001     884900
005     20240712100823.0
024 7 _ |a 10.5194/amt-2020-176
|2 doi
024 7 _ |a 2128/25814
|2 Handle
024 7 _ |a altmetric:83053413
|2 altmetric
037 _ _ |a FZJ-2020-03305
082 _ _ |a 550
100 1 _ |a Jorge, Teresa
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Understanding cryogenic frost point hygrometer measurements after contamination by mixed-phase clouds
260 _ _ |a Katlenburg-Lindau
|c 2020
|b Copernicus
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1601642562_17684
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Abstract. Balloon-borne water vapour measurements in the (sub)tropical upper troposphere and lower stratosphere (UTLS) by means of frost point hygrometers provide important information on air chemistry and climate. However, the risk of contamination from sublimating hydrometeors collected by the intake tube may render these measurements difficult, particularly after crossing low clouds containing supercooled droplets. A large set of measurements during the 2016–2017 StratoClim balloon campaigns at the southern slopes of the Himalayas allows us to perform an in-depth analysis of this type of contamination. We investigate the efficiency of wall-contact and freezing of supercooled droplets in the intake tube and the subsequent sublimation in the UTLS using Computational Fluid Dynamics (CFD). We find that the airflow can enter the intake tube with impingement angles up to 60°, owing to the pendulum motion of the payload. Supercooled droplets with radii > 70 μm, as they frequently occur in mid-tropospheric clouds, typically undergo contact freezing when entering the intake tube, whereas only about 50 % of droplets with 10 μm radius freeze, and droplets 100 ppmv) in the stratosphere. Furthermore, we use CFD to differentiate between stratospheric water vapour contamination by an icy intake tube and contamination caused by outgassing from the balloon and payload, revealing that the latter starts playing a role only at high altitudes (p
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Brunamonti, Simone
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Poltera, Yann
|0 0000-0001-5740-8056
|b 2
700 1 _ |a Wienhold, Frank G.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Luo, Bei P.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Oelsner, Peter
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hanumanthu, Sreeharsha
|0 P:(DE-Juel1)171206
|b 6
700 1 _ |a Sing, Bhupendra B.
|0 0000-0003-3877-6800
|b 7
700 1 _ |a Körner, Susanne
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dirksen, Ruud
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Naja, Manish
|0 0000-0002-4597-1690
|b 10
700 1 _ |a Fadnavis, Suvarna
|0 0000-0003-4442-0755
|b 11
700 1 _ |a Peter, Thomas
|0 P:(DE-HGF)0
|b 12
773 _ _ |a 10.5194/amt-2020-176
|0 PERI:(DE-600)2505596-3
|p -
|t Atmospheric measurement techniques
|v -
|y 2020
|x 1867-1381
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/884900/files/amt-2020-176.pdf
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/884900/files/amt-2020-176.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:884900
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 2
|6 0000-0001-5740-8056
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)171206
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2020
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2020-01-18
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-01-18
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
|d 2020-01-18
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-01-18
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2020-01-18
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2020-01-18
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|f 2020-01-18
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS MEAS TECH : 2018
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-01-18
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-01-18
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21