000884899 001__ 884899
000884899 005__ 20240712100822.0
000884899 0247_ $$2doi$$a10.5194/acp-2020-327
000884899 0247_ $$2Handle$$a2128/25813
000884899 0247_ $$2altmetric$$aaltmetric:80733547
000884899 037__ $$aFZJ-2020-03304
000884899 082__ $$a550
000884899 1001_ $$0P:(DE-Juel1)165731$$aKrisch, Isabell$$b0$$eCorresponding author
000884899 245__ $$aSuperposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
000884899 260__ $$aKatlenburg-Lindau$$bEGU$$c2020
000884899 3367_ $$2DRIVER$$aarticle
000884899 3367_ $$2DataCite$$aOutput Types/Journal article
000884899 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604414658_633
000884899 3367_ $$2BibTeX$$aARTICLE
000884899 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884899 3367_ $$00$$2EndNote$$aJournal Article
000884899 520__ $$aA complex gravity wave structure consisting of a superposition of multiple wave packets was observed above southern Scandinavia on 28 January 2016 with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA). The tomographic measurement capability of GLORIA enabled a detailed 3-D reconstruction of the gravity wave field and the identification of multiple wave packets with different horizontal and vertical scales. The larger-scale gravity waves with horizontal wavelengths 5 around 400 km could be characterised using a 3-D wave-decomposition method. For the characterization of the smaller-scale wave components with horizontal wavelengths below 200 km, the 3-D wave-decomposition method needs to be further improved in the future. For the larger-scale gravity wave components, a combination of gravity-wave ray-tracing calculations and ERA5 reanalysis fields identified orography as well as a jet-exit region and a low pressure system as possible sources. All gravity waves propagate 10 upward into the middle stratosphere, but only the orographic waves stay directly above their source. The comparison with ERA5 also shows that ray-tracing provides reasonable results even for such complex cases with multiple overlapping wave packets. AIRS measurements in the middle stratosphere support these findings, even though their coarse vertical resolution barely resolves the observed wave structure in this case study. The high-resolution GLORIA observations are therefore an important source of information on gravity wave characteristics in the upper troposphere and lower stratosphere region.
000884899 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000884899 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1
000884899 588__ $$aDataset connected to CrossRef
000884899 7001_ $$0P:(DE-Juel1)129117$$aErn, Manfred$$b1
000884899 7001_ $$0P:(DE-Juel1)129125$$aHoffmann, Lars$$b2
000884899 7001_ $$0P:(DE-Juel1)129143$$aPreusse, Peter$$b3$$ufzj
000884899 7001_ $$0P:(DE-Juel1)169715$$aStrube, Cornelia$$b4$$ufzj
000884899 7001_ $$0P:(DE-Juel1)129105$$aUngermann, Jörn$$b5$$ufzj
000884899 7001_ $$0P:(DE-HGF)0$$aWoiwode, Wolfgang$$b6
000884899 7001_ $$0P:(DE-Juel1)129145$$aRiese, Martin$$b7
000884899 773__ $$0PERI:(DE-600)2069857-4$$a10.5194/acp-2020-327$$p-$$tAtmospheric chemistry and physics / Discussions$$v327$$x1680-7367$$y2020
000884899 8564_ $$uhttps://juser.fz-juelich.de/record/884899/files/acp-2020-327.pdf$$yOpenAccess
000884899 8564_ $$uhttps://juser.fz-juelich.de/record/884899/files/acp-2020-327.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884899 909CO $$ooai:juser.fz-juelich.de:884899$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129117$$aForschungszentrum Jülich$$b1$$kFZJ
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129125$$aForschungszentrum Jülich$$b2$$kFZJ
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129143$$aForschungszentrum Jülich$$b3$$kFZJ
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169715$$aForschungszentrum Jülich$$b4$$kFZJ
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129105$$aForschungszentrum Jülich$$b5$$kFZJ
000884899 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129145$$aForschungszentrum Jülich$$b7$$kFZJ
000884899 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000884899 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1
000884899 9141_ $$y2020
000884899 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database$$d2020-02-27
000884899 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884899 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-02-27
000884899 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884899 920__ $$lyes
000884899 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000884899 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000884899 9801_ $$aFullTexts
000884899 980__ $$ajournal
000884899 980__ $$aVDB
000884899 980__ $$aI:(DE-Juel1)IEK-7-20101013
000884899 980__ $$aI:(DE-Juel1)JSC-20090406
000884899 980__ $$aUNRESTRICTED
000884899 981__ $$aI:(DE-Juel1)ICE-4-20101013