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Abstract. Hierarchical methods like the Barnes-Hut (BH) tree code and the Fast
Multipole Method (FMM) are important tools to decrease the algorithmic complex-
ity of solving the N-body problem. We report on recent efforts to achieve massive
scalability on IBM Blue Gene/Q and other highly concurrent supercomputers with
our BH tree code PEPC by replacing a thread synchronization strategy based on
traditional lock data structures with atomic operations. We also describe the inte-
gration of the Dual Tree Traversal a more recent algorithm that combines advan-
tages of both BH tree code and FMM into PEPC. We explain how the scalability of
this algorithm is influenced by the existing communication scheme and we propose
a modification to achieve better distributed memory scalability.
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Introduction

Solving the N-body problem is an important component of many applications in the
field of computational science. A naive implementation can quickly become a bottleneck
however, due to the & (N 2) complexity of calculating all pair-wise mutual interactions:
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While the computation of short-ranged interactions can usually be accelerated us-
ing e.g. spatial cutoff techniques, long-ranged interactions require a different approach.
One possibility is to discretise the spatial domain in the form of a computational grid on
which a partial differential equation for the interaction force field can be solved numer-
ically (e.g. the particle-in-cell scheme). This solution strategy can readily benefit from
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the significant advances made in the field of numerical linear algebra to accelerate the
computation. Grid-based techniques however favour certain forms of (typically closed)
boundary conditions and require adaptive grid management in order to efficiently deal
with strongly inhomogeneous densities.

Another possibility to solve the N-body problem efficiently is the family of mesh-
free, hierarchical techniques which have first been proposed in the 1980s. Among the
members of this family are the Barnes-Hut (BH) tree code [1] and the Fast Multipole
Method (FMM) [2]. Common to these methods is a hierarchical decomposition of space
into sub-regions containing fewer and fewer bodies.

The BH tree code computes interaction results for each individual body by selecting
appropriate regions to interact with from the hierarchy via an acceptance criterion (AC)
that can be based on both geometric and physical quantities (x and ¢ in (1)). On average,
the number of interaction partners for each body is typically & (logN) and thus the total
time complexity of the tree code algorithm is &' (NlogN). BH tree codes to this day are
the subject of active research [3,4].

The FMM makes more rigorous use of the hierarchical decomposition by also con-
sidering pair-wise interactions between regions and passing the results on to the multiple
bodies contained therein. Interaction partners are selected based on an AC that is based
primarily on the topology of the decomposition and that can be evaluated statically. The
dual use of the decomposition allows the FMM to reach a time complexity of & (N).

Both methods usually apply a series expansion to the interaction law in order to
retain the desired amount of accuracy when computing results of aggregate interactions
in a single step. Mirroring the one sided use of the spatial decomposition, the BH tree
code expands the interaction law in a single parameter (the source coordinate x;), while
the FMM applies expansions in two parameters (source coordinate x; and destination
coordinate x;).

More recently a novel hybrid algorithm, the Dual Tree Traversal (DTT), has been
proposed [5,6]. Like the FMM it maximises the benefits of the spatial decomposition and
employs series expansion in both spatial parameters. The DTT combines this with the
flexibility offered by the AC of the BH tree code. It has been shown empirically to also
have a time complexity of & (N).

In this paper, we present our work on PEPC, the Pretty Efficient Parallel Coulomb-
solver. PEPC was conceived in 2003 as a distributed memory parallel BH tree code for
electrostatic interactions. It has since evolved to include different laws of interaction and
successfully makes use of a hybrid parallelisation scheme [7].

First we report on recent efforts to achieve massive scalability on IBM Blue Gene/Q
and other highly concurrent supercomputers by replacing a thread synchronisation strat-
egy based on traditional lock data structures with atomic operations. We show results
for intra node scaling utilising all 64 hardware threads of the A2 compute chip and inter
node scaling utilising all 458752 cores of the JUQUEEN supercomputer at JSC.

Then we describe the integration of the DTT algorithm into PEPC. We explain how
the scalability of this algorithm is influenced by the existing communication scheme and
we propose a modification to achieve better distributed memory scalability.



1. Massively Parallel Barnes-Hut Tree Code
1.1. The Barnes-Hut Algorithm

The Barnes-Hut algorithm proceeds in two phases. Phase 1 builds a tree decomposition
of the source bodies b;, j € 1,...,N. PEPC follows the Hashed Oct-Tree scheme proposed
in [8], repeated here as algorithm 1. The algorithm rearranges the distribution of the
bodies among parallel processes according to their spatial position making use of a space-
filling curve. It builds a local part of the tree bottom-up on every process using only the
information of the bodies assigned to that process. This local part spans from the leaves
containing individual bodies to the “branch nodes”. Branch nodes are those nodes that
are farthest up the tree from the leaves yet still only contain bodies assigned to a single
process. The set of all branch nodes of all processes contains all bodies. Next, all branch
nodes are made available on every process and the global part of the tree is built bottom-
up from all branch nodes on every process. Finally, all processes have a tree that contains
the same global part (between root node and branch nodes) everywhere and a local part
below the branch nodes with information about the local bodies. Figure 1 shows a simple
distributed tree right after its construction as seen by one of the processes. In general,
both global and local parts are deeper than one level, local parts end in more than one
branch node and branch nodes are not all at the same level.

Algorithm 1 Phase 1 of the BH algorithm: distributed tree construction

1: function TREE(b) > Construct tree from bodies b
2 calculate integer coordinates k along space-filling curve

3 sort bodies b among processes according to k

4 construct tree bottom-up until branch nodes

5: distribute branch nodes
6

7
8:

finish construction bottom up from branch nodes to root
: return root
end function

Phase 2 of the algorithm (see algorithm 2) calculates the forces on all local bodies
due to the ensemble of all bodies as described by the tree decomposition. Calculating the
force on one particular body involves a top-down traversal of the tree (function FORCE)

Figure 1. A distributed tree after tree construction as seen by process 1; information from different processes is
distinguished by colour and shape (process 0: blue pentagons, 1: red circles, 2: green stars, 3: yellow diamonds).
The global part of the tree is in black rectangles. Information that is not available locally on process 1 is half
transparent.



Algorithm 2 Phase 2 of the BH algorithm: force computation
1: function FORCEALLC(t) > forces on all bodies b

2: fori<1,...,Ndo

3: ®; « FORCE(root, b;)

4: end for

5: return ©

6: end function

7. function FORCE(t, b) > force on body b due to tree t
8: if ISLEAF(t) or AC(t, b) then
9: return ¢(z,D)
10: else
11 return Y., FORCE(c,b)
12: end if

13: end function

starting at the root node. The force on a body due to a node in the tree (and all the bodies
contained therein) can be calculated in a single application of ¢ (or its series expansion)
if the node is found to be suitable — either by being a leaf or by fulfilling the acceptance
criterion (AC). Otherwise the force is calculated as the sum of forces due to the children
of the node. Applications of function FORCE for different bodies b; are independent
and can be performed in parallel by multiple processes and threads. The next section
describes how this parallelism is exploited and how it interacts with the non-locality of
certain parts of the tree.

1.2. A Hybrid Parallelisation for the Barnes-Hut Algorithm

PEPC uses a heterogeneous hybrid parallelisation for the BH force computation phase,
i.e. it assigns structurally different tasks to different POSIX threads [7]. While most
threads contribute to the computation of body-region and body-body interactions (worker
threads), at least one thread on each distributed memory process is responsible for han-
dling communication with other processes (communicator thread).

The loop that starts the tree traversal for different bodies on line 2 of algorithm 2 is
parallelised among the worker threads. If the children of a node have to be visited by a
traversal (line 11 in algorithm 2), but are not available locally, the worker thread enqueues
a request for the children of that node to be processed by the local communicator thread
and defer the remainder of the traversal until later, starting a new traversal for a different
body in the meantime. The communicator thread asynchronously sends requests from
the queue to other processes on behalf of the worker threads. It also receives and acts
upon messages from other processes.

This latency-hiding scheme helps to achieve an overlap of computation and com-
munication [8]. The dependency between the two kinds of threads necessitates an inter-
thread synchronisation mechanism.

1.3. Concurrent Access to Shared Resources

The acquisition of bodies from the list by the worker threads (loop in line 2 of algo-
rithm 2) is coordinated via a shared counter. Access to this shared resource from multi-



Algorithm 3 Concurrent access to a shared counter, synchronised via a lock

function ACQUIREBODY(c) > acquire a body by incrementing a counter
LocK(c)
i<c
c+c+1
UNLOCK(c)
return i

end function

ple worker threads was originally synchronised using the read/write lock facilities of the
POSIX threads API as described in algorithm 3.

While this solution scaled well to a moderate number of threads as found e.g. on
IBM Blue Gene/P systems, it could not efficiently handle the 64 hardware threads that
are available on the A2 compute chip of the Blue Gene/Q system. It is possible to keep
the number of concurrent threads low by splitting the 16 cores available on each compute
node among multiple distributed memory processes. In practice however, it is desirable
to utilise all cores on a single compute node in a shared-memory parallel fashion since a
larger number of processes leads to unnecessary fragmentation of the tree data structure
which in turn leads to increased need for communication.

As an alternative to the read/write locks, we investigated atomic operations, which
enable consistent (atomic) manipulation of primitive types by multiple concurrent
threads. One such operation performs an addition on a variable and returns its value be-
fore or after the addition. We change the algorithm to acquire a body for force computa-
tion to manipulate the shared counter via atomic operations only and remove the lock as
illustrated in algorithm 4.

Algorithm 4 Concurrent access to a shared counter, synchronised via atomic operations
function ACQUIREBODY(c) > acquire a body by incrementing a counter
atomic
i+c
c+—c+1
end atomic
return i
end function

Communication between worker threads and communicator threads is performed by
enqueueing requests in a single-consumer multi-producer ring buffer. The buffer is filled
with valid entries between a head and a tail pointer that are incremented using modulo
arithmetic. These operations were previously also protected from data races using locks.

Algorithm 5 Atomic modulo arithmetic using compare-and-swap
function ATOMICMODINCREMENT(X, mod)
repeat
yéx
until CAS(x, y, (y + 1) % mod)
end function
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Figure 2. A strong scaling of PEPC on a single node of the IBM Blue Gene/Q installation JUQUEEN from 1 to
64 threads.

Since modulo arithmetic is not available as an atomic primitive itself, we implement
it using another primitive, the compare-and-swap CAS(x, old, new). CAS atomically
replaces the value of a variable x with a new value and returns true, if the variable is
currently holding a certain old value, otherwise it leaves the value untouched, returning
false. The atomic modular arithmetic operation is given in algorithm 5.

Figure 2 shows a strong scaling of PEPC utilising 1 to 64 threads. It compares two
versions, one using read/write locks and one using atomic operations. Note that for more
than 32 threads, the theoretically available SMP concurrency is saturated due to hardware
restrictions.

With these changes in place, the worker threads and the communicator threads co-
operate efficiently and allow PEPC to achieve high parallel efficiency on the whole of
JUQUEEN, see figure 3. PEPC is thus also a member of the High-Q club established at
the Jiilich Supercomputing Centre in 2013 [9].
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Figure 3. A weak scaling of PEPC on the IBM Blue Gene/Q installation JUQUEEN from a single node board
to the whole machine.



2. Dual Tree Traversal
2.1. The Dual Tree Traversal Algorithm

Despite the remarkable scalability achieved with PEPC demonstrated in figure 3, the fact
remains that the algorithm is fundamentally & (Nlog N): many more operations are being
performed than would be computed by an equivalent fast multipole method for the same
precision in the force calculation. To improve the original BH tree code algorithm to
O (N) therefore, we extend it to use the DTT algorithm as described in [6]. Due to the
similarities between the two algorithms, this enhancement does not require a full rewrite
of the application, but can be accomplished with a few self-contained changes that take
advantage of the existing parallel framework. These changes are:

1. Introducing additional objects and operators in the mathematical back-ends.
2. Constructing the DTT algorithm on top of the existing implementation of the tree
data structure and the newly added mathematical tools.

In particular, the tree construction phase as shown for the BH algorithm (algo-
rithm 1) can be re-used almost completely unchanged, save for the initialisation of the
aforementioned additional mathematical objects. Phase 2 of the BH algorithm is replaced

Algorithm 6 Phase 2 of Dual Tree Traversal: Sow procedure
1: procedure SOW(s, t)

2: if (ISLEAF(s) and ISLEAF(t)) or AC(s, t) then
3: D D+ ¢ (s,1)

4: else if ISLEAF(t) then

5: SPLITSOURCE(S, t)

6: else if ISLEAF(s) then

7: SPLITTARGET(Ss, t)

8: else if DIAMETER(s) > DIAMETER(t) then
9: SPLITSOURCEC(S, t)
10: else
11: SPLITTARGET(S, t)
12: end if

13: end procedure
14: procedure SPLITSOURCE(S, t)

15: for all children c of source do
16: Sow(c, t)
17: end for

18: end procedure
19: procedure SPLITTARGET(S, t)

20: for all children c of target do
21: task

22: SOwW(s, ¢)

23: end task

24: end for

25: taskwait

26: end procedure




by two distinct phases in the DTT algorithm. The first, called SOw, is given in algo-
rithm 6.

The SOW phase traverses two trees which may be identical in a mutually recursive
fashion, using them for information about the source and target body distribution. It cal-
culates interactions between pairs of nodes that either fulfil the acceptance criterion AC
or cannot be split further. Otherwise it tries to split the bigger of the two nodes under
consideration (keeping the potential interaction partners at a similar level) or split the
node that is not a leaf. Figure 4 illustrates the evolution of this algorithm. Parallelism is
exploited during this phase by performing traversals for distinct target nodes in separate
tasks using OpenMP (lines 21 and 25 in algorithm 6).
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Figure 4. Evolution of the SOW phase of the DTT algorithm: starting at the root nodes of both source and
target trees (left) the algorithm first splits the target tree root (middle) and then the source tree root (right)

The last phase of the DTT algorithm, called REAP, translates the results of interac-
tions between pairs of nodes to results for the bodies contained therein. It operates in a
top-down manner on the local part of the tree only.

Algorithm 7 Phase 2 of Dual Tree Traversal: Reap procedure
1: procedure REAP(n)

2: if ISLEAF(n) then

3: Dpody < Pn

4: else

5: for all children ¢ of n do
6: b+ P,

7 REAP(c)

8: end for

9: end if

10: end procedure

2.2. Request/Response Communication in the DTT Algorithm

The DTT algorithm re-uses the request/response communication scheme presented in the
BH section of this paper. However, while the DTT works as intended in combination with
this scheme, it does not scale as well to large distributed memory partitions. This defi-
ciency stems from the fact that the latency-hiding scheme employed in the BH algorithm
does not easily translate to the DTT. Specifically, in the BH algorithm, a series of inde-
pendent traversals of the input tree data structure is performed for every element of the
output data structure, a flat list of bodies. Each one of these traversals can be suspended
and another one can be performed in its place while waiting for remote information. In
the DTT algorithm, both input and output are hierarchical data structures (the spatial tree
decomposition) which are traversed in a mutually recursive manner. If the traversal tries
to split a source node in line 15 of algorithm 6 and the children are not available locally



it has to stop and wait for the remote information to be fetched by the communicator
thread. In the meantime, other tasks might progress, but, typically, the need for remote
information first arises at the level of the branch nodes (all information above is available
locally after tree construction). Consequently, the number of tasks spawned at that point
is equal to the number of branch nodes owned by the encountering process, which is
comparable to the amount of hardware threads offered by current processors, so there is
no remaining work to replace the waiting traversal.

To remedy this problem we evaluate an eager request/response mechanism. Along
with the request for the missing children of a source node, the requesting process sends
the target node that is currently being considered as an interaction partner. This allows
the communicator thread on the process receiving the request to perform a traversal of
its local tree. Starting at the requested nodes, it evaluates the AC for those nodes and
their descendants and the target node sent along with the request. All nodes up to and
including those that finally meet the AC are collected and sent as part of the response.
This procedure anticipates all future communications due to the target node and its de-
scendants based on a worst-case estimate, i.e. the nodes sent along in the response ful-
fil the AC for the original target node (by definition) and all its descendants (under the
reasonable assumption that AC(z,s) = AC(c,s) V ¢ €1).

In practice, however, the eager mechanism lead to a significant decrease in perfor-
mance. The decrease in request/response round trips won by anticipating multiple levels
of communication is not enough to offset the increased work load put on the communi-
cator threads by the collecting tree traversal. Additionally, for larger problem sizes, the
increased size of the response messages is often enough to overflow the buffers allocated
for MPI buffered communication. We therefore revert to the unmodified request/response
scheme.

Figure 5 shows a weak scaling of the DTT algorithm as implemented in PEPC on
top of the unmodified request/response communication scheme. Compared to the scaling
behaviour of the BH algorithm in figure 3, the DTT shows a more pronounced fall-off
of efficiency for the medium sized problem. However, in terms of efficiency, it performs
similarly for large problem sizes, where both algorithms achieve a parallel efficiency of
about 0.8 on the whole machine. In terms of total wall time, the DTT outperforms the
BH algorithm for large problem sizes, due to its &' (N) complexity.

3. Conclusion

In this paper, we have discussed aspects of parallel implementations of both the Barnes-
Hut algorithm and the Dual Tree Traversal algorithm.

We have demonstrated how atomic operations can be used to replace more general
locking mechanisms in order to prevent multi-threading bottlenecks on processors offer-
ing a high degree of parallelism. Our implementation of the BH algorithm in PEPC based
on a general request/response communication scheme scales well on distributed memory
machines at medium and large problem sizes.

Furthermore, we have shown results for the scaling behaviour of our implementation
of the DTT algorithm in PEPC utilizing up to nearly 0.5 million cores on JUQUEEN. It
achieves a parallel efficiency similar to that of the BH algorithm at large problem sizes
and offers a better time to solution due to the &' (N) complexity. At medium and small
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Figure 5. A weak scaling of the dual tree traversal algorithm in PEPC on the IBM Blue Gene/Q installation
JUQUEEN from a single node board to the whole machine.

problem sizes the DTT does not yet reach the efficiency of the BH algorithm. We plan to
investigate this issue further in the future.
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