001     884858
005     20230310131315.0
024 7 _ |a 10.5194/essd-12-2333-2020
|2 doi
024 7 _ |a 1866-3508
|2 ISSN
024 7 _ |a 1866-3516
|2 ISSN
024 7 _ |a 2128/25841
|2 Handle
024 7 _ |a altmetric:91560285
|2 altmetric
024 7 _ |a WOS:000576810700001
|2 WOS
037 _ _ |a FZJ-2020-03294
082 _ _ |a 550
100 1 _ |a Reichenau, Tim G.
|0 0000-0002-5062-6218
|b 0
|e Corresponding author
245 _ _ |a A comprehensive dataset of vegetation states, fluxes of matter and energy, weather, agricultural management, and soil properties from intensively monitored crop sites in western Germany
260 _ _ |a Katlenburg-Lindau
|c 2020
|b Copernics Publications
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1602005309_3366
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The development and validation of hydroecological land-surface models to simulate agricultural ar-eas require extensive data on weather, soil properties, agricultural management, and vegetation states and fluxes.However, these comprehensive data are rarely available since measurement, quality control, documentation, andcompilation of the different data types are costly in terms of time and money. Here, we present a comprehensivedataset, which was collected at four agricultural sites within the Rur catchment in western Germany in the frame-work of the Transregional Collaborative Research Centre 32 (TR32) “Patterns in Soil–Vegetation–AtmosphereSystems: Monitoring, Modeling and Data Assimilation”. Vegetation-related data comprise fresh and dry biomass(green and brown, predominantly per organ), plant height, green and brown leaf area index, phenological devel-opment state, nitrogen and carbon content (overall>17 000 entries), and masses of harvest residues and regrowthof vegetation after harvest or before planting of the main crop (>250 entries). Vegetation data including LAIwere collected in frequencies of 1 to 3 weeks in the years 2015 until 2017, mostly during overflights of the Sen-tinel 1 and Radarsat 2 satellites. In addition, fluxes of carbon, energy, and water (>180 000 half-hourly records)measured using the eddy covariance technique are included. Three flux time series have simultaneous data fromtwo different heights. Data on agricultural management include sowing and harvest dates as well as informationon cultivation, fertilization, and agrochemicals (27 management periods). The dataset also includes gap-filledweather data (>200 000 hourly records) and soil parameters (particle size distributions, carbon and nitrogencontent;>800 records). These data can also be useful for development and validation of remote-sensing prod-ucts. The dataset is hosted at the TR32 database (https://www.tr32db.uni-koeln.de/data.php?dataID=1889, lastaccess: 29 September 2020) and has the DOI https://doi.org/10.5880/TR32DB.39 (Reichenau et al., 2020).
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|x 0
|f POF III
536 _ _ |a DFG project 15232683 - TRR 32: Muster und Strukturen in Boden-Pflanzen-Atmosphären-Systemen: Erfassung, Modellierung und Datenassimilation (15232683)
|0 G:(GEPRIS)15232683
|c 15232683
|x 1
536 _ _ |a TERENO - Terrestrial Environmental Observatories (TERENO-2008)
|0 G:(DE-HGF)TERENO-2008
|c TERENO-2008
|x 2
|f TERENO-2008
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Korres, Wolfgang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Schmidt, Marius
|0 P:(DE-Juel1)144420
|b 2
700 1 _ |a Graf, Alexander
|0 P:(DE-Juel1)129461
|b 3
700 1 _ |a Welp, Gerhard
|0 0000-0002-6879-077X
|b 4
700 1 _ |a Meyer, Nele
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Stadler, Anja
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Brogi, Cosimo
|0 P:(DE-Juel1)168418
|b 7
700 1 _ |a Schneider, Karl
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.5194/essd-12-2333-2020
|g Vol. 12, no. 4, p. 2333 - 2364
|0 PERI:(DE-600)2475469-9
|n 4
|p 2333 - 2364
|t Earth system science data
|v 12
|y 2020
|x 1866-3516
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884858/files/essd-12-2333-2020.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884858/files/essd-12-2333-2020.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884858
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)144420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)168418
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-10
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-10
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EARTH SYST SCI DATA : 2018
|d 2020-01-10
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b EARTH SYST SCI DATA : 2018
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-10
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-10
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-10
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-10
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21