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We shall discuss the following phenomena found in various colloidal systems in shear flow.
We recently observed shear-banding in suspensions of fd-virus in a cylindrical shear cell.
Small angle light scattering experiments revealed that the shear-banding transition is
preceded by a relatively fast process (minutes) of nematic-to-paranematic phase separation
during which inhomogeneities on the micrometer length scale are formed. After the
formation of these inhomogeneities, a slow (hours) appearence of shear-bands is observed,
which have a height of a few mm. In the stationary state it is found, by means of
polarization microscopy, that inhomogeneities exist within the bands. Small angle, time
resolved light scattering experiments on near-critical microstructural order in a mixture of
colloidal spheres and free polymer under stationary shear flow are discussed. The unexpected
distortion of microstructure in directions perpendicular to the flow direction is
quantitatively explained by extending an already existing theory, to include shear-induced
short-ranged microstructural distortion. In colloidal systems consisting of ‘‘hairy
colloids ’’, where a spherical core is decorated with relatively long polymers, shear-induced
polymer brush deformation might be important for its structural and rheological behavior.
Preliminary neutron scattering and rheology experiments are performed to study polymer
brush deformation in (semi-) dilute suspensions.

1 Introduction

In this Faraday Discussion contribution we shall discuss three subjects that are currently of interest
in the group ‘‘Weiche Materie ’’ (German for ‘‘Soft Matter ’’) at the Jülich Research Center:
(i) Shear-banding in suspensions of rods,
(ii) Shear-induced microstructure in near-critical colloids,
(iii) Very soft, ‘‘hairy ’’ colloids in shear flow.
Results that are presented here are partly of a preliminary nature. Each of the following sections

contains an introduction to the subject at hand.

2 Shear-banding in suspensions of fd-virus

Shear-banding is the phenomenon where macroscopically large regions (the ‘‘bands ’’), with dif-
fering microstructural properties, coexist under the influence of shear flow. Banded structures are
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found at very low shear-rates, far below the shear-rate where the Taylor instability occurs. The final
stationary state often depends on whether the flow is applied under controlled stress or shear-rate
conditions.1,2 In a cylindrical geometry, bands are either alternately stacked in the vorticity
direction or layered around the inner cylinder in the gradient direction (as sketched on the right in
the schematic phase diagram in Fig. 1, which will be discussed in more detail below). Well studied
systems that exhibit this complex behavior are dispersions of wormlike micelles under shear.
Depending on the concentration of monomers and flow conditions, a variety of phase transitions
and structural changes are observed.1,3,4,5 These experiments are theoretically described by Cates.6

Wormlike micelles have significant chain flexibility and they permanently exchange material (i.e.
they can break and recombine). This complicates the physics of shear-banding considerably.

In order to gain fundamental insight into the origin of the shear-banding transition, we per-
formed experiments on a much simpler system : fd-virus suspensions. Fd-virus is a good model
system of hard rods7 and displays an isotropic–nematic (I–N) phase transition. The location of
phase transition lines is shifted to lower concentration on applying shear flow, since shear flow
stabilizes nematic order. The shear dependent location of I–N spinodals of fd-virus suspensions has
been determined in ref. 8 by means of time resolved birefringence measurements. Due to very slow
nucleation rates it has not been possible to determine the shear-rate dependent location of binodals
and shear-banding transition lines. In the present work we added polymer to the fd-virus sus-
pension, which widens the biphasic region, resulting in increased nucleation rates9 and shear-
banding transition rates.

Fd-virus at 100 mM ionic strength was prepared in the biphasic I–N region without shear flow
(21 mg ml�1). To this suspension, a stock solution (30%) of dextran 513 kMW (Sigma) was added,
until the dispersion became opaque. The behaviour of this dispersion under shear flow is studied
using an optical, cylindrical shear-cell, which is positioned between two polarizers in order to probe
local orientational order. This shear cell allows for time resolved, small angle light scattering
experiments in the flow-vorticity plane, where scattered light from one gap is blocked by means of a
pinhole that is positioned in the middle of the inner cylinder. Formation of inhomogeneities on the
micrometer scale were studied both by small angle light scattering (SALS) and microscopy.

We observed that the nematic phase is stable for shear-rates larger than a critical binodal shear-
rate _ggbin� 1.5 s�1, even though the sample without shear flow is in the I–N biphasic region. Such a
critical shear-rate is predicted by a Doi–Edwards like theory and is confirmed by means of bire-
fringence experiments.8 For shear-rates larger than _ggbin the sample hardly scatters light. When a
quench is made from the stable nematic phase at high shear-rates into the biphasic region by
suddenly lowering the shear-rate below the binodal shear-rate (i.e. _gg < _ggbin), phase separation
occurs, the kinetics of which can be followed with SALS. In Fig. 2 the evolution of the scattering
pattern for two different quenches is shown. In the initial stage of phase separation, the scattering

Fig. 1 Sketch of the possible phase diagram of fd-virus under shear. The vertical arrows indicate a quench of
the shear-rate. The dashed line indicates the binodal. At low rod concentration in the biphasic region we observe
shear-banding along the vorticity direction while at higher rod concentrations there are strong indications of
rod tumbling. Shear-banding along the gradient direction is expected to occur close to the non-equilibrium
critical point. The two types of stationary shear-banded states in a cylindrical shear cell are depicted on the right
hand-side. The region where the sample exhibits shear-banding along the vorticity direction is completely
contained within the two phase region.
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pattern shows four lobes, which indicates the formation of micron-sized paranematic regions
within the nematic, which regions are tilted with respect to the flow direction (a paranematic state is
a shear-aligned, otherwise isotropic state). After a few minutes, an intermediate state exists in
which these regions are aligned along the flow direction.
In the shear-rate regime _gg ¼ 0.1–0.4 s�1, in addition to the fast phase separation described

above (few minutes) an additional process of band formation is observed on much longer time
scales (few hours), as is shown in Fig. 3. These bands are alternately stacked in the vorticity
direction and can only be detected under crossed polarizers. The bands can be as broad as 5 mm,

Fig. 2 SALS images taken between 5 s and 5 min after a shear-rate quench from _gg ¼ 2 s�1 to _gg ¼ 0 s�1 (top)
and _gg ¼ 0.3 s�1 (bottom). The first images on the left are taken a few seconds after the quench, while the images
on the right are taken after about three minutes. kv and kf indicate the vorticity and flow direction, respectively.

Fig. 3 CCD-images from the side of the cylindrical shear-cell (width 4 cm) during band formation over a time
span of 2 h. The shear-cell is positioned between two crossed polarizers. The shear-rate was _gg ¼ 0.3 s�1.
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depending on the composition of the sample. Bands are formed within a limited virus con-
centration range. The lower concentration at which banding still occurs is set by the lower branch
of the binodal. For samples that are outside the two-phase region, no shear-banding along the
vorticity direction is observed. This is illustrated in Fig. 4a, where an image is shown of a sample
that has been sheared for a week. During this time a gradient in density is established due to density
differences of coexisting paranematic and nematic phases. The top part of the sample has a con-
centration that is equal to the lower binodal concentration. This part of the sample is a uniform
paranematic phase that shows no banded flow and appears uniformly birefringent due to shear
alignment. After cessation of shear flow, this paranematic phase almost instantaneously becomes
isotropic, that is, the birefringence disappears and the corresponding part of the image turns black,
as can be seen in Fig. 4b. Note that the size of the bands increases towards the bottom of the shear
cell where the concentration of the rods is higher. Preliminary rheology experiments indicate that
the high concentration limit for the occurrence of banded flow is set by the concentration where
tumbling is observed right after a shear-rate quench. Here, a few damped oscillations in the
stress response are observed after an instantaneous change of the shear-rate. It seems that
tumbling sets in at a concentration where shear-band formation is not observed anymore, that is,
tumbling probably destroys the shear-banding instability. This is in disagreement with suggestions
made in refs. 10 and 11, where sign changes of normal stress differences are held responsible for the
origin of the shear-banding instability, which in turn were shown to originate from tumbling
domains.

A striking feature of the shear-bands is that they have an inhomogeneous internal structure, as is
shown in the micrograph in Fig. 5. This type of internal structure already exists during the process
of band formation, and is probably reminiscent of the micron sized structures that are formed right
after the quench as seen by SALS. This is in contrast to micellar systems, where the bands of either
low or high viscosity appear homogeneous.

On the basis of these preliminary results, a schematic non-equilibrium phase diagram in the
shear-rate versus concentration diagram is constructed in Fig. 1. This phase diagram should be
compared to the theoretical diagrams obtained by Olmsted and co-workers.12,13 The P-to-N and N-
to-P spinodals and the binodal, also shown in this diagram, meet in a ‘‘non-equilibrium critical
point ’’, above which no phase separation occurs (in ref. 8 experiments on the shear-rate dependent
location of spinodals are reported). The hatched area at low shear-rates within the biphasic region
is the area where the above described shear-banding along the vorticity direction occurs. This
shear-banding region in the phase diagram ends just before, precisely at, or just overlaps with the
region where tumbling is observed (as indicated by the middle arrow with the question mark).

Fig. 4 (a) Shear-bands of a sample that has been sheared for a week. During this time some sedimentation of
the more dense nematic regions takes place. (b) Same as figure (a), but immediately after the cessation of shear
flow. In this sample, bands fully disappear over a period of an hour.
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In the hatched area close to the non-equilibrium critical point, shear-banding along the gradient
direction is theoretically expected. The stable state is now a flow profile that is sketched in Fig. 1 as
a top view of the cell, where a region close to the rotating inner cylinder with a high shear-rate
coexists with a region with small shear-rate close to the stationary outer cylinder. For very small
gap widths, the shear-rate is virtually constant within the ‘‘bands ’’. However, the range of con-
centration where banding is expected is extremely small and the difference in shear-rate in the two
bands is also very small. This type of shear-banding is probably experimentally of no relevance.
In conclusion, we have presented preliminary studies of the behavior of rods with attractive

interactions in shear flow. In the process of shear-banding, where bands are formed along the
vorticity direction, there is a fast process (minutes) where micron-sized inhomogeneities are
formed, as measured by SALS, after which bands are formed on a very much longer time scale
(hours), as seen through crossed polarizers. Banding is only observed in the two-phase region at
concentrations below the concentration where tumbling is found. The goal of our further research
will be to measure the entire non-equilibrium phase diagram as sketched in Fig. 1 and to under-
stand the banding transition on a microscopic level. An open question is what properties of normal
stress differences are responsible for the shear-banding instability. The suggestion in refs. 10 and 11,
where sign changes of normal stress differences are held responsible for the origin of the shear-
banding instability, which in turn were shown to originate from tumbling domains, is in contra-
diction with our findings: shear-banding ceases to occur where tumbling sets in. It might be that the
micron-sized inhomogeneities that are formed due to phase separation are responsible for the
occurrence of banding. If this is indeed the case, a linear stability analysis of appropriate equations
of motion will not reveal the true nature of this instability. Equations of motion which include
possibly very large gradients in suspension properties should be derived (submitted), and must be
solved numerically in order to construct the phase diagram.

3 Shear-induced distortion of the microstructure in near-critical colloids

In this section we discuss small angle light scattering by a near-critical colloidal system under shear
flow. Since an earlier, similar study,14 we have now built an optical shear cell that allows for
quantitative measurements, which can be compared in detail to theoretical predictions. Earlier

Fig. 5 The final, shear-band state, with two close-ups taken with a home-made polarization microscope. The
shear-bands are about 2 mm in height. The typical height of the elongated inhomogeneities within the bands is
about 10 to 20 mm.
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quantitative studies on shear-induced phenomena close to the gas–liquid critical point relate to
integrals over the structure factor, such as the critical divergence of the shear-viscosity,15 the non-
analytic dependence of turbidity on shear-rate16 and the critical behavior of flow induced
dichroism.17 These integrated quantities were shown to agree with a theory for the structure factor
distortion of near-critical colloids18,19 (except for the shear-induced dichroism on close approach of
the critical point). The newly developed optical shear cell allows for accurate small angle scattering
measurements under shear flow, and thus enables one to directly compare the experimental
structure factor itself (and not just integrated quantities) with the theory developed earlier in refs.
18 and 19. Contrary to the theoretical prediction, we find experimentally a significant distortion of
the structure factor at small scattering angles in directions perpendicular to the flow direction. It
will be shown that shear-induced distortion of short-ranged correlations (which were neglected in
an earlier theory developed in refs. 18 and 19) are responsible for the observed distortion of long-
ranged correlations perpendicular to the flow direction. The importance of distortions on small
scale for the distortion on large scale critical microstructure partly destroys universality as it is
known for the critical behaviour of systems in the absence of shear flow, in the sense that critical
microstructure under shear flow depends on short-ranged correlations, and thereby on the details
of the pair-interaction potential. The integrated quantities mentioned above are not very sensitive
to distortions in directions perpendicular to the flow direction, since a finite distortion is found only
within a limited region in wavevector space at small wavevectors, where the corresponding inte-
grands are relatively small.

In the following we first discuss the above mentioned theoretical extension, present experiments
for stationary shear flow, and analyze the data in terms of the earlier and the extended theory.

We are currently analyzing similar measurements under oscillatory shear flow. These data will be
published in the near future.

3.1 The role of shear-induced distortion of short-ranged correlations

In the derivation of an equation of motion for the shear-rate dependent, total-correlation function
h(r) in refs. 18 and 19 from the N-particle Smoluchowski equation, the following steps are made.

(i) The three-particle correlation function is approximated by a modified Kirkwood factoriza-
tion, as proposed by Fixman in ref. 20.

(ii) The equation of motion is linearized with respect to h(r) for r�RV , with RV the range of the
pair-interaction potential.

(iii) Hydrodynamic interactions between the colloidal particles are neglected.
(iv) For distances rpRV , the pair-correlation function g ¼ h+1 is taken equal to the equili-

brium correlation function (in the absence of shear flow).
The second step leads to an equation of motion for the asymptotic form of the total-correlation

function for large distances (since h(r)! 0 as r!1), which determines the structure factor at
small scattering angles. In the absence of shear flow the resulting structure factor is just the
Ornstein–Zernike structure factor. As will be argued later in this subsection, non-linear terms in h
must be taken into account on very close approach of the critical point. The validity of the neglect
of hydrodynamic interactions has been verified by including hydrodynamic interactions on the
Oseen level (which would be the most important contribution for the large scale structures of
interest here), using parameters that apply to our experimental system (for which the volume
fraction is about 20%). It turned out that these hydrodynamic interaction contributions are very
small, and are certainly insufficient to explain the experimentally observed distortion in directions
perpendicular to the flow direction. The original idea in neglecting the effect of shear flow on short-
ranged correlation (the fourth step) is as follows. The significance of distortion of short-ranged
correlations is measured by the so-called bare Peclet number Pe0, which is equal to,

Pe0 ¼ _ggR2
V

2D0
; ð1Þ

where D0 is the Stokes–Einstein diffusion coefficient. From an analysis of the equation of motion
for h(r) for large distances r�RV (see refs. 18 and 19 and below), it follows that the distortion of
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the long-ranged, critical correlations is measured by the dressed Peclet number l,

l ¼ _ggx2

2Deff
¼ _ggx4

2D0bS
; ð2Þ

where x is the correlation length of the quiescent, unsheared suspension, b ¼ 1/kBT and S is a
constant, proportional to the Cahn–Hilliard square gradient coefficient. In the latter equality,
which is given here for later reference, we used the following expression for the effective diffusion
coefficient at zero wavevector,

Deff ¼ D0b
dP
d�rr

; ð3Þ

whereP is the osmotic pressure of the quiescent, unsheared suspension and �rr ¼ N/V is the number
density of spheres, and it is used that the correlation length x of the unsheared suspension is given
by,

x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S=

dP
d�rr

s
: ð4Þ

Since bdP/d�rr! 0 on approach of the critical point, the effective diffusion coefficient is much
smaller than D0 in the neighbourhood of the critical point (which is usually referred to as ‘‘ critical
slowing down’’). Furthermore, x�RV in the vicinity of the critical point. Hence, even when
Pe0� 1, the dressed Peclet number l becomes very large on approach of the critical point. This
quantifies the intuitive notion that large structures with slow dynamics are much more easily
distorted than small structures with fast dynamics. For small bare Peclet numbers, the short-ranged
behaviour of the pair-correlation function is simply that of the equilibrium pair-correlation
function, in the absence of shear flow. At the same shear-rate, long-ranged, critical correlations are
severely affected by the flow. Nevertheless, as will be shown below, distortion of short-ranged
correlations are of importance and explain quantitatively the experimentally found distortion of
the structure factor in directions perpendicular to the flow direction. What goes wrong in the above
reasoning upon close approach of the critical point, is that the leading order term in the equation of
motion for h is �bdP/d�rr, so that terms of order Pe0 should be compared in magnitude to terms
�bdP/d�rr. Clearly, even for very small bare Peclet numbers, this implies that short-ranged dis-
tortions become important on approach of the critical point.
The resulting analytic expression for the static structure factor obtained by invoking the above

four steps in solving the N-particle Smoluchowski equation18,19 is very similar, but not identical, to
an expression derived by Ronis21 on the basis of a fluctuating diffusion equation.
Instead of fully neglecting the shear-rate dependence of the short-range part of the pair-corre-

lation function, as was done in the theory in ref. 18 and 19, we shall now take into account its
leading order distortion, that is,

gðrÞ ¼ geqðrÞ½1þ Pe0g1ðrÞ�; rpRV ; ð5Þ

where geq is the pair-correlation function of the quiescent, unsheared system. Since for small Pe0,
g1(r) will be only slightly anisotropic, it can be expanded up to second order spherical harmonics as,

g1ðrÞ ¼ f 0ðrÞ þ r̂ �HðrÞ � r̂; ð6Þ

where f0 is a scalar function and H is matrix, both depending on r ¼ |r|. Furthermore, r̂ ¼ r/r.
Without loss of generality, this matrix can be taken traceless and symmetric. For a flow in the
x-direction with its gradient in the y-direction, the matrix elements H13 and H23 are 0 due to
symmetry (where ‘‘1 ’’ is the flow-direction, ‘‘2 ’’ the gradient direction and ‘‘3 ’’ the vorticity-
direction). This leaves three independent parameters H11 , H22 and H12 . As will turn out, we shall
be able to describe our experiments with H11 ¼ 0 ¼ H22 . Hence,

gðrÞ ¼ geqðrÞ½1þ Pe0ff 0ðrÞ þ x̂xŷyf 1ðrÞg�; rpRV ; ð7Þ
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where f1(r)�H12(r). The isotropic distortion �f0 must be invariant under flow reversal, so that the
actual expansion should read,

gðrÞ ¼ geqðrÞ½1þ jPe0j f 0ðrÞ þ Pe0x̂xŷyf 1ðrÞ�; rpRV : ð8Þ

The isotropic distortion �f0 will turn out to be essential to explain the experimentally found
distortion of the critical part of the structure factor in directions perpendicular to the flow
direction. The form eqn. (8) may be compared to earlier theories on the effect of shear flow on
short-ranged correlations. It was Batchelor22 who first gave the solution for the pair-correlation
function in shear flow for dilute dispersions. Later, this solution was extended to concentrated
dispersions by re-scaling23 or partially including three-particle correlations,24,25 while a linear
response analysis for semi-dilute systems is given in ref. 26. In these approximate theories, an
isotropic distortion that is linear in the shear-rate is absent. One might thus argue that f0 is
actually identically equal to zero, and include the isotropic distortion that is �(Pe0)2. As will be
shown in the experimental subsection, however, an isotropic distortion that is linear in the shear-
rate describes the experimental data significantly better than an isotropic distortion that is
quadratic in the shear-rate.

Even for dilute suspensions, the full equation of motion for the pair-correlation function con-
tains integrals over three- and four-particle correlation functions, and fills an entire page. It is not
feasible to solve such an equation of motion in full generality. It remains unclear what the origin of
the linear, but non-analytic, isotropic contribution in eqn. (8) is. It might be that such a peculiar
isotropic contribution is a special feature of near-critical systems. Scattering experiments on near-
critical suspensions that probe large wavevectors might give further, more direct experimental
evidence for the validity of eqn. (8).

Repeating the analysis in refs. 18 and 19, but now using eqn. (8) for the short-ranged part of the
correlation function, one finds, from the N-particle Smoluchowski equation, the following sta-
tionary equation of motion for the asymptotic form of the total-correlation function h(r) for large
distances r�RV under stationary shear flow,

0 ¼ 2D0H � b
dP
d�rr

þ Pe0
�� ��e0� �

HhðrÞ � Pe0a0ÊE � HhðrÞ � SHH2hðrÞ
� �

� H � C � rhðrÞ½ �; ð9Þ

where Ê is the symmetric part of the velocity gradient tensor (divided by the shear-rate, as indi-
cated by the hat on E). As before, P is the osmotic pressure of the quiescent, unsheared system and
S is a positive constant proportional to the Cahn–Hilliard square gradient coefficient. The two
numbers e0 and a0 originate from the linear shear-rate dependent contribution in eqn. (8), and are
given by,

e0 ¼ 4p
3
b�rr

Z 1

0

dr r3
dVðrÞ
dr

geqðrÞf0ðrÞ;

a0 ¼ 8p
15

b�rr
Z 1

0

dr r3
dVðrÞ
dr

geqðrÞf1ðrÞ; ð10Þ

where V is the pair-interaction potential. From eqn. (9) it is now clear why the contribution from
short-ranged distortions in eqn. (8) is important, although Pe0 is a small number. On approach of
the critical point bdP/d�rr! 0, so that the small contribution Pe0e0 becomes important, despite its
small numerical value.

In the first term in eqn. (9) (the term in the curly brackets), we neglected terms of order �h2

against the term �hbdP/d�rr (the second step mentioned in the beginning of this subsection). This is
not allowed anymore on very close approach of the critical point, since there bdP/d�rr becomes very
small. The region around the critical point where linearization is allowed will be referred to as the
‘‘mean-field region’’. Very close to the critical point, beyond this mean-field region, non-linear
equations of motion must be considered.
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Fourier transformation of the equation of motion (9) yields the following equation of motion for
the critical part of the structure factor,

lK1
@SðKÞ
@K2

¼ K2ð1þ eþ K2ÞSðKÞ

� K2ð1þ K2ÞSeqðKÞ þ aK1K2 SðKÞ � 1½ �; ð11Þ

with the dimensionless wavevector K ¼ kx, and Seq(K) is the structure factor of the system in
equilibrium, viz. the Ornstein–Zernike structure factor. Here, we have introduced the dimensionless
numbers,

e ¼ _ggj jðRVxÞ2

2D0S
e0; a ¼ _ggðRVxÞ2

2D0S
a0: ð12Þ

Contrary to the dressed Peclet number l in eqn. (2), the dimensionless numbers e and a result
from short-ranged interactions, and thereby destroy universality as it is known for a critical system
without shear flow. That is, the behaviour of the critical structure factor under shear flow condi-
tions depends on the details of the short-ranged part of the pair-correlation function, and thereby
on the details of the pair-interaction potential, contrary to the Ornstein–Zernike structure factor of
the unsheared suspension. The stationary equation of motion (11) can be solved analytically.
Note that in directions perpendicular to the flow direction, where K1 ¼ 0, using that the

Ornstein–Zernike structure factor is equal to,

SeqðKÞ ¼ x2

bS
1

1þ K2
; ð13Þ

the above result (11) predicts that,

SðKÞ ¼ 1þ K2

1þ eþ K2
SeqðKÞ ¼ x2

bS
1

1þ eþ K2
; K1 ¼ 0: ð14Þ

This is only equal to Seq in the case e ¼ 0, that is, with the neglect of the effect of shear flow on
isotropic short-ranged correlations. Hence, the isotropic contribution to short-ranged distortions in
eqn. (8) is responsible for a finite distortion in directions perpendicular to the flow direction. This
also holds when the isotropic distortion would have been, for example, �(Pe0)2. As mentioned
before, our experiments comply with a distortion �Pe0, rather than �(Pe0)2.

3.2 Experimental results

Data were obtained using a small angle light scattering (SALS) set up with an optical, cylindrical
shear cell, where the wavevector dependence of the structure factor in the flow-vorticity [K1 , K3]-
plane is probed. The system used in this study consists of silica spheres (102 nm diameter) grafted
with stearyl alcohol, dissolved in cyclohexane. Polydimethylsiloxane (radius of gyration ¼ 23 nm)
is added to the solution to induce depletion attractions. This sets the range of the pair-interaction
potential equal to RV ¼ 148 nm. Due to the attractive depletion forces between the colloidal
spheres, this system undergoes a gas–liquid phase transition. The distance to the critical point can
be tuned by gently evaporating or adding solvent to a dispersion with the critical ratio of con-
centration of colloidal spheres and polymers. Scattering patterns were taken for six different cor-
relation lengths x (for the quiescent, unsheared system) between x ¼ 300 and 1450 nm, and with
shear-rates in the range of _gg ¼ 0 to 35 s�1. We shall show here data obtained for a system with a
correlation length of x ¼ 650 nm (a more extensive report that contains all sets of data points is in
preparation). The correlation length is obtained from the Ornstein–Zernike structure factor in the
absence of shear flow (for an example of an experimental Ornstein–Zernike structure factor, see
Fig. 6).
Fits were performed on ten cross sections in the [K1 , K3]-plane per scattering pattern : five cross

sections at fixed values of K1 as functions of K3 , and five at fixed K3 as functions of K1 (these cross
sections are indicated by thick lines in Fig. 6). From symmetry consideration, cross sections of
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scattering patterns at opposite sides can be averaged, leading to in total six curves per scattering
pattern that were fitted.

Each data set was fitted globally with the equation

DS	 � bS

x2
SeqðKÞ � SðKÞf g ¼ I eqðKÞ � B

Aeq
� IðKÞ � B

A
: ð15Þ

The prefactor bS/x2 is factored out in the definition of DS*, because the solution of eqn. (11) is
proportional to x2/bS, and no absolute intensity measurements have been done. Here, I eq(K) and
I(K) are the scattered intensities of the system in equilibrium and under shear, respectively. Aeq and
A are the corresponding proportionality constants between the structure factor and the measured
intensity, where Aeq is obtained from the Ornstein–Zernike fit of the scattering pattern without
shear flow. B is a background that originates from reading noise of the CCD camera and straylight,
which is determined from a scattering experiment where the shear cell is filled with solvent. Note
that in subtracting the structure factor under shear flow and without shear flow, the non-critical
contribution to scattered intensities cancel. Besides the experimental parameter A, scattering pat-
terns are fitted with respect to the theoretical parameters l/ _gg and e/ _gg. Including the parameter a did
not significantly improve fits, so that a is set equal to 0. It should be emphasized that for a given
correlation length, the entire wavevector dependence for a whole set of shear-rates is fitted with just
two shear-rate independent theoretical parameters (l/ _gg and e/ _gg) and a single experimental, shear-
rate dependent parameter (A).

Typical least square fitting results are given in Fig. 7 for a correlation length x ¼ 650 nm, for
two shear-rates. The solid lines are fits to the revised theory (including the term �e in eqn. (11)),
while the dotted lines are fits to the theory where short-ranged correlations are neglected.18,19 As
can be seen there is a significant distortion in directions where K1 ¼ 0, which becomes more
pronounced on closer approach of the critical point (data not shown). This distortion is quan-
titatively described by the above discussed, revised theory. Fitting without the additional term �e
clearly leads to results that are qualitatively different from the experimental data. The expressions
(2) and (12) predict that l/ _gg varies like �x4, while e/ _gg varies like x2. This is indeed found, as shown
in Fig. 8. In the double logarithmic plot in Fig. 8, eqns.(2) and (12) predict slopes of 4 and 2, for l/
_gg and e/_gg, respectively. From a fit we find slopes of 4.4
 0.5 and 2.2
 0.3, respectively, in
agreement with the predictions in eqns. (2) and (12). Furthermore, from eqn. (2) for l we find a
value of 0.78
 0.07 for the dimensionless group bS/R2

V , which is of the same order as a crude
theoretical estimate of 0.1.18,19,27 Furthermore, the value for e0 we find from Fig. 8 is equal to
1.00
 0.08.

We have also performed least square fits with respect to the shear-rate independent parameters
l/ _gg and e/_ggn, for various values of the exponent n. Such fits correspond to expansions of the
form eqn. (8), where jPe0j is replaced by (Pe0)n. In Fig. 9, the standard deviation of the fits is

Fig. 6 The Ornstein–Zernike structure factor in the absence of shear flow, for a correlation length of x ¼ 650
nm. The thick, solid lines indicate the cross sections which were used for data analysis.
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plotted as a function of n, for three correlation lengths. Clearly the best fits are obtained for n ¼ 1
(
0.2).
As can be seen from Fig. 7, the extent in the K3-direction where there is a significant difference

between the two theories complies with a relatively small volume in K-space. This explains why
integrated quantities, like the shear-viscosity,15 turbidity16 and shear-induced dichroism17 are well
described by the older theory in refs. 18 and 19, more so since the respective integrands are small at
small wavevectors. The deviation between experimental dichroism data and the older theory on
close approach of the critical point is probably not due to non-mean field effects (as stated in ref.
17, in the sense discussed above), but is most likely due to the shear-induced short-ranged corre-
lations as described in eqn. (8).
To summarize, we have extended an existing theory on the shear-induced microstructural dis-

tortion of near-critical suspensions to include shear-induced distortions of the pair-correlation
function at short distances. It is shown that these short-ranged distortions give rise to a significant
distortion of long-ranged, critical correlations in directions perpendicular to the flow direction, more
so on closer approach of the critical point. The extended theory quantitatively explains small angle
light scattering data over a whole range of shear-rates and distances from the gas–liquid critical
point. As shown in ref. 28, short-ranged distortions are responsible for the shear-induced shift of the
critical point. The finite distortion of critical microstructure in directions perpendicular to the flow
direction can therefore be interpreted as being the result of a shear-induced shift of the critical point.

Fig. 7 Typical fitting results for a correlation length of x ¼ 650 nm. The points are experimental data, the
dotted line is a best least square fit to the theory where distortions of short-ranged correlations are neglected,
while the solid lines are best fits to the extended theory. The wavevector at which a cross section is taken is
indicated in the right upper corner of each figure.
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4 Shear-induced polymer brush deformation

In this section we shall discuss preliminary neutron scattering and rheology experiments on shear-
induced phenomena in suspensions of colloidal particles which are decorated with relatively long
polymer chains, so-called ‘‘hairy colloids ’’. In particular we shall address shear-induced polymer
brush deformation of single, non-interacting hairy spheres. At higher concentrations, interactions
between different colloidal particles will have an additional effect on the brush morphology. Brush
deformation will influence microstructural order under shear flow conditions in a way that is far
from understood yet. In addition, there are indications that such hairy colloidal systems might
exhibit shear-banding.29

As a model system for hairy colloids we used a poly(ethylene-co-propylene)/poly(ethylene oxide)
(PEP-PEO) diblock copolymer micellar suspension in water, where the hydrophilic PEO-block
gives rise to the extended polymer brush and the hydrophobic PEP-block forms a dense micellar
core (the ‘‘Neutron Scattering ’’ group at the IFF in Jülich, led by Prof. D. Richter, studies
extensively the equilibrium behaviour of these systems and has long standing experience in their
preparation.30 There is now a collaborative effort to understand shear-induced form factor and
structure factor changes in these systems, and the possible occurrence of shear-banding). With
increasing length of the soluble PEO-block relative to the length of the PEP-block that forms the

Fig. 9 The minimum standard deviation, from least square fits for various values of the exponent n. The error
here is defined as 1

n

P
j(Y

exp
j �Yth

j )
2, where n is the number of data points involved in the fit, with Yexp

j the j-th
experimental value for the structure factor and Yth

j the corresponding fitted, theoretical value. Errors are scaled
with respect to the minimum standard deviation.

Fig. 8 The best least square fit results for l/ _gg and e/_gg versus the correlation length x of the quiescent,
unsheared suspension.
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core of the micellar structure, there is a transition from a homogeneous sphere with a relatively
sharp edge to a more gradual decay of the average density away from the center of the micelle, as
seen for star polymers.31 Due to the high surface tension of PEP in water, the exchange of chains
between different micelles does not occur, even at elevated temperatures.32 The advantage of this
system is that deuteration of the PEP-block allows one to match the core for neutron scattering.
This gives us direct access to the form factor of the deformed PEO-corona. In addition, the ratio of
the core radius Rc to the corona thickness D can be varied systematically. The particular diblock
copolymer discussed here consists of 370 and 67 PEP and PEO monomers, respectively. This
corresponds to an overall molecular weight of 21300 g mol�1 and a volume ratio of the two blocks
of VPEP/VPEO ¼ 0.38. The core-to-corona size ratio is Rc:D ¼ 1:1.5 (see below).
For neutron scattering experiments we used a cylindrical shear-cell (designed by Peter Lindner,

ILL, Grenoble), consisting of boron free quartz glass, with a gap width of 1.0 mm. The inner-
cylinder of the shear-cell rotates, it is thermostated by means of a sealed heating envelope with
water circulation, and experiments both in the flow-vorticity plane and the gradient-vorticity plane
are possible. This shear-cell is integrated in a conventional Bohlin CVO50 stress controlled
rheometer.
Neutron scattering experiments were performed at the DIDO reactor of the Reseach Center

Jülich, Germany, at a neutron wavelength of l ¼ 0.6 nm and a bandwidth of Dl
l ¼ 0.15. A Q-range

of 3�10�2 nmpQp 1.5 nm was covered (the wavevector Q was denoted as k in our earlier
discussion on light scattering experiments). The direction of observation was along the gradient
(radial) direction, so that the flow-vorticity plane is probed. The data were corrected for detector
sensitivity, solvent and empty cuvette scattering via standard evaluation procedures. The limited
experimental resolution has been taken into account in the fitting routine. The anisotropic, two-
dimensional SANS data were reduced to one dimension by taking cuts along axes with different
orientation relative to the shear flow direction.
Neutron scattering experiments were conducted at a temperature of 20 �C and a stationary shear-

rate of _gg ¼ 250 s�1. This was the highest shear-rate before Taylor instabilities interfere.
Small angle neutron scattering (SANS) data are interpreted on the basis of a core–shell model,

that has been successfully applied to the corresponding unperturbed system before.30 The density
profile of a hairy model colloidal particle can be described by the sum of two contributions
n(r) ¼ nc(r)+ nm(r), where nc and nm describe the radial distribution in the core region (PEP) and in
the corona (PEO), respectively. The density distribution nc(r) in the core is represented by a
convolution of a homogeneous distribution of a sphere of radius Rc and a Gaussian exp{�r2/s2c}
to account for the smooth transition of the density of the outer part of the core to that of inner part
of the brush. The radial decay of the density in the outer shell region is described by a generalized
power law dependence,

nmðrÞ ¼ r�a � ð1þ expfðr� RmÞ=smgÞ�1: ð16Þ

For distances larger than the outer radius Rm of the brush, the Fermi function ensures a fast
decay of the density to zero over a distance of about sm . For a� 0 we obtain a constant density in
the shell region while for a� 4/3 the density profile of a star polymer is recovered.33 The scattering
form factor is obtained by Fourier transformation of n(r). The scattering contribution arising from
coherent motion of the PEO-chains that becomes important at larger wavevectors is taken into
account as proposed by Dozier and coworkers.34 For a visualization of the physical meaning of the
model parameters, the density profile of the non-sheared sample, calculated with the parameters
Rc ¼ 15.9
 0.1 nm, sc ¼ 2.1
 0.1 nm, Rm ¼ 40.5
 0.4 nm, sm� 0 nm, and a ¼ 0.5
 0.1, as
obtained from a least square fit of the SANS data, is plotted in the top part of Fig. 10. The fit
turned out not to be very sensitive to the value of sm . Fixing sm to zero for the sample with and
without shear flow did not influence the fit quality. The values for sc and a did not vary sig-
nificantly nor systematically around the average values given above and were also kept fixed for the
sheared sample. Hence, the only adjustable parameters left for the form factor under shear flow are
the core radius Rc and the outer radius Rm .
Neutron scattering curves are shown in Fig. 11. Intensities for cross sections along the vorticity

(solid symbols) and flow (open symbols) directions are plotted as functions of the scattering vector
Q. The solid lines are least square fits to the density distribution described above. The deviation at
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very small q-values is due to structure factor distortion effects. The concentration of this sample is 1
wt.%, which is just large enough to obtain accurate neutron scattering data. Scattered intensities at
larger Q-values describe the internal structure of a single particle.

In the bottom part of Fig. 10, the density profiles obtained for the sheared sample are shown,
both in the flow- and vorticity-direction (which will be indexed as ‘‘ f ’’ and ‘‘v ’’, respectively). The
shear-induced deformation of the PEO-brush is clearly visible. We obtain from a fit to eqn. (16) in
both directions.

Rf
c

Rv
c

¼ 1:11
 0:02 and
Df

Dv
¼ 1:11
 0:02: ð17Þ

It thus seems that the PEP-core is just as much deformed as the PEO-brush. These first results
suggest that the overall density profile of the sheared sample is prolate-shaped with the longer axis
oriented along the flow direction. The observed deformation is of the order of about 11%.

Rheological measurements have been performed in a temperature controlled, double gap con-
figuration, HAAKE RS300 rheometer under controlled stress conditions. Measurements have been
made at low concentrations in D2O. The shear-rate never exceeded about _gg ¼ 10.000 s�1, since
above these rates Taylor instabilities occur.

In Fig. 12, normalized shear viscosities for various concentrations are shown. The shear-rate
where shear thinning sets in is seen to decrease on increasing concentration. This is due to inter-
actions between different colloidal particles. At higher concentrations the shear viscosity is
decreased both due to structure factor distortions and shear-induced brush deformation. In fact,
the difference between the scattering curves in Fig. 11 and the form factor (the solid lines) at low
values of q is due to the distortion of the structure factor. This kind of distortion is responsible for

Fig. 10 Upper figure: the density distribution as obtained from neutron scattering data in the absence of shear
flow, using the model as described in the main text. Lower figure: resulting density distributions from fits of the
neutron scattering data along the vorticity and flow direction at a shear-rate of 250 s�1.
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the concentration dependence of the shear-rate where shear thinning occurs. It seems that the
shear-rate where shear-thinning sets in, extrapolates to a finite value at zero concentration. This
finite value connects to polymer brush deformation. At infinite dilution, shear thinning sets in when
_ggt� 1, where t is the typical time in which a deformed polymer brush relaxes. From Fig. 12 we
obtain roughly, t� 1 ms.
Larger deformations and resulting shear-thinning at lower shear-rates might result when solvents

with a higher viscosity are used. A good- (or theta-) solvent with a much higher viscosity than water
will be considered in future research.

Fig. 12 Viscosity as a function of the shear-rate for different concentrations in wt.%.

Fig. 11 Neutron scattering curves under shear flow with a shear-rate equal to 250 s�1 in the vorticity direction
(solid symbols) and the flow direction (open symbols). The solid lines are fits to the model described in the main
text.
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