001     884899
005     20240712100822.0
024 7 _ |a 10.5194/acp-2020-327
|2 doi
024 7 _ |a 2128/25813
|2 Handle
024 7 _ |a altmetric:80733547
|2 altmetric
037 _ _ |a FZJ-2020-03304
082 _ _ |a 550
100 1 _ |a Krisch, Isabell
|0 P:(DE-Juel1)165731
|b 0
|e Corresponding author
245 _ _ |a Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
260 _ _ |a Katlenburg-Lindau
|c 2020
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1604414658_633
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A complex gravity wave structure consisting of a superposition of multiple wave packets was observed above southern Scandinavia on 28 January 2016 with the Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA). The tomographic measurement capability of GLORIA enabled a detailed 3-D reconstruction of the gravity wave field and the identification of multiple wave packets with different horizontal and vertical scales. The larger-scale gravity waves with horizontal wavelengths 5 around 400 km could be characterised using a 3-D wave-decomposition method. For the characterization of the smaller-scale wave components with horizontal wavelengths below 200 km, the 3-D wave-decomposition method needs to be further improved in the future. For the larger-scale gravity wave components, a combination of gravity-wave ray-tracing calculations and ERA5 reanalysis fields identified orography as well as a jet-exit region and a low pressure system as possible sources. All gravity waves propagate 10 upward into the middle stratosphere, but only the orographic waves stay directly above their source. The comparison with ERA5 also shows that ray-tracing provides reasonable results even for such complex cases with multiple overlapping wave packets. AIRS measurements in the middle stratosphere support these findings, even though their coarse vertical resolution barely resolves the observed wave structure in this case study. The high-resolution GLORIA observations are therefore an important source of information on gravity wave characteristics in the upper troposphere and lower stratosphere region.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Ern, Manfred
|0 P:(DE-Juel1)129117
|b 1
700 1 _ |a Hoffmann, Lars
|0 P:(DE-Juel1)129125
|b 2
700 1 _ |a Preusse, Peter
|0 P:(DE-Juel1)129143
|b 3
|u fzj
700 1 _ |a Strube, Cornelia
|0 P:(DE-Juel1)169715
|b 4
|u fzj
700 1 _ |a Ungermann, Jörn
|0 P:(DE-Juel1)129105
|b 5
|u fzj
700 1 _ |a Woiwode, Wolfgang
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Riese, Martin
|0 P:(DE-Juel1)129145
|b 7
773 _ _ |a 10.5194/acp-2020-327
|0 PERI:(DE-600)2069857-4
|p -
|t Atmospheric chemistry and physics / Discussions
|v 327
|y 2020
|x 1680-7367
856 4 _ |u https://juser.fz-juelich.de/record/884899/files/acp-2020-327.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/884899/files/acp-2020-327.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:884899
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129117
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129125
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129143
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)169715
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129105
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129145
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2020-02-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-02-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21