000884901 001__ 884901 000884901 005__ 20240712100823.0 000884901 0247_ $$2doi$$a10.5194/amt-2020-144 000884901 0247_ $$2Handle$$a2128/25819 000884901 037__ $$aFZJ-2020-03306 000884901 082__ $$a550 000884901 1001_ $$0P:(DE-HGF)0$$aKalicinsky, Christoph$$b0$$eCorresponding author 000884901 245__ $$aRadiative transfer simulations and observations of infrared spectra in the presence of polar stratospheric clouds: Detection and discrimination of cloud types 000884901 260__ $$aKatlenburg-Lindau$$bCopernicus$$c2020 000884901 3367_ $$2DRIVER$$aarticle 000884901 3367_ $$2DataCite$$aOutput Types/Journal article 000884901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1604414411_32573 000884901 3367_ $$2BibTeX$$aARTICLE 000884901 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000884901 3367_ $$00$$2EndNote$$aJournal Article 000884901 520__ $$aPolar stratospheric clouds (PSCs) play an important role for the spatial and temporal evolution of trace gases inside the polar vortex due to different processes, such as chlorine activation and NOy redistribution. As there are still uncertainties in the representation of PSCs in model simulations, detailed observations of PSCs and information on their type (nitric acid trihydrate (NAT), supercooled ternary solution (STS), and ice) are desirable. The measurements inside PSCs by the airborne infrared limb sounder CRISTA-NF (CRyogenic Infrared Spectrometers and Telescope for the Atmosphere – New Frontiers) during the RECONCILE (Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions) aircraft campaign showed a spectral peak at about 816 cm−1. This peak is shifted compared to the peak at about 820 cm−1, which is known to be caused by small NAT particles. To investigate the reason for this spectral difference we performed a large set of radiative transfer simulations of infrared limb emission spectra in the presence of various PSCs (NAT, STS, ice, and mixtures) for the airborne viewing geometry of CRISTA-NF. NAT particles can cause different spectral features in the region 810–820 cm−1. The simulation results show that the appereance of the feature changes with increasing median radius of the NAT particle size distribution from a peak at 820 cm−1 to a shifted peak and, finally, to a step-like feature in the spectrum. Based on this behaviour we defined different colour indices to detect PSCs containing NAT particles and to subgroup them into three size regimes: small NAT (≤ 1.0 μm), medium NAT (1.5–4.0 μm), and large NAT (≥ 3.5 μm). Furthermore, we developed a method to detect the bottom altitude of a cloud by using the cloud index (CI), a colour ratio indicating the optical thickness, and the gradient of the CI. Finally, we applied the methods to observations of the CRISTA-NF instrument during one local flight of the RECONCILE aircraft campaign and found STS and medium sized NAT. 000884901 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0 000884901 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x1 000884901 588__ $$aDataset connected to CrossRef 000884901 7001_ $$0P:(DE-Juel1)129121$$aGriessbach, Sabine$$b1$$ufzj 000884901 7001_ $$0P:(DE-Juel1)129154$$aSpang, Reinhold$$b2 000884901 773__ $$0PERI:(DE-600)2507817-3$$a10.5194/amt-2020-144$$p $$tAtmospheric measurement techniques discussions$$v144$$x1867-8610$$y2020 000884901 8564_ $$uhttps://juser.fz-juelich.de/record/884901/files/amt-2020-144.pdf$$yOpenAccess 000884901 8564_ $$uhttps://juser.fz-juelich.de/record/884901/files/amt-2020-144.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000884901 909CO $$ooai:juser.fz-juelich.de:884901$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000884901 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a Universität Wuppertal$$b0 000884901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129121$$aForschungszentrum Jülich$$b1$$kFZJ 000884901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129154$$aForschungszentrum Jülich$$b2$$kFZJ 000884901 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0 000884901 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x1 000884901 9141_ $$y2020 000884901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000884901 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000884901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-09 000884901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-09 000884901 920__ $$lyes 000884901 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0 000884901 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1 000884901 9801_ $$aFullTexts 000884901 980__ $$ajournal 000884901 980__ $$aVDB 000884901 980__ $$aI:(DE-Juel1)IEK-7-20101013 000884901 980__ $$aI:(DE-Juel1)JSC-20090406 000884901 980__ $$aUNRESTRICTED 000884901 981__ $$aI:(DE-Juel1)ICE-4-20101013