In contrast, a (b) and c (d) are achiral partners
to each other since they are superposed by a half-translation
operator Tx [see also Fig. S1(a) in the Supplemental Material
[28]].

Interestingly, interwire coupling in this system forces the
4 × 2 CDW quartet to exhibit unusual 2D ordering behavior
perpendicular to the wires. As shown in Fig. 1(b), each atomic
wire is alternatively stacked with its chiral partners along
the y axis [12]. Such a local chiral order between two chiral
partners is referred to as 8 × 2 structures in previous works.
With no preference for neighboring chiral partners, symmet-
rically inequivalent 8 × 2 orders are apparently intermixed as
witnessed by Fig. 1(b), giving rise to ×2 diffraction streaks in
the low-energy electron-diffraction measurements [29]. How-
ever, with careful examination of our low-temperature STM
images, we found that there coexist dominant 2D chiral stack-
ing orders among 4 × 2 building blocks [see the insets of
Fig. 1(b)]. Such exotic chiral stacking orders perpendicular to
the wires are unexpected and unexplored by previous works.

To find the lowest energy configuration of 8 × 2, we
first calculate all possible structures constructed from a de-
generate 4 × 2 CDW quartet (Table I). We perceive that
only four configurations represented by aa, ab, ac, and ad

are symmetrically distinct [30]. Other possible configurations
are obtained from these four structures by applying appropri-
ate operators such as mirror or half-translation (see Fig. S1 in
the Supplemental Material [28]). As shown in Table I, ad is
the ground state stabilized over aa, ab, and ac by 84.2, 4.3,
and 106.5 meV per 8 × 2 unit cell, respectively. Note that the
ab and ad structures stacked by chiral partners are more stable
than aa and ac stacked by achiral partners, consistent with the
experimental observation in Fig. 1(b).

To understand the mechanism for the preference of chiral
partners, we compare calculated geometries and band struc-
tures for aa, ab, ac, and ad structures (Fig. 2). Compared
to an ideal 4 × 1 structure, each 8 × 2 structure has differ-
ent dimerization patterns of Si zigzag chains [see arrows
in Figs. 2(a)–2(d) and Table II]. These dimerized Si zigzag
chains mainly determine the energetics in Table I. Larger Si
dimerization δi=1,2 (δ1 ≡ |d2 − d1| and δ2 ≡ |d4 − d3|, where
di is an interatomic distance between Si atoms in the Si zigzag
chains) leads to larger electronic energy gain; thus, aa, ab,
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FIG. 2. (a)–(d) Four symmetrically distinct 8 × 2 structures (aa,
ab, ac, and ad configurations) and (e)–(h) their band structures. In
(a)–(d), displacements of Si atoms relative to 4 × 1 structure (arrows)
and interatomic distances between Si atoms (di; i = 1, 2, 3, and
4) in Si zigzag chains are indicated. The glide mirror planes (Gx)
are drawn in (b) and (d). Black dashed rectangles indicate unit cells.
In (e)–(h), the bands projected onto orbitals of Si and In atoms are
displayed where the magnitude of half-triangles is proportional to the
weight.

and ad structures are more stable than ac structure. However,
since the cost in lattice energy is proportional to δ2

i , both
larger dimerizations of a single Si zigzag chain (aa) lead to
higher energy than the case of one smaller and one larger
dimerization (ab and ad). This finding strongly supports the
alternating CDW orientations (either ab or ad) perpendicular
to the wire due to the interwire coupling. Moreover, we notice
that the larger Si dimerizations are differently located in ab

and ad: the larger Si dimerization δ1 (δ2) for ab (ad) occurs
right above the hollow (bonding) site of the Si substrate. Such
a subtle difference induces the sublattice symmetry breaking,
leading to the small energy difference (Table I) between the
otherwise degenerate ab and ad structures. In this sense, the
ad configuration is a true ground state having 8 × 2 period-
icity together with other symmetrically equivalent structures
(da, bc, and cb), as observed in Fig. 1(b). It is noteworthy
that the previous DFT studies [18,20,23,26] overlooked the
difference between ab and ad structures: ab and ad were used
without distinction for describing experimentally observed
8 × 2 structures. Here we clarify the 8 × 2 ground state and

TABLE II. Calculated Si dimerization magnitudes (in Å) δ1 ≡

|d2 − d1| and δ2 ≡ |d4 − d3|. Here, di is an interatomic distance
between Si atoms in the Si zigzag chains as shown in Figs. 2(a)–2(d).

aa ab ac ad

δ1 0.179 0.167 0.037 0.041
δ2 0.185 0.034 0.034 0.177

(a)

a

b d

ca a

a

d dbb

(c) (d)(b)

FIG. 3. (a) Stacking sequence diagram for possible (16 × 2)
periodicity based on energetics in Table I and (b)– (d) calculated de-
generate ground states with (b) nonchiral (ad), (c) left-chiral (abcd),
and (d) right-chiral (adcb) stacking orders. In (b)–(d), the phase-
shift vectors connect one In hexagon to another nearest-neighbor In
hexagon, and their colors indicate the different connecting directions.
Black dashed rectangles indicate unit cells.

present the microscopic mechanism for considerable interwire
coupling in the In/Si(111) system.

Figures 2(e)–2(h) display the calculated atom-projected
band structures for aa, ab, ac, and ad configurations. They all
show insulating electronic structures with the surface states
composed of the hybridization between Si and In orbitals.
Along the XM and Y Ŵ lines, the band dispersions are not flat,
which indicates that there is substantial interwire coupling in
the 8 × 2 structures. Unfavorable aa and ac structures have
conduction band minima at the Ŵ point, which disagrees with
the observed insulating electronic structure showing conduc-
tion band minima at the X point by time- and angle-resolved
photoemission spectroscopy (trARPES) [31,32]. For ab and
ad , where the overall band structures of two configurations
are nearly the same, there are twofold degeneracies along
the MY line due to the glide mirror Gx and time-reversal θ

symmetries: Kramers-like degeneracy protected by combined
antiunitary operator (Gxθ )2 = −1 along the Gxθ -invariant
MY line where θ2 = 1 in our spinless system [33]. It is
noteworthy that the band structure of the ad configuration
calculated by HSE+vdW is remarkably consistent with the
trARPES experiment and is improved over previous GW cal-
culation (see Fig. S2 in the Supplemental Material [28]).

Next, we consider a longer periodicity of stacking along
the y axis. To explain the observed 16 × 2 stacking periodicity
in Fig. 1(b), we investigate the possible 16 × 2 ground states
based on Table I; we present a stacking sequence diagram
made out of energetically favorable building blocks (ab and
ad) as well as their symmetric equivalence (ba, dc, cd; bc, da,
cb) [Fig. 3(a)]. Note that, since these building blocks should
be composed of chiral partners, odd-periodicity stacking such
as an abc (12 × 2) structure, which inevitably involves ener-
getically unfavorable stacking by achiral partners (ac or ca),
is energetically not allowed. Thus, the 16 × 2 stacking is a
minimal periodicity after the 8 × 2 periodicity.

Surprisingly, our DFT calculations show that two 16 × 2
configurations, abcd and adcb, are energetically degenerate
with the 8 × 2 ad configuration (within �0.03 meV per
8 × 2 unit cell), which nicely explains the intermixed order-
ing patterns in the experimental data [Figs. 1(b) and 3(b)–
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FIG. 4. (a) Nonchiral and (b) chiral stacking orders composed
of two and four units of 4 × 2 structures in the parameter (�i)
space. Red and blue arrows correspond to the left- and right-moving
phase-shift vectors along the y direction, respectively. In (b), red
(blue) arrows rotate counterclockwise (clockwise), leading to the
positive (negative) chiral winding number. In sharp contrast, there
is no chiral winding in the case of (a). (c) STM image of two coex-
isting different chiral stacking orders and chiral vortices. The chiral
stacking order flips over through two In-adatom defects (denoted
as white rectangles), which are chiral vortices (indicated by dashed
arrows) between the opposite chiral stacking orders. (d) STM image
of a domain wall between two chiral domains with the same chiral
winding number. The domain wall consists of In-adatom defects and
topological solitons, which are indicated by rectangles and ovals,
respectively. In (c) and (d), the helical red (blue) arrows correspond
to the positive (negative) chiral winding number in (b).

3(d); see also Fig. S3 in the Supplemental Material [28]].
To visualize the chirality of the chiral ordering between two
In atomic nanowires, we introduce two different phase-shift
vectors along the y direction as indicated by red and blue
arrows in Figs. 3(b)–3(d). Using the phase-shift vectors, 2D
stacking orders of the degenerate ad , abcd , and adcb config-
urations can be geometrically distinguished. In Fig. 3(b), the
two phase-shift vectors of the 8 × 2 ad structure appear al-
ternatively along the y direction, implying nonchiral stacking
order. On the other hand, the abcd (adcb) structure shows only
the left- (right-) moving phase-shift vectors along the y direc-
tion, indicating its left-chiral (right-chiral) stacking order.

To understand the topological meaning of chiral stacking
orders, we characterize degenerate ad , abcd , and adcb struc-
tures with their chiral winding numbers, which are defined as
the total number of turns around the gap closing point (�1 =

�2 = 0) in the order-parameter space (�i). When counting
a chiral winding number, one counterclockwise (clockwise)
turn corresponds to +1 (−1). As shown in Figs. 4(a) and 4(b),
all three structures uniquely show different chiral winding
numbers: Nad = 0, Nabcd = +1, Nadcb = −1. It is noteworthy

that there is a straightforward one-to-one mapping of the
chiral winding numbers onto the overall phase-shift vectors
described in Fig. 3.

Additionally, we discover chiral vortices and chiral do-
main walls that interpolate two distinct chiral stacking orders.
Chiral vortices exist between two chiral stacking orders with
different nonzero chiral winding numbers [Fig. 4(c)]. The
vorticity of these chiral vortices is defined by counting nearby
CDW ground states from a, b, c to d (see Fig. S4 in the
Supplemental Material [28]). A vortex (antivortex) shows a
counterclockwise (clockwise) sequence as indicated by the
dashed arrows in Fig. 4(c). In contrast to a chiral vortex,
a chiral domain wall, consisting of topological solitons and
In-adatom defects [34,35], bridges two chiral stacking orders
with the same chiral winding number [Fig. 4(d)]. These ob-
servations strongly suggest that these chiral stacking orders
exhibit domain topology, which is found in 2D topological
systems [36].

As witnessed in many materials, new functionalities can
be obtained by engineering chiral-ordered structures using
vortices or domain walls [36]. Since In nanowires show three
distinct 2D chiral stacking orders, one can expect a new
functionality such as circular dichroism, which shows the
differential absorption of left- and right-circularly polarized
light [37]. Further study is needed to see whether one can
observe and/or control the probable circular dichroism from
chiral stacking orders. For example, one may use scanning
tunneling luminescence [38–40], which can not only measure
optical response from nanometer-scale chiral stacking orders
beyond diffraction limit but may also control chiral stacking
orders by manipulating In adatoms with a scanning tip.

In summary, we found the 2D chiral stacking orders in
arrays of quasi-1D CDW ground states using STM and DFT
calculations. We experimentally observed three distinct chi-
ral stacking orders among four CDW ground states: right-,
left-, and nonchiral stacking orders. Based on the extensive
DFT calculation with symmetry and topology analysis, we
found that the dimerized Si zigzag chain captures the essential
physics for the emergence of the chiral stacking orders and
classified the three chiral stacking orders by the topological
chiral winding numbers. Furthermore, topological solitons
and defects play important roles as chiral domain walls and
vortices between distinct 2D chiral stacking orders. Our find-
ings open a research platform to explore the chirality in 1D
charge-ordered systems, which may provide new functionali-
ties such as circular dichroism.
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