000884900 001__ 884900
000884900 005__ 20240712100823.0
000884900 0247_ $$2doi$$a10.5194/amt-2020-176
000884900 0247_ $$2Handle$$a2128/25814
000884900 0247_ $$2altmetric$$aaltmetric:83053413
000884900 037__ $$aFZJ-2020-03305
000884900 082__ $$a550
000884900 1001_ $$0P:(DE-HGF)0$$aJorge, Teresa$$b0$$eCorresponding author
000884900 245__ $$aUnderstanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds
000884900 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020
000884900 3367_ $$2DRIVER$$aarticle
000884900 3367_ $$2DataCite$$aOutput Types/Journal article
000884900 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601642562_17684
000884900 3367_ $$2BibTeX$$aARTICLE
000884900 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884900 3367_ $$00$$2EndNote$$aJournal Article
000884900 520__ $$aAbstract. Balloon-borne water vapour measurements in the (sub)tropical upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements difficult, particularly after crossing low clouds containing supercooled droplets. A large set of measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall-contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using Computational Fluid Dynamics (CFD). We find that the airflow can enter the intake tube with impingement angles up to 60°, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 μm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 μm radius freeze, and droplets 100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only at high altitudes (p
000884900 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000884900 588__ $$aDataset connected to CrossRef
000884900 7001_ $$0P:(DE-HGF)0$$aBrunamonti, Simone$$b1
000884900 7001_ $$00000-0001-5740-8056$$aPoltera, Yann$$b2
000884900 7001_ $$0P:(DE-HGF)0$$aWienhold, Frank G.$$b3
000884900 7001_ $$0P:(DE-HGF)0$$aLuo, Bei P.$$b4
000884900 7001_ $$0P:(DE-HGF)0$$aOelsner, Peter$$b5
000884900 7001_ $$0P:(DE-Juel1)171206$$aHanumanthu, Sreeharsha$$b6
000884900 7001_ $$00000-0003-3877-6800$$aSing, Bhupendra B.$$b7
000884900 7001_ $$0P:(DE-HGF)0$$aKörner, Susanne$$b8
000884900 7001_ $$0P:(DE-HGF)0$$aDirksen, Ruud$$b9
000884900 7001_ $$00000-0002-4597-1690$$aNaja, Manish$$b10
000884900 7001_ $$00000-0003-4442-0755$$aFadnavis, Suvarna$$b11
000884900 7001_ $$0P:(DE-HGF)0$$aPeter, Thomas$$b12
000884900 773__ $$0PERI:(DE-600)2505596-3$$a10.5194/amt-2020-176$$p-$$tAtmospheric measurement techniques$$v-$$x1867-1381$$y2020
000884900 8564_ $$uhttps://juser.fz-juelich.de/record/884900/files/amt-2020-176.pdf$$yOpenAccess
000884900 8564_ $$uhttps://juser.fz-juelich.de/record/884900/files/amt-2020-176.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884900 909CO $$ooai:juser.fz-juelich.de:884900$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000884900 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000884900 9101_ $$0I:(DE-HGF)0$$60000-0001-5740-8056$$aExternal Institute$$b2$$kExtern
000884900 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171206$$aForschungszentrum Jülich$$b6$$kFZJ
000884900 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000884900 9141_ $$y2020
000884900 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-18
000884900 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884900 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884900 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$f2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS MEAS TECH : 2018$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-18
000884900 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-18
000884900 920__ $$lyes
000884900 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000884900 9801_ $$aFullTexts
000884900 980__ $$ajournal
000884900 980__ $$aVDB
000884900 980__ $$aUNRESTRICTED
000884900 980__ $$aI:(DE-Juel1)IEK-7-20101013
000884900 981__ $$aI:(DE-Juel1)ICE-4-20101013