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According to the Stokes–Einstein–Debye (SED) relation, the rotational diffusion coefficient
of a colloidal tracer sphere scales with the inverse of the solvent viscosity. Here we
investigate the generalization of the SED relation to tracer diffusion in suspensions of
neutral and charged colloidal host spheres. Rotational diffusion coefficients are measured
with dynamic light scattering and phosphorescence spectroscopy, and calculated including
two- and three-particle hydrodynamic interactions. We find that rotational tracer diffusion
is always faster than predicted by the SED relation, except for large tracer/host size ratios
l. In the case of neutral particles this observation is rationalized by introducing an
apparent l-dependent slip boundary coefficient. For charged spheres at low ionic strength,
large deviations from SED scaling are found due to the strongly hindered host sphere
dynamics. Finally, we present some first experiments on tracer sphere diffusion in
suspensions of host rods, showing that hydrodynamic hindrance by rods is much stronger
than by spheres. We conclude by pointing to some interesting unresolved issues for future
research.

I Introduction

The rotational diffusion coefficient of a single colloidal sphere with radius aT suspended in a solvent
with shear viscosity Z0 is given by the familiar Stokes–Einstein–Debye (SED) relation1–3

Dr
0 ¼

kBT

f r0
¼ kBT

8pZ0a
3
T

ð1Þ

with kBT the thermal energy and fr0 the Stokesian friction factor. Eqn. (1) assumes that the particle
is large enough for the solvent to behave as a structureless continuum with vanishing response time.
Moreover, stick boundary conditions are assumed, i.e. the velocity of the fluid on the tracer surface
equals that of the tracer. Eqn. (1) holds quantitatively not only for colloidal particles but,
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surprisingly, also for many molecular solutes, in particular when the numerical prefactor 8 (no slip)
in f r0 is changed to a value close to zero (complete slip).4–7

An interesting question is whether eqn. (1) can be generalized to the case of a colloidal tracer in a
colloidal host fluid, with Z0 replaced by the higher viscosity of the host suspension. A practical
motivation for studying this issue is that a generalized SED relation would allow one to extract
rheological properties of a suspension from the rotational dynamics of a dispersed tracer particle.
In contrast to conventional rheology, such a microrheological8,9 experiment employs small sample
volumes, is noninvasive, and allows one to measure local viscosities in inhomogeneous (biological)
samples. However, as for molecular diffusion, the continuum assumption underlying eqn. (1) is
expected to break down unless the tracer/host sphere size ratio l ¼ aT/aH is very large. In addi-
tion, the rotational dynamics will split into a short- and long-time regime due to hydrodynamic
interactions (HI) and direct interactions (DI) between the colloids. To distinguish between short
and long times one can define the interaction time scale

tI0 ¼
a2T
Dt

0

ð2Þ

which is the time roughly required for a significant change in the suspension microstructure. Here,
Dt

0 is the Stokesian translational diffusion coefficient of a single tracer sphere (see eqn. (4) below).
For identical tracer and host spheres (l ¼ 1) the structural relaxation time tI0 ¼ 3/(4Dr

0) is of the
same order of magnitude as the rotational diffusion time (Dr

0)
�1. In the short-time regime t� tI0,

the tracer particle slightly rotates in an essentially static configuration of neighboring particles, so
its short-time self-diffusion coefficient Dr

s with Dr
s pDr

0 is a hydrodynamic quantity controlled by
HI averaged over the equilibrium configuration.10–16 At long times t� tI0, the tracer experiences
many realizations of host-particle configurations so now DI affect diffusion directly through
memory effects, i.e. sphere caging. As a result, the long-time diffusion coefficient Dr

L is smaller than
Dr

s.
17 We note that for tracer/host size ratios l� 1 the small host particles diffuse (much) faster

than the tracer particle, so that ‘‘ short-time ’’ implies times t� tI0/l
2. The separation of time scales

suggests the following generalization of eqn. (1):

Dr
sðfÞ ¼

kBT

8pZ1ðfÞa3T
ðt � tI0Þ and Dr

LðfÞ ¼
kBT

8pZLðfÞa3T
ðt � tI0Þ: ð3Þ

Here f is the volume fraction of the host fluid, with a high frequency limiting viscosity Z1 and a
low-shear viscosity ZL . Dr

s and Z1 are both hydrodynamic quantities, while Dr
L and ZL > Z1 are

long-time transport coefficients in a dispersion slightly disturbed from equilibrium by, respectively,
the diffusing tracer or an external flow.

The translational diffusion coefficient of a tracer sphere in a colloidal fluid at infinite dilution is
given by the Stokes–Einstein (SE) relation1,2

Dt
0 ¼

kBT

f t0
¼ kBT

6pZ0aT
; ð4Þ

where ft0 is the Stokesian friction factor for stick boundary conditions. In the case of perfect slip,
where friction is due only to the solvent displaced by the diffusing tracer, ft0 ¼ 4pZ0aT . General-
izations of eqn. (4) to finite host concentrations,

Dt
sðfÞ ¼

kBT

6pZ1ðfÞaT
ðt � tI0Þ and Dt

LðfÞ ¼
kBT

6pZLðfÞaT
ðt � tI0Þ; ð5Þ

have been proposed, e.g. in ref. 18, in complete analogy to eqn. (3), introducing the short-time, Dt
s,

and long-time, Dt
L, translational tracer diffusion coefficients with Dt

0 qDt
s > Dt

L. The validity of
eqn. (5) has been tested for monodisperse suspensions of identical host and tracer particles. At
long times t� tI0, eqn. (5) holds fairly well for colloidal hard spheres,19–21 but theory18,22 predicts
that it fails in the case of charged sphere suspensions with low electrolyte concentrations. At short
times t� tI0, deviations from eqn. (5) have been observed both for neutral and charged
spheres.18,23
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Up to now, no systematic analysis has been performed of the accuracy of the SED relations for
rotational diffusion in eqn. (3). Experimental studies of rotational diffusion in dense sphere sus-
pensions are scarce, since special labelled colloids are required. The volume fraction dependence
of short-time rotational diffusion of monodisperse hard-spheres up to the freezing transition
volume fraction f ¼ 0.49 has now been measured by various groups.11,14,24 Recently, we have
also measured14,25,26 and calculated14 rotational diffusion of charged spheres in binary colloidal
mixtures.
In this paper we investigate, both by experiment and theory, the applicability of SED scaling to

rotational diffusion of tracer spheres in colloidal host suspensions according to eqn. (3). Our
expectation is that eqn. (3) (and eqn. (5)) will hold for sufficiently large tracers (large size ratio l) in
a host fluid with sufficiently fast dynamics. We study the influence of several factors which control
the host dynamics, namely the host density f, the ionic strength and host particle charge, and the
host particle shape (i.e. thin rods vs. spheres). It is shown that SED scaling fails, except in the
continuum limit, where the tracer is much larger than the host particles. However, modified ver-
sions of eqn. (3), assuming slip boundary conditions for the host spheres on the tracer surface, are
in fair agreement with measured and calculated rotational diffusion coefficients.

II Theory

We have calculated the reduced short-time rotational diffusion coefficient Hr
s ¼ Dr

s/D
r
0 of a single

tracer sphere in host sphere suspensions of charged and neutral spheres, for variable tracer/host
size ratio l ¼ aT/aH and host volume fraction f (cf. ref. 14 and 16). Our calculation is a gen-
eralization of earlier work on monodisperse hard-sphere suspensions.10,13

For small to moderate values of f, Hr
s can be approximately calculated using a truncated rooted

cluster expansion, involving hydrodynamic interactions (HI) between clusters consisting of a tracer
with one and two host spheres, according to:

Hr
sðf;lÞ � 1þHr

s1ðf;lÞfþHr
s2ðf;lÞf2: ð6Þ

The two-body coefficient Hr
s1(f,l) can be expressed in terms of the integral

Hr
s1ðf;lÞ ¼

1

a3H

Z1

aHþaT

dr r2g
ð2Þ
THðr;f;lÞ½arrTHðr;lÞ þ 2brrTHðr;lÞ�; ð7Þ

involving the tracer–host radial distribution function g
ð2Þ
TH(r;f,l), and the two-body hydrodynamic

mobility functions arrTH(r;l) and brrTH (r;l) which depend on l and on the tracer–host particle dis-
tance r. For l ¼ 1, multipole expansions of these mobility functions in powers of r�1 are known, in
principle, to arbitrary order.10,13 For l 6¼ 1, explicit r�1-expansions including contributions up to
O(r�12), are available.27,28 To calculate the three-body coefficient Hr

s2(f,l) for l 6¼ 1, we have used
the method of reflections and connectors to derive the leading order r�9 term of the three-body
mobility tensor.16 Using this asymptotic form, Hr

s2(f,l) is given by a threefold integral,

Hr
s2ðf;lÞ ¼

225

16
f2 l

1þ l

� �3Z1

0

dt12

Z1

0

dt13

Z1

1

dx1g
ð3Þ
THHðt12;t13;x1Þ

ðt12t13Þ2

h3=2
f ðt12;t13;x1Þ; ð8aÞ

with

f ðt12;t13;x1Þ ¼
t12t13x1ð1� x21Þ

h
þ x21 � 1� 2

h2
ðt12 � t13x1Þðt13 � t12x1Þ

� ðt212 þ t213Þx1 � t12t13ð5� 3x21Þ
� �

ð8bÞ

over the static triplet distribution function g
ð3Þ
THH. The latter describes static correlations between a

tracer and two host spheres as a function of the reduced distances t1i ¼ (aT+ aH)/r1i and the
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angular cosine x1 ¼~rr12 �~rr13=ðr12r13Þ, where~rr1i ¼~rr1 �~rri is the vector pointing from host particle i
to the tracer 1 (and r1i ¼ ~rr1ij j), and h ¼ t212 + t213 � 2x1t12t13 . Eqns. (8a) and (8b) reduce to the
asymptotic three-body result of Cichocki et al.13 for l ¼ 1.

For neutral tracer and host spheres, a virial expansion up to quadratic order in f, viz.

Hr
sðf;lÞ ¼ 1þ hr1ðlÞfþ hr2ðlÞf2; ð9Þ

can be deduced from eqn. (6). To obtain eqn. (9) we have substituted the leading-order in f form

g
ð2Þ
THðxÞ ¼ f1þ ff ðx;lÞYð½3þ l� � xÞ þOðf2ÞgYðx� ½1þ l�Þ ð10Þ

for g
ð2Þ
TH, where x ¼ r/aH , Y is the unit step function, and f (x,l) is an overlap function.16 For g

ð3Þ
THH

we have employed the zero-density form g
ð3Þ
THH ¼ Y(r12� [aT+ aH])Y(r13� [aT+ aH])Y(r23� 2aH).

Since charged colloids are strongly correlated even at small f, calculations of gð2ÞTH and g
ð3Þ
THH are

more involved than for hard spheres. Instead of virial expansions, we use the Rogers–Young (RY)
integral equation scheme29 to compute the radial distribution functions. The effective pair potential
between two charged colloidal spheres is modeled as a sum of a hard-sphere part and a screened
DLVO-type potential V(r).12 Assuming constant colloidal surface charges ZT and ZH of tracer and
host spheres,12,14 V(r) reads

VðrÞ ¼ ZTZHe
2

4pe
expðk½aT þ aH�Þ

ð1þ kaTÞð1þ kaHÞ
expð�krÞ

r
ð11Þ

for the tracer–host effective electrostatic interactions, with e the elementary charge, e the solvent
dielectric constant, and k�1 the Debye screening length. For g

ð3Þ
THH we use Kirkwood’s superposition

approximation g
ð3Þ
THH � g

ð2Þ
TH(r12)g

ð2Þ
TH(r13)g

ð2Þ
HH(r23), where g

ð2Þ
HH is the pair distribution function for two

host spheres. HI are more easily accounted for when the colloidal spheres are charged since g
ð2Þ
TH is

then practically zero for small distances r. Thus, only the leading far-field terms of the mobility
functions are needed in the expressions for Hr

s1 and Hr
s2.

For comparison with rotational diffusion, we also include theoretical results for the translational
short-time tracer diffusion coefficient H1

s (f,l) using the same approximate scheme as for rotational
diffusion. Details of these involved calculations are given elsewhere.10,13

We remark that our theoretical approach for calculating Hr
s(f,l) and Ht

s(f,l) is suitable only for
values of l not far from unity, with the applicable f-range becoming smaller for increasing size
asymmetry.

III Experimental methods

Rotational diffusion coefficients have been measured in binary dispersions of negatively charged
tracer and host particles using two techniques, namely time-resolved phosphorescence anisotropy
(TPA) for binary sphere mixtures with l ¼ 0.2–1 (partly discussed elsewhere)14,26 and for sphere–
rod mixtures, and depolarized dynamic light scattering (DDLS) for binary sphere mixtures with
l ¼ 10.25

TPA was applied to tracer spheres (cf. Table 1, Fig. 1A and B), covalently labeled with eosin-5-
isothiocyanate. The rotational tracer diffusion coefficient Dr

s follows from the decay rate of the
polarization anisotropy measured after excitation of the phosphorescent dye with a vertically
polarized laser light pulse.14,26,30 The experimentally accessible time scale is limited by the lifetime
of the excited state of the dye to about 10 ms. Host particles are silica spheres (Table 1, Fig. 1C),
and rods prepared by coating boehmite (g-AlOOH) cores with a 4.5 nm thick silica layer31 (Fig.
1D). The average length and diameter of the rods determined from electron microscopy are
203� 93 nm and 18� 3 nm respectively. The silica spheres were dispersed in a mixture of
dimethylsulfoxide-N,N-dimethylformamide (3:2 v/v DMSO–DMF), while the rods were dispersed
in DMF. In both cases, LiCl was added to adjust the ionic strength. Both the spheres and the rods
are stable up to high LiCl concentrations (	400 mM) due to their surface charges, the weakness of
the van der Waals attractions, and strong solvation.26

DDLS was performed on fluorocarbon tracer spheres (PFA, Ausimont) dispersed in aqueous
suspensions of silica host spheres (Ludox AS-40, DuPont) with variable amounts of added NaCl.
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Fig. 1 Transmissionelectronmicroscopy (TEM)pictures of eosin-labeled silica tracer spheres denotedasA: eR75
and B: m30, unlabeled host silica spheres denoted as C: R75 (cf.Table 1), andD: silica-covered boehmite host rods.

Table 1 Parameters of experimentally studied tracer sphere–host sphere sus-
pensions (PFA ¼ perfluoroalkylvinylether, PS ¼ polystyrene, Ludox is a trade
name for silica (DuPont), other names refer to synthesis products). Listed are the
tracer and host particle radii aT and aH (in nm) with relative size polydispersity s,
size ratio l ¼ aT/aH , and estimates for the apparent slip parameter nrs(exp). The
latter is determined experimentally in the hard-sphere-like regime of high salt
concentration, by averaging the nrs(f,l) deduced from eqn. (20) over the f-range
0 < nrs(f) < 0.45, with the experimental Hr

s(f,l) as input. Further included is the
zero-f limit nrs(l,f! 0) of hard spheres according to eqn. (19)

System aT(s) aH(s) l nrs(exp) nrs(l,f! 0)

m10-SC08 72 (2%) 298 (2%) 0.24a 0.071 0.030
eR75-SC08 95 (9%) 298 (2%) 0.32a 0.089 0.049
m10-SC07 72 (2%) 217 (2%) 0.33a 0.080 0.051
m30-SC08 100 (3%) 298 (2%) 0.34a 0.089 0.054
m30-SC07 100 (3%) 217 (2%) 0.46a 0.127 0.084
m10-R75 72 (2%) 93 (8%) 0.76a 0.250 0.155
eR75-R75 95 (9%) 93 (8%) 1.00a 0.188 0.252
PFA-PFA 110 (2%) 110 (2%) 1.00b 0.226 0.252
PS-PS 219 (13%) 219 (13%) 1.00c 0.224 0.252
PFA-Ludox 93 (10%) 9.0 (20%) 10.3d 1.49 0.76

a Solvent DMSO–DMF (3:2 v/v) with 100 mM LiCl; technique TPA. b Solvent
water–urea (4:1 w/w) with 100 mM NaCl; technique DDLS. c Solvent water–
glycerol (4:1 w/w) with no added salt; technique NMR. d Solvent water with 10
mM NaCl; technique DDLS.
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The mixtures are stable up to NaCl concentrations of 10 mM, but flocculate in the presence of 100
mM NaCl, probably due to depletion attraction between the large particles induced by the small
ones. (The separate PFA and Ludox dispersions are stable in the presence of 100 mM added NaCl.)
DDLS measurements were performed using a vertically polarized argon laser at 514.5 nm. The
experiment exploits the fact that the PFA particles, by virtue of their partially crystalline internal
structure, significantly depolarize light. The horizontally polarized scattered intensity was mea-
sured in the horizontal scattering plane. In all cases, the full shape of the intensity autocorrelation
functions gVH(t) was a single exponential given by gVH(t)/ exp{�2(6Dr + q2Dt)t}, where q denotes
the wave number.

Measurements of the zero-shear-limiting (‘‘ long-time’’) viscosity ZL were made on 1 mL samples
using a Contraves Low Shear 40 rheometer. A measurement of the high-frequency-limiting visc-
osity Z1 typically requires large sample volumes (q20 mL), which were unfortunately not available
due to the small scale of our model-colloid synthesis. Therefore, for hard-sphere-like dispersions we
use a semi-empirical expression for Z1 due to Lionberger and Russel,32 i.e.

Z1
Z0

¼
1þ 3

2
fð1þ f� 0:189f2Þ

1� fð1þ f� 0:189f2Þ
; ð12Þ

which agrees well with known experimental data up to random close packing, where Z1 diverges.
For dilute suspensions of highly charged host spheres at low ionic strength, only pair-wise additive
far-field HI need to be accounted for, so that to a good approximation

Z1=Z0 � 1þ 5

2
fð1þ fÞ þ 15

2
f2

Z1

0

dxx2g
ð2Þ
HHðxÞJðxÞ; ð13Þ

with J(x)� (15/2)x�6 for x ¼ r/aH� 1. Using an effective hard-sphere model for g
ð2Þ
HH(r), eqn. (13)

can be further approximated by18

Z1=Z0 � 1þ 5

2
fð1þ fÞ þ 7:9f3; ð14Þ

which is practically equal to the Einstein result 1+ (5/2)f for f < 0.1. We are not aware of any
closed analytical expressions for Z1(f)/Z0 of charged spheres with stronger screening of the
electrostatic double layer repulsions. The few measurements available22,33,34 suggest, however, that
Z1(f)/Z0 is only weakly dependent on k�1.

IV SED scaling in monodisperse hard-sphere suspensions

First we focus on SED scaling for the most extensively studied case of monodisperse colloidal hard
spheres (i.e. l ¼ 1). This section is split into a section on short-time rotational tracer diffusion
(where both calculations and experiments have been performed) and a section on long-time tracer
diffusion.

IVa Short-time rotational tracer diffusion

The most accurate truncated virial expansion calculation of the reduced short-time rotational
diffusion coefficient Hr

s(f) of hard spheres up to quadratic order in f was performed by Cichocki
et al.13 These authors account for short-range lubrication interactions, and for expansions of the
two- and three-body mobility functions up to O(r�1000) and O(r�21) respectively. Their result reads

Hr
s � 1� 0:6310f� 0:726f2: ð15Þ

This second order virial form agrees well with simulation results35,36 (cf. inset of Fig. 2). The
excellent agreement at high densities is most likely fortuitous, regarding the severe low-density
approximations used for g

ð2Þ
TH and g

ð3Þ
THH in deriving eqn. (15). In Fig. 2 we compare eqn. (15) with

our TPA data for silica spheres in DMSO–DMF with 100 mM added LiCl (at kaH ¼ 126), DDLS
data for PFA spheres in water–urea solvent mixtures of Degiorgio et al.,11 and nuclear magnetic
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resonance (NMR) data for polystyrene latex spheres in water–glycerol of Kanetakis et al.37 (cf.
Table 1). All these experimental data are in fair agreement with each other and with eqn. (15). It
should be noted that all experiments were done with charged particle suspensions with highly
screened double layers. To our knowledge no experiments have been performed on suspensions of
uncharged particles. The deviations between the experimental data and eqn. (15) can thus be at
least partially attributed to residual double layer repulsions. Moreover, it is well known that silica
spheres in DMF are strongly solvated.26 Calculations have revealed that Hr

s is indeed highly
sensitive to the shape of the static pair distribution function g

ð2Þ
TH(r) near contact.

12

A convenient graphical method to check the validity of SED scaling for Dr
s is to plot Hr

sZ1/Z0
versus f. If SED scaling holds, the product is equal to one (cf. eqns. (1) and (3)). Fig. 3 shows
results for Hr

sZ1/Z0 assembled from the experimental Hr
s results depicted in Fig. 2, and with Z1/Z0

according to eqn. (12). The experimental data are in good overall agreement, for fp 0.4, with the
theoretical prediction (drawn line) obtained by multiplying eqn. (15) for Hr

s with eqn. (12) for Z1/
Z0 . Clearly, the short-time SED relation eqn. (3) for Dr

s does not hold at finite host concentrations.
For comparison, Fig. 3 displays in addition results for the SE product Ht

sZ1/Z0 of the reduced
translational short-time self-diffusion coefficient Ht

s of hard spheres with Z1/Z0 according to eqn.
(12). For Ht

s, we use DDLS results of Degiorgio et al.,11 DLS results of Segrè et al.,38 and the semi-
empirical formula

H t
s ¼ ð1� 1:56fÞð1� 0:27fÞ: ð16Þ

proposed by Lionberger and Russel.32 This expression nearly conforms to the correct O(f)-limit
(i.e.,Ht

s ¼ 1� 1.83f+O(f2)) and predictsHt
s to vanish at random close packing f ¼ 0.64. As seen

in Fig. 3, the deviations from short-time SE scaling are smaller than from SED scaling (e.g., Ht
sZ1/

Z0 ¼ 1.4 at f ¼ 0.45 whereas Hr
sZ1/Z0 ¼ 3.1). As shown elsewhere,18,21 deviations from long-time

SE scaling (Ht
LZL/Z0 ¼ 1) are even smaller than the deviation for short times in Fig. 3.

We mention that for translational diffusion an alternative SE relation has been proposed,18

which links the high-frequency-limiting viscosity to the short-time collective diffusion coefficient
Dc

s (qm):

Dc
sðqmÞ ¼

kBT

6pZ1ðfÞa : ð17Þ

The coefficient Dc
s(qm) ¼ Dt

0H(qm)/S(qm), measured at the wave number qm where the static
structure factor attains its maximum S(qm), quantifies the short-time relaxation of the

Fig. 2 Reduced short-time rotational diffusion coefficient Hr
s ¼ Dr

s/D
r
0 of monodisperse hard-sphere sus-

pensions, including experimental results,14,26 the theoretical virial expression eqn. (15), and the modified SED
result eqn. (18), with Z1/Z0 as in eqn. (12) and nrs ¼ 0.22 (partial slip). The inset includes a comparison between
eqn. (15), simulation data of Philips et al.35 and of Hagen et al.,36 and the modified SED prediction for Hr

s.
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next-neighbor cage around a tracer particle. Collective diffusion is influenced by HI via the
hydrodynamic function H(qm) and by DI via the peak height of the static structure factor S(q) at
the wave number qm . For hard spheres up to f ¼ 0.5, it has been shown18 that H(qm) ¼ 1� 1.35f
and S(qm) ¼ 1+0.664fg(2)(2a+), with the Carnahan–Starling contact value expression39

g(2)(2a+) ¼ (1� 0.5f)/(1�f)3. As seen from Fig. 3, the collective short-time SE relation
Dc

s (qm)Z1/Dt
0Z0 ¼ 1 with Z1/Z0 according to eqn. (12), is obeyed much better than the transla-

tional SE relation for Ht
s. The collective SE relation holds quite accurately up to f ¼ 0.35, as

confirmed by DLS38 (open triangles in Fig. 3). Interestingly enough, the corresponding long-time
SE relation Dc

L(qm)ZL/D
t
0Z0 ¼ 1, where Dc

L(qm) with Dc
L(qm) < Dc

s(qm) is the long-time collective
diffusion coefficient at qm , is also approximately fulfilled for hard spheres, as shown by Segrè
et al.21 (We note that Dc

L(qm) exists only for wavenumbers q� qm and for sufficiently large particle
concentrations.18)

In the case of molecular diffusion, deviations from SE(D) scaling are often rationalized by
arguing that hydrodynamic coupling between tracer and solvent changes from stick to (perfect) slip
boundary conditions when the tracer particle approaches the molecular dimensions of the solvent
molecules. Empirically, perfect slip is found for translational tracer diffusion (i.e. f t0 ¼ nt06pZ0aT
with nt0 ¼ 2/3)40,41 and mixed slip–stick conditions for rotational tracer diffusion ( f r0 ¼ nr08pZ0a

3
T

with 0 < nr0 < 1).5–7,42–44 These findings prompted us to employ a similar empirical approach to
rationalize deviations from rotational short-time SED scaling of colloidal hard spheres. For this
purpose, we express the reduced viscosity Z1/Z0 as a sum Z1/Z0 ¼ 1+DZ1 of a solvent con-
tribution and an excess part DZ1 ¼ 2.5f+O(f2). Further, we replace the Stokesian friction factor
f rs ¼ 8pZ1a3T in eqn. (3) by a sum over the rotational drag due to the solvent alone (which sticks)
plus an additional drag due to the (hydrodynamic) interactions of the tracer sphere with the host
particles. As argued for the translational case already by Imhof et al.,45 there is no reason to expect
a no-slip boundary condition for the host particle contribution. We thus modify f rs as

f rsðfÞ ¼ 8pZ0a3T½1þ nrsDZ1ðfÞ� ð18Þ

Fig. 3 Test of the validity of the rotational/translational short-time SE(D) scaling relations Ha
sZ1/Z0 ¼ 1

(dotted line) with a ¼ {r,t}, and Z1/Z0 as in eqn. (12). The drawn lines are theoretical results forHa
sZ1/Z0 , with

Hr
s according to eqn. (15) andHt

s as in eqn. (16). Also shown are results forHr
sZ1/Z0 with experimental data for

Hr
s obtained with TPA,14 DDLS,11 and NMR,37 and results for Ht

sZ1/Z0 with Ht
s measured using DDLS11 and

DLS.38 For comparison, results for Dc
s (qm)Z1/Dt

0Z0 versus f are included, with Dc
s (qm) calculated as explained

in the text (drawn line), and measured using DLS.38
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with an apparent slip coefficient nrs 2 [0,1] determined from demanding that Dr
s(f,l) ¼ kBT/f

r(f,l).
The coefficient nrs ¼ nrs(f,l) depends in principle also on the nature of the DI between the spheres.
However, for hard-sphere suspensions nrs depends only on the tracer/host size ratio l and, to some
extent, also on f. The stick value nrs ¼ 1 is attained only in the continuum limit l� 1, when the
tracer is much larger than the host particles. Moving away from the continuum limit by lowering l
leads to values nrs < 1, reflecting the locally discontinuous nature of the neighborhood around a
tracer sphere (which changes with f). In the limit l� 1 of a point-like tracer (relative to a host
sphere) one expects nearly perfect slip nrs � 0.46 For small host concentrations, i.e. to linear order
in f� 1, nrs(l) is independent of f. For hard spheres it follows then readily from eqns. (9) and
(18) that

nrsðlÞ ¼ � 2

5
hr1ðlÞ; ð19Þ

where hrl (l) is the first virial coefficient of Hr
s(f,l). As will be shown later in section V, hr1 ¼ 0 for

l! 0 and hr1 ¼ �2.5+O(l�1) for l!1, in accordance with the qualitative description of the l-
dependence of nrs(f,l) given above. We note that the l-dependence of the apparent slip coefficient
nrs(l) was investigated first by Almog and Brenner.46 A similar analysis has been made for trans-
lational short-time diffusion.16 Similar to eqn. (18), a modified Stokesian friction factor fts(f) can
be written for translation, according to fts(f) ¼ 6pZ0aT[1+ ntsDZ1(f)].
The apparent slip parameters nas for rotation (a ¼ r) and translation (a ¼ t) can be deduced from

experimental data by plotting

nas ¼
Da

0=D
a
s � 1

Z1=Z0 � 1
: ð20Þ

Fig. 4 shows such a plot using the experimental hard-sphere data for Hr
s and Ht

s with l ¼ 1 as
included in Fig. 2, and taking eqn. (12) for Z1/Z0 . The drawn lines represent the theoretical
predictions for nrs and nts obtained from eqns. (15) and (16) respectively. As can be seen, the cal-
culated nrs and nts are only weakly dependent on f, so that the average values nrs ¼ 0.22 (partial slip)
and nts ¼ 0.67 (close to perfect slip) are reasonable overall estimates for the full fluid concentration
range f < 0.5. In fact, eqn. (18) for fr(f) with nrs ¼ 0.22 leads to a remarkably good prediction for
Hr

s(f) (cf. the dotted line in Fig. 2).
An analogous analysis in terms of apparent slip parameters for l ¼ 1 was done by Lionberger

and Russel47 for short-time translational self-diffusion, and by Imhof et al.45 and Segrè et al.21 for
long-time translational self-diffusion. At short times theory and experiment (cf. Fig. 4) suggest an

Fig. 4 Slip coefficients nrs and nts from eqn. (20), for rotational and translational short-time tracer diffusion in
host sphere dispersions, using experimental data for Hr

s (symbols are the same as in Fig. 3) and the theoretical
expression eqn. (15) (drawn lines), with Z1/Z0 obtained from eqn. (12). Dotted lines represent overall averages
nrs ¼ 0.22 and nts ¼ 2/3.
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average translational slip parameter nts close to the value 2/3 of perfect slip. For long times, Segrè
et al.21 reported a monotonic decline of ntL from 1 (no slip) at small f to 0.67 (perfect slip) at
f ¼ 0.5. For charged particles, Imhof et al.45 determined an average long-time slip parameter
ntL � 0.5 which, for unknown reasons, is even smaller than the perfect slip value 2/3.

We emphasize that the concept of an apparent slip parameter merely provides a qualitative
picture to rationalize deviations from ideal SED scaling. Actually, SE(D) scaling cannot even be
exact for arbitrary f, since the leading order low density forms 1+Af+Bf2 are different for
diffusion and inverse viscosity (A ¼ �0.63 for Hr

s and �1.83 for Ht
s, while A ¼ �2.5 for Z0/Z1).

IVb Long-time rotational tracer diffusion

The coefficient Dr
L ¼ Hr

LD
r
0 is, contrary to the long-time translational self-diffusion coefficient

Dt
L ¼ Ht

LD
t
0, not a true long-time property. The coefficient Dt

L is well-defined as the long-time
asymptotic slope of the particle mean-squared displacement.29,48 The latter depends linearly on
time both at short and long times (diffusive regimes) with a sublinear regime at intermediate times.
Correspondingly, rotational Brownian motion is diffusive only if the (DDLS) single particle
orientational correlation function C2(t) is single-exponentially decaying in time t. In general, this is
only the case for a tracer sphere in pure solvent (C2(t)/ exp[�6Dr

0t]) and for a tracer in a host
suspension at short times (C2(t)/ exp[�6Dr

st]), as shown by Jones and Felderhof.17,49,50 For dilute
monodisperse hard-sphere suspensions, it has been shown theoretically17 that C2(t) is non-expo-
nential at intermediate and long times, viz.

C2ðtÞ
C

ð0Þ
2 ðtÞ

¼ 1þ g2ðtÞfþOðf2Þ; ð21Þ

where g2(t) was computed numerically for hard spheres with two-body HI included. While a long-
time rotational diffusion coefficient cannot be defined, one can always define instead a mean
orientational diffusion coefficient, Dr

L, through
17,49,50

1

6Dr
L

¼ trL ¼
Z1

0

dtC2ðtÞ ¼
1

6Dr
0

1� Cr
LfþOðf2Þ

� �
; ð22Þ

with Cr
L ¼ 0.67 for hard spheres. Memory effects in C2(t) lead thus to a mean diffusion coefficient

Dr
L, only slightly smaller than Dr

s to first order in f. At present, neither theoretical nor experimental
results are available to verify to what extent Dr

L scales with the inverse low-shear viscosity Z0/ZL .
To order f, SED scaling is certainly not valid, since Cr

L is much smaller than the first virial
coefficient of Z0/ZL , which equals �2.5. Similarly, SE scaling of long-time translational diffu-
sion51,52 is not exact to order f, since Ht

L ¼ 1� 2.10f.
DDLS experiments on dense hard-sphere-like PFA suspensions11 support the non-diffusive

rotational long-time regime predicted by theory17 and quantitatively agree with the theoretical
prediction for g2(t) for f < 0.2 and times t < 1/(2Dr

0). For f > 0.2, g2(t) determined from DDLS
is larger than predicted by theory. Contrary to the DDLS experiments, in our TPA experiments we
find no significant deviation from a single-exponential decay of C2(t) even at high volume fractions
and times up to t� 4/(3Dr

0). We mention in this context that C2(t) is measured directly with
TPA,30,53 whereas C2(t) is determined only indirectly using DDLS.11 The latter method invokes a
translation–rotation decoupling approximation to extract C2(t) from the DDLS autocorrelation
function gVH(t). This approximation becomes exact only in the limit of small concentrations and
short times.11

V SED scaling in binary hard-sphere mixtures

In the following we explore rotational self-diffusion of an infinitely dilute neutral tracer component
in a hard-sphere host suspension for l 6¼ 1, and its relation to the shear viscosity. For comparison,
we also report on results for SE scaling of translational tracer diffusion.

Fig. 5 shows approximate theoretical results, according to eqn. (9), for the short-time rotational
and translational first virial coefficients, hr1(l) and ht1(l) respectively, of H

r
s(f,l) and Ht

s(f,l). Both
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virial coefficients decrease monotonically from 0 at l ¼ 0 to the Einstein value �2.5 in the con-
tinuum limit l!1. In accordance with our discussion of the generic l-dependence of nrs and nts in
section IV, a point-like tracer with l ¼ 0 experiences only solvent friction, whereas at very large l
the host dispersion acts as a continuous fluid of effective viscosity Z1 ¼ Z0[1+ 2.5f]. The theo-
retical results for ha1 are rather well parametrized by the form16

ha1ðlÞ ¼
�2:5

1þ cal
�1

; ð23Þ

with ca ¼ 3.0 for a ¼ r and 0.366 for a ¼ t, so that ha1(l) ¼ �2.5+O(l�1) for l!1. Eqn. (23)
agrees within 5% with calculations of hr1(l) by Batchelor,51,54 who included numerical lubrication
corrections. Likewise, eqn. (23) is in good qualitative agreement with low-density calculations of
nrs(l) by Almog and Brenner.46 Fig. 5 demonstrates that hr1(l) decays somewhat faster towards the
asymptotic SE(D) value �2.5 than hr1(l). This is due to the weaker asymptotic r�4 long-distance
decay of the translational mobility function as compared to the r�6 decay of the rotational mobility
function.
Numerical results for the rotational second virial coefficient hr2(l) are also included in Fig 5.

Corresponding results for ht2(l) are discussed in ref. 16. It can be seen that hr2(l) is non-monotonic
with a minimum value at l� 1.2. It changes sign from negative to positive values at l ¼ 3.8. The
inset shows Hr

s(f,l) according to eqn. (9), for a fixed f ¼ 0.1. Rotational tracer diffusion is
strongly slowed down with increasing tracer/host size ratio l, but the SED limit Hr

s ¼ [Z0/
Z1(f ¼ 0.1)] ¼ 0.76 is approached only at very large values of l. It should be noted, however, that
the truncated virial expansion in eqn. (9), with far-field O(r�12) pair and O(r�9) triplet HI included,
most likely overestimates Hr

s(f,l) for large l. For large l, a tracer interacts with more than two
host spheres at a time, unless f is very small, leading to an enhanced hydrodynamic hindrance of
rotational motion. A further reduction in Hr

s may arise from near-field lubrication effects, which
are not included in our calculations. Thus, we expect that the actualHr

s(f,l) will approach the SED
continuum limit for smaller l than suggested by eqn. (9).
Our rotational diffusion measurements by TPA for lp 1 and by DDLS for l > 1 confirm that

Hr
s(f,l) decreases strongly with increasing l (see Fig. 6A). However, theory and experiment are not

in quantitative agreement for the asymmetric cases l ¼ 0.33 and l ¼ 10. This is partially due to a

Fig. 5 Calculated rotational/translational first virial coefficients hr1(l) and ht1(l), and rotational second virial
coefficient hr2(l). The single-parameter forms h

ðaÞ
1 ¼ �2.5[1+ cal

�1]�1 with cr ¼ 3.0 and ct ¼ 0.366 respectively
are shown for comparison (drawn lines). The dotted line is the SE(D) continuum limit hr1 ¼ ht1 ¼ �2.5. The
inset shows the l-dependence of Hr

s(l,f) for f ¼ 0.1; the dotted line in the inset is the SED continuum
prediction Hr

s ¼ 0.76.
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shrinkage of the f-interval where our approximate theoretical treatment applies with increasing
size asymmetry. For large l there is an additional reason for the observed difference in Hr

s between
experiment and theory: DDLS experiments then actually determine the long-time rotational
motion of a tracer, since the host particles diffuse much faster than the tracer. While in principle a
long-time rotational diffusion coefficient Dr

L does not exist for l ¼ 1, we nevertheless expect that a
true long-time diffusive regime characterized by a well-defined Dr

L is recovered in the limit of large
l. There is indeed no indication in our DDLS measurements at l ¼ 10 for any non-exponential
long-time decay of C2(t). The memory effects associated with the time evolution of the host particle
configuration thus lead to an additional reduction in the measured diffusion coefficient Dr

L.
17,49,50

Fig. 6B provides a test of the accuracy of SED scaling for binary hard-sphere suspensions for
various l. The TPA data for lp 1 are multiplied by eqn. (12) for Z1(f)/Z0 , whereas the DDLS
data for lp 10 are multiplied by the (‘‘ long-time’’) zero-shear-limiting viscosity ZL/(f)/Z0 of hard
spheres calculated using mode-coupling-theory.55 For comparison, Fig. 6B displays also our
truncated cluster expansion results for Hr

s according to eqn. (9), multiplied by Z1(f)/Z0 . With
increasing l, both the theoretical and experimental data approach the SED relation Hr

sZ1(f)/
Z0 ¼ 1. The experimental values of Hr

LZL(f)/Z0 for l ¼ 10 are slightly smaller than one, probably
due to the presence of depletion attractions between the tracers induced by the smaller host spheres.
The tracer concentration in the experiments is thus not infinitely small, as it is assumed in the
theoretical calculations. The attractions, however, do not affect long-time translational diffusion
(i.e. Ht

LZL/Z0� 1 for all f).25

As already discussed, an intuitive way to interpret deviations from SED scaling at different l is to
introduce the apparent slip coefficient nrs(f,l) in eqn. (18) which varies continuously between 0 for

Fig. 6 A: Reduced short-time (long-time) rotational diffusion coefficient for tracer/host size ratios l ¼ 0.33
and 1 (TPA:Hr

s) and l ¼ 10 (DDLS:Hr
L). Drawn lines represent the theoretical short-time predictions in eqn.

(9). Dotted lines are the modified SED results of eqn. (18) with nrs ¼ 0.089 (l ¼ 0.33), nrs ¼ 0.22 (l ¼ 1), and
nrs ¼ 1 (l ¼ 10). B: Test of SED scaling relations (dotted line) Hr

sZ1/Z0 ¼ 1 (for l ¼ 0.33 and 1) and Hr
LZL/

Z0 ¼ 1 (for l ¼ 10) with Z1/Z0 as in eqn. (12), and Z0/ZL taken from ref. 18, Hr
s and Hr

L measured with TPA
and DDLS respectively, and theoretical predictions for Hr

sZ1/Z0 (l ¼ 0.33–10) obtained with eqns. (9) and (12)
(drawn lines).
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l! 0 (perfect slip) and 1 for l!1 (perfect stick). The experimental data for l ¼ 0.33 are overall
well described by the modified SED relation in eqn. (18) using a value nrs ¼ 0.089 (see dotted line in
Fig. 6A). For values of l between 0.24 and 1 we find a monotonic increase of nrs from 0.071 to 0.22
(cf. Table 1). Using short-time calculations to first order in f according to eqn. (19), somewhat
smaller values for nrs are found (Table 1), due to an overestimation of Hr

s at larger f. Experiments
are currently underway to characterize the l-dependence of Hr

s and nrs more completely in the range
l2 [0.1–20], using DDLS applied to PFA tracers in host suspensions of refractive index matched
fluorinated latex spheres.56

VI SED scaling for suspensions of charged spheres

VIa Short-time rotational tracer diffusion

Our theoretical calculations of the short-time diffusion of a charged tracer sphere in a host sus-
pension of charged spheres predict that Hr

s(f,l) (and Ht
s(f,l)) increases with decreasing ionic

strength of the supporting electrolyte, since the hydrodynamic coupling between strongly repelling
charged spheres is weaker than between neutral ones. This can be seen from the integrals in eqns. (7)
and (8) for Hr

s1 and Hr
s2. Both quantities are equilibrium averages of hydrodynamic self-mobility

functions. Since the self-mobility functions are rather short-ranged (the leading asymptotic term is
proportional to r�6 for rotation and proportional to r�4 for translation), the main contribution to
the integrals stems from configurations with two or more particles close to contact. For neutral
spheres, g

ð2Þ
TH and g

ð2Þ
HH attain their maximum at contact. For charged spheres these maxima are

shifted to larger distances, which results in reduced hydrodynamic coupling.
Experimental TPA data for lp 1 at various concentrations of added LiCl (0, 10 and 100 mM)

confirm this theoretical prediction (Fig. 7). We note that the suspensions with 0 mM added LiCl
still contain about 0.1 mM residual univalent electrolyte. A close comparison between the TPA

Fig. 7 Reduced short-time rotational diffusion coefficient Hr
s of charged spheres obtained with TPA for added

concentrations of LiCl of 0, 10 and 100 mM, in comparison with RY-based calculations (drawn lines). A: size
ratio l ¼ 0.33; ZT ¼ 220, ZH ¼ 1200, and 0.2 mM residual 1–1 electrolyte. B: size ratio l ¼ 1;
ZT ¼ ZH ¼ 220, aT ¼ 90 nm, and 0.1 mM residual 1–1 electrolyte. The dotted lines represent the theoretical
prediction for fully deionized suspensions of charged spheres according to eqn. (26), with ar ¼ 1.28.
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data and our RY-based calculations (drawn lines) reveals some differences. For all systems con-
sidered with l < 1 (i.e. l ¼ 0.24, 0.33 (Fig. 7A), 0.34 and 0.46) we find Hr

s(0 mM) > Hr
s(10

mM) > Hr
s(100 mM) for the experimental data, whereas theory predicts that Hr

s(0 mM) > Hr
s(10

mM)�Hr
s(100 mM), since the g

ð2Þ
TH and g

ð2Þ
HH calculated within the RY scheme are nearly identical

for 10 mM (ka ¼ 0.026) and 100 mM (ka ¼ 0.008). Furthermore, the theoretical results are sys-
tematically larger than the experimental data (see Fig. 7A). For l ¼ 1 (Fig. 7B) we find from TPA
that Hr

s(0 mM)�Hr
s(10 mM) > Hr

s(100 mM), which is again different from the theoretical pre-
diction. These discrepancies may be due to details in the experimental interaction potential (e.g.
solvation effects) which are not addressed in our calculations. Moreover, the calculations are based
on the simplifying assumptions that the effective charges ZT and ZH are independent of ionic
strength and f.

In order to test the validity of SED scaling, the short-time diffusion data should be compared to
corresponding high-frequency-limiting viscosity data for the same host suspensions. Unfortunately,
neither experimental data nor complete theoretical predictions of Z1 as a function of k�1 and f are
currently available, so that this comparison is left to future investigations.

However, in the limit of zero added salt there exists a theoretical prediction of Z1 (eqns. (13) and
(14)). Also, calculations of Hr

s and Ht
s have been performed in this limit. For monodisperse

suspensions of strongly charged spheres, theory predicts nonlinear volume fraction depen-
dences,12,14,15,57

Hr
sðfÞ ¼ 1� arf2; ð24Þ

and

H t
sðfÞ ¼ 1� atf4=3; ð25Þ

with parameters ar� 1.3 and at� 2.5 which depend only weakly on the particle charge. The
occurrence of the non-linear exponents 2 and 4/3 can be understood in terms of an effective hard-
sphere model,12 with a f-dependent effective particle diameter which scales as f�1/3. Eqns. (24) and
(25) have recently been confirmed by lattice Boltzmann simulations,36 DDLS,58 and DLS.59 It was
shown that eqn. (24) applies up to f� 0.3, whereas eqn. (25) is applicable only for f < 0.1.12 The
generalization of eqn. (24) to rotational tracer diffusion with l 6¼ 1 reads:15

Hr
sðf;lÞ ¼ 1� arl3f2; ð26Þ

with an applicable f-range which shrinks with increasing size and interaction asymmetry. Note
that the experimental TPA data for silica spheres in DMSO–DMF with zero added LiCl (Fig. 7)
are located below the predictions in eqns. (24) and (26) for fully deionized suspensions (dotted
lines), indicating that these suspensions contain a significant residual salt concentration (	0.1 mM
univalent salt25).

Fig. 8 summarizes, for l ¼ 1, the typical scaling behaviour of the short-time rotational, trans-
lational, and collective reduced diffusion coefficients Hr

s (eqn. (24)), H
t
s (eqn. (25)) and Dc

s(qm)/D
t
0,

all multiplied by the reduced viscosity Z1(f)/Z0 of deionized charge-stabilized suspensions as
quoted in eqn. (14). The depicted f-range is much smaller than the one for hard spheres in Fig. 3,
since for f ¼ 0.1 the charged particles are already strongly correlated. To calculate the collective
diffusion coefficient Dc

s(qm) we use the parametric form H(qm) ¼ 1+ pcf
0.4 with pc ¼ 1.5, and

S(qm) is calculated using for simplicity the rescaled mean spherical approximation.18 While Hr
s and

Ht
s are nearly charge-independent, as long as the physical hard-core remains completely masked,

Dc
s (qm) decreases with increasing charge for given f, mainly due to the strong charge-dependence of

the structure factor peak height S(qm).
18 Fig. 8 illustrates that the deviations from SE(D) scaling

H
ðaÞ
s Z1(f)/Z0 ¼ 1 for rotation (a ¼ r) and translation (a ¼ t) are similar in magnitude as for hard

spheres. In contrast, deviations from the collective SE relation Dc
s(qm)Z1/Dt

0Z0 ¼ 1 are sig-
nificantly larger than for hard spheres. There is a steep decrease of Dc

s (qm)Z1/Dt
0Z0 from 1 at f ¼ 0

towards a minimal value of 0.4 at f� 0.005 followed by a slight increase at larger f. Fig. 8
indicates that short-time SE(D) scaling fails for deionized dispersions with l ¼ 1. Mode-coupling
theory calculations18 suggest a failure also for long-time translational self- and collective diffusion.
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To our knowledge, so far no calculations exist of long-time rotational motion in charged-sphere
suspensions.

VIb Long-time rotational tracer diffusion

Using DDLS, we have measured the dependence of Hr
L(f) on the concentration of added salt (i.e.

NaCl) for the strongly asymmetric case of l ¼ 10. Fig. 9A shows a non-monotonic dependence of
Hr

L on the concentration of added NaCl and, for zero added salt, also a non-monotonic depen-
dence of Hr

L on the host volume fraction for small f. Increasing the amount of NaCl from 0 to 1
mM reduces Hr

L, while enlarging the NaCl content from 1 to 10 mM gives rise instead to a small
enhancement. This peculiar non-monotonic behavior of Hr

L must be due to a delicate competition
of short-time effects and memory contributions arising from HI and DI. Computer simulations and
theory are needed to analyze this interesting interplay of HI and DI.
The product of the experimental Hr

L with the experimentally determined zero-shear-limiting
reduced viscosity ZL(f)/Z0 is plotted versus f (for each salt content) in Fig. 9B. For zero added salt,
long-time tracer diffusion is substantially faster than predicted on the basis of the long-time SED
relation. However, on addition of salt, SED scaling Hr

LZL/Z0 ¼ 1 is approached. We remark that
for given f > 0.25, ZL(f)/Z0 increases quite strongly with decreasing amount of added salt (cf.
inset of Fig. 9A).
Qualitatively, it is understandable that SED scaling fails at low ionic strength. In dispersions

with no added salt the dynamics of the host particles is strongly coupled to the tracer by long-range
electrical double layer interactions. Hence, the tracer does not experience an effective fluid (i.e.
Hr

LZL/Z0 > 1) since the effective structural relaxation time of the host particles is no longer small
compared to the reorientation time of a tracer sphere. With increased screening of electrostatic
interactions the structural relaxation time of the host particles is reduced, and the host suspension
appears to the tracer more and more as a continuous medium.

VII SED scaling for tracer sphere diffusion in isotropic rod suspensions

In sections IV to VI dealing with tracer sphere diffusion in suspensions of host spheres it has been
shown that SED scaling (assuming stick boundary conditions) is less accurate in the case of slow
host dynamics as compared to the tracer diffusion time scale, i.e. for small size ratios l and strong

Fig. 8 Theoretical test of SE(D) scaling relations Ha
sZ1/Z0 ¼ 1 (dotted line) with a ¼ {r,t}, and Dc

s (qm)Z1/
Dt

0Z0 ¼ 1, for typical deionized charge-stabilized suspensions, with Z1/Z0 as in eqn. (14), and Ha
s calculated

using eqns. (23) and (24). The calculation of Dc
s (qm) is explained in the text. For comparison, we further show

DLS results59 for Ht
s, multiplied by Z1/Z0 calculated from eqn. (14).
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double layer repulsions. An alternative way to manipulate the time scales of the orientational and
translational motion of the host particles is to use anisotropic rod-like host particles instead of
spheres. In particular rotational motion of rods is strongly hindered already at volume fractions
much smaller than it is the case for spheres due to the stronger excluded volume structural cor-
relations of rods.60

Here we present TPA results for the rotational diffusion of charged tracer spheres with three
different radii, aT ¼ 72, 100 and 137 nm, in host suspensions of charged rods of aspect ratio L/
D ¼ 203 nm/18 nm ¼ 11 in DMF. For all three types of tracers the ionic strength dependence of
Hr

s (cf. Fig. 10A) is qualitatively similar to that measured for monodisperse host sphere suspensions
in DMSO–DMF (Fig. 7B), i.e. Hr

s(0 mM)�Hr
s(10 mM) > Hr

s(100 mM). This result is quite
remarkable in view of the experimental data on the low-shear viscosity, ZL(f), of the rod sus-
pensions as a function of LiCl concentration (Fig. 10C). Adding 1 mM LiCl to an initially salt-free
dispersion of rods leads to a significant reduction of ZL(f). Adding 10 mM LiCl leads to a further
reduction. The viscosities for LiCl concentrations of 10 and 100 mM are practically equal and, for
volume fractions below the rod overlap value (f*� 0.008), close to the theoretical prediction of
order f2 for hard rods.61,62 Thus, rheology suggests hard-rod-like behavior for LiCl concentrations
q10 mM. In contrast, the rotational diffusion results show no evidence of enhanced screening of
electrostatic repulsions at 10 mM LiCl as compared to 0 mM LiCl. Further, the TPA experiments
suggest that the interaction potential with 10 mM added LiCl is not the same as with 100 mM.
Perhaps this is related to particle solvation by DMF, causing a strong repulsion at short inter-
particle distances (	3 nm) which is noticeable only at high salt contents.26 A comparison with the
experimental results for binary sphere dispersions shows that rotational diffusion is much more
effectively hindered by rods than by spheres. Qualitatively this can be explained by the stronger
excluded volume correlations between rods as compared to spheres.

For testing SED scaling in rod–sphere mixtures, one needs experimental data and/or a theo-
retical expression for the infinite-frequency viscosity Z1(f) of suspensions of (charged) rods.

Fig. 9 A: DDLS results for the reduced long-time rotational diffusion coefficient Hr
L of charged spheres with

l ¼ 10, in comparison with the SED scaling prediction Hr
L ¼ Z0/ZL for hard spheres with Z0/ZL from ref. 18

(dotted line). Inset shows measured reduced viscosity ZL/Z0 compared with the calculated viscosity.18 B: Test of
SED scaling of Hr

L, measured using DDLS, using the measured reduced inverse viscosity Z0/ZL .
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Since these are not available at present, we compare Hr
s with the reciprocal of the experimentally

determined hard-rod low-shear viscosity ZL(f). Fig. 10A reveals that rotational diffusion of 100 nm
tracers is, for all f and salt concentrations considered, faster than expected on the basis of the
inverse hard-rod viscosity Z0/ZL . Deviations from Z0/ZL become smaller with increasing ionic
strength (for instance at f ¼ 0.03, Hr

sZL/Z0 ¼ 8 for 0 mM added LiCl and Hr
sZL/Z0 ¼ 2 for 100

mM added LiCl). The graph of the inverse high-frequency viscosity Z0/Z1 of charged rods is most
likely located in between the dotted line in Fig. 10A (Z0/ZL for rods) and the drawn line (Z0/Z1
for spheres). Thus, we expect that Hr

sZ1/Z0 < 2 for 100 mM LiCl.
For given ionic strength, deviations from SED scaling with Z0/ZL become smaller with increasing

tracer size. This is illustrated in Fig. 10B for cLiCl ¼ 100 mM. For the largest tracer, coded as
‘‘P113’’ (with aT ¼ 137 nm and s ¼ 10%), Hr

sZL/Z0 ¼ 1. This trend is analogous to that observed
for binary hard-sphere suspensions (Fig. 6).

Fig. 10 Rotational diffusion coefficient Hr
s of charged tracer spheres dispersed in host suspensions of charged

rods. A: Effect of LiCl concentration for the tracer sphere m30 (with aT ¼ 100 nm, cf. Table 1). B: Dependence
of Hr

s on tracer radius aT for a LiCl concentration of 100 mM. The dotted lines in Fig. 10A and B represent
SED scaling based on the experimental ZL , assuming complete stick; drawn lines are SED scaling results based
on eqn. (12) for the Z1 of hard spheres with complete stick. C: Measured reduced low-shear-limiting viscosity
ZL/Z0 of host-rod suspensions for various LiCl concentrations as indicated. The rod overlap volume fraction is
f* ¼ 0.008.
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VIII Summary and conclusions

With respect to short-time rotational diffusion of tracers in suspensions of uncharged host spheres
clear conclusions can be drawn from both the theoretical and the experimental results. SED scaling
of the rotational tracer diffusion coefficient with the inverse macroscopic host viscosity fails, unless
the interaction time scale of the tracer sphere is much larger than that of the host spheres, as is the
case for tracer/host size ratios l� 1. Then the host spheres respond instantly, so the tracer
experiences the host suspension as a continuous solvent with an effective viscosity close to the
macroscopic value. When the host particle interaction time scale is comparable to that of the tracer
(l� 1), the tracer experiences a discontinuous host fluid, producing a viscous drag which shifts
towards the drag that would be caused by the pure solvent, soHr

sZ1(f)/Z0 > 1. In the extreme case
l� 1, the point-like tracer rotates in an essentially static environment of host spheres and the
tracer dynamics is affected (for times t� t10) only by the solvent viscosity Z0 . The effect of a dis-
continuous host fluid on tracer rotation can be modelled by an apparent slip coefficient in the
Stokesian friction factor that varies continuously in l from complete stick for l� 1 to complete
slip for l� 1. Applying the SED relation in a modified form by assuming partial slip (with
0 < nr0 < 1) leads to a reasonable heuristic description of the f-dependence of rotational tracer
diffusion.

With respect to the long-time rotational motion of tracers in suspensions of uncharged host
spheres the situation is less clear. Theory and experiment show that Dr

L for l ¼ 1 is defined only as
a mean diffusion coefficient describing the overall non-exponential decay of C2(t). On physical
grounds (i.e. separation of time scales between tracer and host) we expect Dr

L to be a well-defined
long-time property when l� 1. Our DDLS experiments indicate that a size ratio l ¼ 10 is large
enough to ensure that Dr

L is well-defined. Future (theoretical) work should explore the gradual
changes in C2(t) from a non-exponential long-time behavior for lq 1 to a diffusive exponential
decay at large l. An essentially unexplored field is the intermediate time regime of rotational
motion, corresponding to finite frequencies. An interesting heuristic generalization of the SE
relation for translational diffusion to finite strain frequencies o was proposed by Mason and
Weitz.63 This relation is extensively used in microrheological experiments, to relate mean-square
displacement measurements of tracer particles in colloidal suspensions and gels to the linear vis-
coelastic properties of the medium.8,9 The applicability of the frequency-dependent SE relation of
Mason and Weitz to monodisperse suspensions of charged and neutral spheres has been tested
using mode-coupling theory.18 The SE relation was found to be approximately valid for hard
spheres, but it does not apply to charged spheres. However, its applicability to tracer diffusion in
charge-stabilized suspensions should improve with increasing tracer size, when the host suspension
acts more and more like a continuous viscoelastic medium.64 In view of the partial success of the
Mason and Weitz relation, it is thus of interest to explore also possible relationships between C2(t)
and the frequency-dependent viscosity Z(o).

The conclusions so far relate to uncharged hard spheres. With respect to charged spheres we can
conclude from our calculations, that at very low ionic strength large deviations from SED scaling
may be expected at short times. Measurements of long-time rotational diffusion for l ¼ 10 show
likewise large deviations from SED scaling for charged spheres, which decrease with increasing
ionic strength. More experimental and theoretical work in the low-salt regime is required to
quantify and substantiate these findings.

Regarding the shape of the host particles, a first set of experimental results on short-time
rotational diffusion of tracer spheres in host suspensions of rods presented in this paper indicates a
qualitatively similar behavior as observed for host suspensions of spheres. The major difference
between host suspensions of rods and spheres is that for given volume fraction, the hydrodynamic
hindrance of a tracer sphere is much stronger for rods than for spheres due to large excluded
volume correlations between rods. To arrive at more quantitative conclusions, theoretical work is
needed on tracer diffusion in rod suspensions and on the high-frequency-limiting viscosity of
(charged) rods.

All work in this paper relates to SED scaling of the rotational diffusion of single tracers in
colloidal host suspensions. An interesting follow-up would be to investigate the applicability of
SED relations to collective particle reorientation, as appearing in the polarization fluctuations of
colloidal spheres with electric or magnetic dipole interactions.49,50 As mentioned in sections IV and
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VI, SE relations for the translational collective diffusion coefficients Dc
s(qm) and Dc

L(qm) have
already been tested both theoretically and experimentally. Interestingly, SE scaling was found to be
valid to a good approximation for monodisperse hard spheres. However, it was shown to fail for
charged spheres. To our knowledge, so far no attempts have been made to perform analogous tests
of SED scaling for collective rotational diffusion.
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15 H. Zhang and G. Nägele, to be submitted.
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