000884902 001__ 884902
000884902 005__ 20240712100823.0
000884902 0247_ $$2doi$$a10.5194/essd-2019-162
000884902 0247_ $$2Handle$$a2128/25820
000884902 0247_ $$2altmetric$$aaltmetric:68115574
000884902 037__ $$aFZJ-2020-03307
000884902 082__ $$a550
000884902 1001_ $$00000-0001-7040-149X$$aLennartz, Sinikka T.$$b0$$eCorresponding author
000884902 245__ $$aMarine carbonyl sulfide (OCS) and carbon disulfide (CS<sub>2</sub>): a compilation of measurements in seawater and the marine boundary layer
000884902 260__ $$aKatlenburg-Lindau$$bCopernics Publications$$c2019
000884902 3367_ $$2DRIVER$$aarticle
000884902 3367_ $$2DataCite$$aOutput Types/Journal article
000884902 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1601646953_14413
000884902 3367_ $$2BibTeX$$aARTICLE
000884902 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000884902 3367_ $$00$$2EndNote$$aJournal Article
000884902 520__ $$aCarbonyl sulfide (OCS) and carbon disulfide (CS2) are volatile sulfur gases that are naturally formed in seawater and exchanged with the atmosphere. OCS is the most abundant sulfur gas in the atmosphere, and CS2 is its most important precursor. They have gained interest due to their direct (OCS) or indirect (CS2 via oxidation to OCS) contribution to the stratospheric sulfate aerosol layer. Furthermore, OCS serves as a proxy to constrain terrestrial CO2 uptake by vegetation. Oceanic emissions of both gases contribute a major part to their atmospheric concentration. Here we present a database of previously published and unpublished, mainly ship-borne measurements in seawater and the marine boundary layer for both gases, available at https://doi.pangaea.de/10.1594/PANGAEA.905430 (Lennartz et al., 2019). The database contains original measurements as well as data digitalized from figures in publications from 42 measurement campaigns, i.e. cruises or time series stations, ranging from 1982 to 2019. OCS data cover all ocean basins except for the Arctic Ocean, as well as all months of the year, while the CS2 dataset shows large gaps in spatial and temporal coverage. Concentrations are consistent across different sampling and analysis techniques for OCS. The database is intended to support the identification of global spatial and temporal patterns and to facilitate the evaluation of model simulations.
000884902 536__ $$0G:(DE-HGF)POF3-244$$a244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)$$cPOF3-244$$fPOF III$$x0
000884902 588__ $$aDataset connected to CrossRef
000884902 7001_ $$0P:(DE-HGF)0$$aMarandino, Christa A.$$b1
000884902 7001_ $$0P:(DE-Juel1)129170$$avon Hobe, Marc$$b2
000884902 7001_ $$00000-0003-1968-7925$$aAndreae, Meinrat O.$$b3
000884902 7001_ $$0P:(DE-HGF)0$$aAranami, Kazushi$$b4
000884902 7001_ $$00000-0003-3847-5346$$aAtlas, Elliot$$b5
000884902 7001_ $$00000-0002-8924-716X$$aBerkelhammer, Max$$b6
000884902 7001_ $$0P:(DE-HGF)0$$aBingemer, Heinz$$b7
000884902 7001_ $$0P:(DE-HGF)0$$aBooge, Dennis$$b8
000884902 7001_ $$0P:(DE-HGF)0$$aCutter, Gregory$$b9
000884902 7001_ $$0P:(DE-HGF)0$$aCortes, Pau$$b10
000884902 7001_ $$00000-0002-3573-7083$$aKremser, Stefanie$$b11
000884902 7001_ $$00000-0002-7669-2475$$aLaw, Cliff$$b12
000884902 7001_ $$0P:(DE-HGF)0$$aMarriner, Andrew$$b13
000884902 7001_ $$0P:(DE-HGF)0$$aSimó, Rafel$$b14
000884902 7001_ $$0P:(DE-HGF)0$$aQuack, Birgit$$b15
000884902 7001_ $$00000-0001-5105-4445$$aUher, Günther$$b16
000884902 7001_ $$00000-0001-8774-1108$$aXie, Huixiang$$b17
000884902 7001_ $$0P:(DE-HGF)0$$aXu, Xiaobin$$b18
000884902 773__ $$0PERI:(DE-600)2475469-9$$a10.5194/essd-2019-162$$p $$tEarth system science data$$v162$$x1866-3508$$y2019
000884902 8564_ $$uhttps://juser.fz-juelich.de/record/884902/files/essd-2019-162-1.pdf$$yOpenAccess
000884902 8564_ $$uhttps://juser.fz-juelich.de/record/884902/files/essd-2019-162-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000884902 909CO $$ooai:juser.fz-juelich.de:884902$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000884902 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129170$$aForschungszentrum Jülich$$b2$$kFZJ
000884902 9131_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000884902 9141_ $$y2020
000884902 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-01-10
000884902 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000884902 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEARTH SYST SCI DATA : 2018$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bEARTH SYST SCI DATA : 2018$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000884902 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-01-10
000884902 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-01-10
000884902 920__ $$lyes
000884902 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000884902 9801_ $$aFullTexts
000884902 980__ $$ajournal
000884902 980__ $$aVDB
000884902 980__ $$aUNRESTRICTED
000884902 980__ $$aI:(DE-Juel1)IEK-7-20101013
000884902 981__ $$aI:(DE-Juel1)ICE-4-20101013