000884897 001__ 884897
000884897 005__ 20240712100822.0
000884897 0247_ $$2doi$$a10.5194/acp-2020-458
000884897 0247_ $$2Handle$$a2128/25812
000884897 0247_ $$2altmetric$$aaltmetric:85468932
000884897 037__ $$aFZJ-2020-03302
000884897 082__ $$a550
000884897 1001_ $$0P:(DE-Juel1)171935$$aCharlesworth, Edward J.$$b0$$eCorresponding author
000884897 245__ $$aImpact of Lagrangian Transport on Lower-Stratospheric Transport Time Scales in a Climate Model
000884897 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000884897 3367_ $$2DRIVER$$aarticle
000884897 3367_ $$2DataCite$$aOutput Types/Journal article
000884897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601637695_15070
000884897 3367_ $$2BibTeX$$aARTICLE
000884897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884897 3367_ $$00$$2EndNote$$aJournal Article
000884897 520__ $$aWe investigate the impact of model trace gas transport schemes on the representation of transport processes in the upper troposphere and lower stratosphere. Towards this end, the Chemical Lagrangian Model of the Stratosphere (CLaMS) was coupled to the ECHAM/MESSy Atmospheric Chemistry (EMAC) model and results from the two transport schemes were compared. Advection in CLaMS was driven by the EMAC simulation winds and thereby the only differences in transport between the two sets of results were caused by differences in the transport schemes. To analyze the time scales of large-scale transport, multiple tropical-surface-emitted tracer pulses were performed to calculate age of air spectra, while smaller-scale transport was analyzed via idealized, radioactively-decaying tracers emitted in smaller regions (nine grid cells) within the stratosphere. The results show that stratospheric transport barriers are significantly stronger for Lagrangian EMAC-CLaMS transport due to reduced numerical diffusion. In particular, stronger tracer gradients emerge around the polar vortex, at the subtropical jets, and at the edge of the tropical pipe. Inside the polar vortex, the more diffusive EMAC flux-form semi-Lagrangian transport scheme results in a substantially higher amount of air with ages from 0 to 2 years (up to a factor 5 higher). In the lowermost stratosphere, air is much younger in EMAC, owing to stronger diffusive cross-tropopause transport. Conversely, EMAC-CLaMS shows a summertime lowermost stratosphere age inversion – a layer of older air residing below younger air (an eave). This pattern is caused by strong poleward transport above the subtropical jet, and is entirely blurred by diffusive cross-tropopause transport in EMAC. Potential consequences from the choice of the transport scheme on CCM and geoengineering simulations are discussed.
000884897 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000884897 588__ $$aDataset connected to CrossRef
000884897 7001_ $$0P:(DE-Juel1)179468$$aDugstad, Ann-Kristin$$b1$$ufzj
000884897 7001_ $$0P:(DE-HGF)0$$aFritsch, Frauke$$b2
000884897 7001_ $$00000-0002-8964-1394$$aJöckel, Patrick$$b3
000884897 7001_ $$0P:(DE-Juel1)129141$$aPloeger, Felix$$b4$$ufzj
000884897 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-458$$p $$tAtmospheric chemistry and physics / Discussions$$v458$$x1680-7367$$y2020
000884897 8564_ $$uhttps://juser.fz-juelich.de/record/884897/files/acp-2020-458.pdf$$yOpenAccess
000884897 8564_ $$uhttps://juser.fz-juelich.de/record/884897/files/acp-2020-458.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884897 909CO $$ooai:juser.fz-juelich.de:884897$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171935$$aForschungszentrum Jülich$$b0$$kFZJ
000884897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)179468$$aForschungszentrum Jülich$$b1$$kFZJ
000884897 9101_ $$0I:(DE-HGF)0$$60000-0002-8964-1394$$aExternal Institute$$b3$$kExtern
000884897 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129141$$aForschungszentrum Jülich$$b4$$kFZJ
000884897 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000884897 9141_ $$y2020
000884897 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000884897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000884897 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884897 920__ $$lyes
000884897 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000884897 9801_ $$aFullTexts
000884897 980__ $$ajournal
000884897 980__ $$aVDB
000884897 980__ $$aUNRESTRICTED
000884897 980__ $$aI:(DE-Juel1)IEK-7-20101013
000884897 981__ $$aI:(DE-Juel1)ICE-4-20101013